mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165402 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			363 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			363 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopDependenceAnalysis.cpp - LDA Implementation ----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is the (beginning) of an implementation of a loop dependence analysis
 | |
| // framework, which is used to detect dependences in memory accesses in loops.
 | |
| //
 | |
| // Please note that this is work in progress and the interface is subject to
 | |
| // change.
 | |
| //
 | |
| // TODO: adapt as implementation progresses.
 | |
| //
 | |
| // TODO: document lingo (pair, subscript, index)
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "lda"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/LoopDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/DataLayout.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumAnswered,    "Number of dependence queries answered");
 | |
| STATISTIC(NumAnalysed,    "Number of distinct dependence pairs analysed");
 | |
| STATISTIC(NumDependent,   "Number of pairs with dependent accesses");
 | |
| STATISTIC(NumIndependent, "Number of pairs with independent accesses");
 | |
| STATISTIC(NumUnknown,     "Number of pairs with unknown accesses");
 | |
| 
 | |
| LoopPass *llvm::createLoopDependenceAnalysisPass() {
 | |
|   return new LoopDependenceAnalysis();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopDependenceAnalysis, "lda",
 | |
|                 "Loop Dependence Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(LoopDependenceAnalysis, "lda",
 | |
|                 "Loop Dependence Analysis", false, true)
 | |
| char LoopDependenceAnalysis::ID = 0;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Utility Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static inline bool IsMemRefInstr(const Value *V) {
 | |
|   const Instruction *I = dyn_cast<const Instruction>(V);
 | |
|   return I && (I->mayReadFromMemory() || I->mayWriteToMemory());
 | |
| }
 | |
| 
 | |
| static void GetMemRefInstrs(const Loop *L,
 | |
|                             SmallVectorImpl<Instruction*> &Memrefs) {
 | |
|   for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
 | |
|        b != be; ++b)
 | |
|     for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end();
 | |
|          i != ie; ++i)
 | |
|       if (IsMemRefInstr(i))
 | |
|         Memrefs.push_back(i);
 | |
| }
 | |
| 
 | |
| static bool IsLoadOrStoreInst(Value *I) {
 | |
|   // Returns true if the load or store can be analyzed. Atomic and volatile
 | |
|   // operations have properties which this analysis does not understand.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isUnordered();
 | |
|   else if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isUnordered();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Value *GetPointerOperand(Value *I) {
 | |
|   if (LoadInst *i = dyn_cast<LoadInst>(I))
 | |
|     return i->getPointerOperand();
 | |
|   if (StoreInst *i = dyn_cast<StoreInst>(I))
 | |
|     return i->getPointerOperand();
 | |
|   llvm_unreachable("Value is no load or store instruction!");
 | |
| }
 | |
| 
 | |
| static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA,
 | |
|                                                          const Value *A,
 | |
|                                                          const Value *B) {
 | |
|   const Value *aObj = GetUnderlyingObject(A);
 | |
|   const Value *bObj = GetUnderlyingObject(B);
 | |
|   return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()),
 | |
|                    bObj, AA->getTypeStoreSize(bObj->getType()));
 | |
| }
 | |
| 
 | |
| static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) {
 | |
|   return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Dependence Testing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LoopDependenceAnalysis::isDependencePair(const Value *A,
 | |
|                                               const Value *B) const {
 | |
|   return IsMemRefInstr(A) &&
 | |
|          IsMemRefInstr(B) &&
 | |
|          (cast<const Instruction>(A)->mayWriteToMemory() ||
 | |
|           cast<const Instruction>(B)->mayWriteToMemory());
 | |
| }
 | |
| 
 | |
| bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A,
 | |
|                                                         Value *B,
 | |
|                                                         DependencePair *&P) {
 | |
|   void *insertPos = 0;
 | |
|   FoldingSetNodeID id;
 | |
|   id.AddPointer(A);
 | |
|   id.AddPointer(B);
 | |
| 
 | |
|   P = Pairs.FindNodeOrInsertPos(id, insertPos);
 | |
|   if (P) return true;
 | |
| 
 | |
|   P = new (PairAllocator) DependencePair(id, A, B);
 | |
|   Pairs.InsertNode(P, insertPos);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopDependenceAnalysis::getLoops(const SCEV *S,
 | |
|                                       DenseSet<const Loop*>* Loops) const {
 | |
|   // Refactor this into an SCEVVisitor, if efficiency becomes a concern.
 | |
|   for (const Loop *L = this->L; L != 0; L = L->getParentLoop())
 | |
|     if (!SE->isLoopInvariant(S, L))
 | |
|       Loops->insert(L);
 | |
| }
 | |
| 
 | |
| bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const {
 | |
|   DenseSet<const Loop*> loops;
 | |
|   getLoops(S, &loops);
 | |
|   return loops.empty();
 | |
| }
 | |
| 
 | |
| bool LoopDependenceAnalysis::isAffine(const SCEV *S) const {
 | |
|   const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S);
 | |
|   return isLoopInvariant(S) || (rec && rec->isAffine());
 | |
| }
 | |
| 
 | |
| bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const {
 | |
|   return isLoopInvariant(A) && isLoopInvariant(B);
 | |
| }
 | |
| 
 | |
| bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const {
 | |
|   DenseSet<const Loop*> loops;
 | |
|   getLoops(A, &loops);
 | |
|   getLoops(B, &loops);
 | |
|   return loops.size() == 1;
 | |
| }
 | |
| 
 | |
| LoopDependenceAnalysis::DependenceResult
 | |
| LoopDependenceAnalysis::analyseZIV(const SCEV *A,
 | |
|                                    const SCEV *B,
 | |
|                                    Subscript *S) const {
 | |
|   assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!");
 | |
|   return A == B ? Dependent : Independent;
 | |
| }
 | |
| 
 | |
| LoopDependenceAnalysis::DependenceResult
 | |
| LoopDependenceAnalysis::analyseSIV(const SCEV *A,
 | |
|                                    const SCEV *B,
 | |
|                                    Subscript *S) const {
 | |
|   return Unknown; // TODO: Implement.
 | |
| }
 | |
| 
 | |
| LoopDependenceAnalysis::DependenceResult
 | |
| LoopDependenceAnalysis::analyseMIV(const SCEV *A,
 | |
|                                    const SCEV *B,
 | |
|                                    Subscript *S) const {
 | |
|   return Unknown; // TODO: Implement.
 | |
| }
 | |
| 
 | |
| LoopDependenceAnalysis::DependenceResult
 | |
| LoopDependenceAnalysis::analyseSubscript(const SCEV *A,
 | |
|                                          const SCEV *B,
 | |
|                                          Subscript *S) const {
 | |
|   DEBUG(dbgs() << "  Testing subscript: " << *A << ", " << *B << "\n");
 | |
| 
 | |
|   if (A == B) {
 | |
|     DEBUG(dbgs() << "  -> [D] same SCEV\n");
 | |
|     return Dependent;
 | |
|   }
 | |
| 
 | |
|   if (!isAffine(A) || !isAffine(B)) {
 | |
|     DEBUG(dbgs() << "  -> [?] not affine\n");
 | |
|     return Unknown;
 | |
|   }
 | |
| 
 | |
|   if (isZIVPair(A, B))
 | |
|     return analyseZIV(A, B, S);
 | |
| 
 | |
|   if (isSIVPair(A, B))
 | |
|     return analyseSIV(A, B, S);
 | |
| 
 | |
|   return analyseMIV(A, B, S);
 | |
| }
 | |
| 
 | |
| LoopDependenceAnalysis::DependenceResult
 | |
| LoopDependenceAnalysis::analysePair(DependencePair *P) const {
 | |
|   DEBUG(dbgs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n");
 | |
| 
 | |
|   // We only analyse loads and stores but no possible memory accesses by e.g.
 | |
|   // free, call, or invoke instructions.
 | |
|   if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) {
 | |
|     DEBUG(dbgs() << "--> [?] no load/store\n");
 | |
|     return Unknown;
 | |
|   }
 | |
| 
 | |
|   Value *aPtr = GetPointerOperand(P->A);
 | |
|   Value *bPtr = GetPointerOperand(P->B);
 | |
| 
 | |
|   switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) {
 | |
|   case AliasAnalysis::MayAlias:
 | |
|   case AliasAnalysis::PartialAlias:
 | |
|     // We can not analyse objects if we do not know about their aliasing.
 | |
|     DEBUG(dbgs() << "---> [?] may alias\n");
 | |
|     return Unknown;
 | |
| 
 | |
|   case AliasAnalysis::NoAlias:
 | |
|     // If the objects noalias, they are distinct, accesses are independent.
 | |
|     DEBUG(dbgs() << "---> [I] no alias\n");
 | |
|     return Independent;
 | |
| 
 | |
|   case AliasAnalysis::MustAlias:
 | |
|     break; // The underlying objects alias, test accesses for dependence.
 | |
|   }
 | |
| 
 | |
|   const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr);
 | |
|   const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr);
 | |
| 
 | |
|   if (!aGEP || !bGEP)
 | |
|     return Unknown;
 | |
| 
 | |
|   // FIXME: Is filtering coupled subscripts necessary?
 | |
| 
 | |
|   // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding
 | |
|   // trailing zeroes to the smaller GEP, if needed.
 | |
|   typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy;
 | |
|   GEPOpdPairsTy opds;
 | |
|   for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(),
 | |
|                                      aEnd = aGEP->idx_end(),
 | |
|                                      bIdx = bGEP->idx_begin(),
 | |
|                                      bEnd = bGEP->idx_end();
 | |
|       aIdx != aEnd && bIdx != bEnd;
 | |
|       aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) {
 | |
|     const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE);
 | |
|     const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE);
 | |
|     opds.push_back(std::make_pair(aSCEV, bSCEV));
 | |
|   }
 | |
| 
 | |
|   if (!opds.empty() && opds[0].first != opds[0].second) {
 | |
|     // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting
 | |
|     //
 | |
|     // TODO: this could be relaxed by adding the size of the underlying object
 | |
|     // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we
 | |
|     // know that x is a [100 x i8]*, we could modify the first subscript to be
 | |
|     // (i, 200-i) instead of (i, -i).
 | |
|     return Unknown;
 | |
|   }
 | |
| 
 | |
|   // Now analyse the collected operand pairs (skipping the GEP ptr offsets).
 | |
|   for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end();
 | |
|        i != end; ++i) {
 | |
|     Subscript subscript;
 | |
|     DependenceResult result = analyseSubscript(i->first, i->second, &subscript);
 | |
|     if (result != Dependent) {
 | |
|       // We either proved independence or failed to analyse this subscript.
 | |
|       // Further subscripts will not improve the situation, so abort early.
 | |
|       return result;
 | |
|     }
 | |
|     P->Subscripts.push_back(subscript);
 | |
|   }
 | |
|   // We successfully analysed all subscripts but failed to prove independence.
 | |
|   return Dependent;
 | |
| }
 | |
| 
 | |
| bool LoopDependenceAnalysis::depends(Value *A, Value *B) {
 | |
|   assert(isDependencePair(A, B) && "Values form no dependence pair!");
 | |
|   ++NumAnswered;
 | |
| 
 | |
|   DependencePair *p;
 | |
|   if (!findOrInsertDependencePair(A, B, p)) {
 | |
|     // The pair is not cached, so analyse it.
 | |
|     ++NumAnalysed;
 | |
|     switch (p->Result = analysePair(p)) {
 | |
|     case Dependent:   ++NumDependent;   break;
 | |
|     case Independent: ++NumIndependent; break;
 | |
|     case Unknown:     ++NumUnknown;     break;
 | |
|     }
 | |
|   }
 | |
|   return p->Result != Independent;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   LoopDependenceAnalysis Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
 | |
|   this->L = L;
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopDependenceAnalysis::releaseMemory() {
 | |
|   Pairs.clear();
 | |
|   PairAllocator.Reset();
 | |
| }
 | |
| 
 | |
| void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<AliasAnalysis>();
 | |
|   AU.addRequiredTransitive<ScalarEvolution>();
 | |
| }
 | |
| 
 | |
| static void PrintLoopInfo(raw_ostream &OS,
 | |
|                           LoopDependenceAnalysis *LDA, const Loop *L) {
 | |
|   if (!L->empty()) return; // ignore non-innermost loops
 | |
| 
 | |
|   SmallVector<Instruction*, 8> memrefs;
 | |
|   GetMemRefInstrs(L, memrefs);
 | |
| 
 | |
|   OS << "Loop at depth " << L->getLoopDepth() << ", header block: ";
 | |
|   WriteAsOperand(OS, L->getHeader(), false);
 | |
|   OS << "\n";
 | |
| 
 | |
|   OS << "  Load/store instructions: " << memrefs.size() << "\n";
 | |
|   for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
 | |
|        end = memrefs.end(); x != end; ++x)
 | |
|     OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n";
 | |
| 
 | |
|   OS << "  Pairwise dependence results:\n";
 | |
|   for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
 | |
|        end = memrefs.end(); x != end; ++x)
 | |
|     for (SmallVector<Instruction*, 8>::const_iterator y = x + 1;
 | |
|          y != end; ++y)
 | |
|       if (LDA->isDependencePair(*x, *y))
 | |
|         OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin())
 | |
|            << ": " << (LDA->depends(*x, *y) ? "dependent" : "independent")
 | |
|            << "\n";
 | |
| }
 | |
| 
 | |
| void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const {
 | |
|   // TODO: doc why const_cast is safe
 | |
|   PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L);
 | |
| }
 |