mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90511 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			889 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			889 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the scalar evolution expander,
 | |
| // which is used to generate the code corresponding to a given scalar evolution
 | |
| // expression.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
 | |
| /// which must be possible with a noop cast, doing what we can to share
 | |
| /// the casts.
 | |
| Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
 | |
|   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
 | |
|   assert((Op == Instruction::BitCast ||
 | |
|           Op == Instruction::PtrToInt ||
 | |
|           Op == Instruction::IntToPtr) &&
 | |
|          "InsertNoopCastOfTo cannot perform non-noop casts!");
 | |
|   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
 | |
|          "InsertNoopCastOfTo cannot change sizes!");
 | |
| 
 | |
|   // Short-circuit unnecessary bitcasts.
 | |
|   if (Op == Instruction::BitCast && V->getType() == Ty)
 | |
|     return V;
 | |
| 
 | |
|   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
 | |
|   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
 | |
|       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(V))
 | |
|       if ((CI->getOpcode() == Instruction::PtrToInt ||
 | |
|            CI->getOpcode() == Instruction::IntToPtr) &&
 | |
|           SE.getTypeSizeInBits(CI->getType()) ==
 | |
|           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
 | |
|         return CI->getOperand(0);
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|       if ((CE->getOpcode() == Instruction::PtrToInt ||
 | |
|            CE->getOpcode() == Instruction::IntToPtr) &&
 | |
|           SE.getTypeSizeInBits(CE->getType()) ==
 | |
|           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
 | |
|         return CE->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(Op, C, Ty);
 | |
| 
 | |
|   if (Argument *A = dyn_cast<Argument>(V)) {
 | |
|     // Check to see if there is already a cast!
 | |
|     for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
 | |
|          UI != E; ++UI)
 | |
|       if ((*UI)->getType() == Ty)
 | |
|         if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
 | |
|           if (CI->getOpcode() == Op) {
 | |
|             // If the cast isn't the first instruction of the function, move it.
 | |
|             if (BasicBlock::iterator(CI) !=
 | |
|                 A->getParent()->getEntryBlock().begin()) {
 | |
|               // Recreate the cast at the beginning of the entry block.
 | |
|               // The old cast is left in place in case it is being used
 | |
|               // as an insert point.
 | |
|               Instruction *NewCI =
 | |
|                 CastInst::Create(Op, V, Ty, "",
 | |
|                                  A->getParent()->getEntryBlock().begin());
 | |
|               NewCI->takeName(CI);
 | |
|               CI->replaceAllUsesWith(NewCI);
 | |
|               return NewCI;
 | |
|             }
 | |
|             return CI;
 | |
|           }
 | |
| 
 | |
|     Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
 | |
|                                       A->getParent()->getEntryBlock().begin());
 | |
|     InsertedValues.insert(I);
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
| 
 | |
|   // Check to see if there is already a cast.  If there is, use it.
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if ((*UI)->getType() == Ty)
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
 | |
|         if (CI->getOpcode() == Op) {
 | |
|           BasicBlock::iterator It = I; ++It;
 | |
|           if (isa<InvokeInst>(I))
 | |
|             It = cast<InvokeInst>(I)->getNormalDest()->begin();
 | |
|           while (isa<PHINode>(It)) ++It;
 | |
|           if (It != BasicBlock::iterator(CI)) {
 | |
|             // Recreate the cast at the beginning of the entry block.
 | |
|             // The old cast is left in place in case it is being used
 | |
|             // as an insert point.
 | |
|             Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
 | |
|             NewCI->takeName(CI);
 | |
|             CI->replaceAllUsesWith(NewCI);
 | |
|             return NewCI;
 | |
|           }
 | |
|           return CI;
 | |
|         }
 | |
|   }
 | |
|   BasicBlock::iterator IP = I; ++IP;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
 | |
|     IP = II->getNormalDest()->begin();
 | |
|   while (isa<PHINode>(IP)) ++IP;
 | |
|   Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
 | |
|   InsertedValues.insert(CI);
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| /// InsertBinop - Insert the specified binary operator, doing a small amount
 | |
| /// of work to avoid inserting an obviously redundant operation.
 | |
| Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
 | |
|                                  Value *LHS, Value *RHS) {
 | |
|   // Fold a binop with constant operands.
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantExpr::get(Opcode, CLHS, CRHS);
 | |
| 
 | |
|   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
 | |
|   unsigned ScanLimit = 6;
 | |
|   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
 | |
|   // Scanning starts from the last instruction before the insertion point.
 | |
|   BasicBlock::iterator IP = Builder.GetInsertPoint();
 | |
|   if (IP != BlockBegin) {
 | |
|     --IP;
 | |
|     for (; ScanLimit; --IP, --ScanLimit) {
 | |
|       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
 | |
|           IP->getOperand(1) == RHS)
 | |
|         return IP;
 | |
|       if (IP == BlockBegin) break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we haven't found this binop, insert it.
 | |
|   Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
 | |
|   InsertedValues.insert(BO);
 | |
|   return BO;
 | |
| }
 | |
| 
 | |
| /// FactorOutConstant - Test if S is divisible by Factor, using signed
 | |
| /// division. If so, update S with Factor divided out and return true.
 | |
| /// S need not be evenly divisble if a reasonable remainder can be
 | |
| /// computed.
 | |
| /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
 | |
| /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
 | |
| /// check to see if the divide was folded.
 | |
| static bool FactorOutConstant(const SCEV *&S,
 | |
|                               const SCEV *&Remainder,
 | |
|                               const SCEV *Factor,
 | |
|                               ScalarEvolution &SE,
 | |
|                               const TargetData *TD) {
 | |
|   // Everything is divisible by one.
 | |
|   if (Factor->isOne())
 | |
|     return true;
 | |
| 
 | |
|   // x/x == 1.
 | |
|   if (S == Factor) {
 | |
|     S = SE.getIntegerSCEV(1, S->getType());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For a Constant, check for a multiple of the given factor.
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
 | |
|     // 0/x == 0.
 | |
|     if (C->isZero())
 | |
|       return true;
 | |
|     // Check for divisibility.
 | |
|     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
 | |
|       ConstantInt *CI =
 | |
|         ConstantInt::get(SE.getContext(),
 | |
|                          C->getValue()->getValue().sdiv(
 | |
|                                                    FC->getValue()->getValue()));
 | |
|       // If the quotient is zero and the remainder is non-zero, reject
 | |
|       // the value at this scale. It will be considered for subsequent
 | |
|       // smaller scales.
 | |
|       if (!CI->isZero()) {
 | |
|         const SCEV *Div = SE.getConstant(CI);
 | |
|         S = Div;
 | |
|         Remainder =
 | |
|           SE.getAddExpr(Remainder,
 | |
|                         SE.getConstant(C->getValue()->getValue().srem(
 | |
|                                                   FC->getValue()->getValue())));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In a Mul, check if there is a constant operand which is a multiple
 | |
|   // of the given factor.
 | |
|   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     if (TD) {
 | |
|       // With TargetData, the size is known. Check if there is a constant
 | |
|       // operand which is a multiple of the given factor. If so, we can
 | |
|       // factor it.
 | |
|       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
 | |
|       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
 | |
|         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
 | |
|           const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
 | |
|           SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
 | |
|                                                  MOperands.end());
 | |
|           NewMulOps[0] =
 | |
|             SE.getConstant(C->getValue()->getValue().sdiv(
 | |
|                                                    FC->getValue()->getValue()));
 | |
|           S = SE.getMulExpr(NewMulOps);
 | |
|           return true;
 | |
|         }
 | |
|     } else {
 | |
|       // Without TargetData, check if Factor can be factored out of any of the
 | |
|       // Mul's operands. If so, we can just remove it.
 | |
|       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
 | |
|         const SCEV *SOp = M->getOperand(i);
 | |
|         const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
 | |
|         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
 | |
|             Remainder->isZero()) {
 | |
|           const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
 | |
|           SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
 | |
|                                                  MOperands.end());
 | |
|           NewMulOps[i] = SOp;
 | |
|           S = SE.getMulExpr(NewMulOps);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In an AddRec, check if both start and step are divisible.
 | |
|   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     const SCEV *Step = A->getStepRecurrence(SE);
 | |
|     const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
 | |
|     if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
 | |
|       return false;
 | |
|     if (!StepRem->isZero())
 | |
|       return false;
 | |
|     const SCEV *Start = A->getStart();
 | |
|     if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
 | |
|       return false;
 | |
|     S = SE.getAddRecExpr(Start, Step, A->getLoop());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
 | |
| /// is the number of SCEVAddRecExprs present, which are kept at the end of
 | |
| /// the list.
 | |
| ///
 | |
| static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                                 const Type *Ty,
 | |
|                                 ScalarEvolution &SE) {
 | |
|   unsigned NumAddRecs = 0;
 | |
|   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
 | |
|     ++NumAddRecs;
 | |
|   // Group Ops into non-addrecs and addrecs.
 | |
|   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
 | |
|   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
 | |
|   // Let ScalarEvolution sort and simplify the non-addrecs list.
 | |
|   const SCEV *Sum = NoAddRecs.empty() ?
 | |
|                     SE.getIntegerSCEV(0, Ty) :
 | |
|                     SE.getAddExpr(NoAddRecs);
 | |
|   // If it returned an add, use the operands. Otherwise it simplified
 | |
|   // the sum into a single value, so just use that.
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
 | |
|     Ops = Add->getOperands();
 | |
|   else {
 | |
|     Ops.clear();
 | |
|     if (!Sum->isZero())
 | |
|       Ops.push_back(Sum);
 | |
|   }
 | |
|   // Then append the addrecs.
 | |
|   Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
 | |
| }
 | |
| 
 | |
| /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
 | |
| /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
 | |
| /// This helps expose more opportunities for folding parts of the expressions
 | |
| /// into GEP indices.
 | |
| ///
 | |
| static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                          const Type *Ty,
 | |
|                          ScalarEvolution &SE) {
 | |
|   // Find the addrecs.
 | |
|   SmallVector<const SCEV *, 8> AddRecs;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
 | |
|       const SCEV *Start = A->getStart();
 | |
|       if (Start->isZero()) break;
 | |
|       const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
 | |
|       AddRecs.push_back(SE.getAddRecExpr(Zero,
 | |
|                                          A->getStepRecurrence(SE),
 | |
|                                          A->getLoop()));
 | |
|       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
 | |
|         Ops[i] = Zero;
 | |
|         Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
 | |
|         e += Add->getNumOperands();
 | |
|       } else {
 | |
|         Ops[i] = Start;
 | |
|       }
 | |
|     }
 | |
|   if (!AddRecs.empty()) {
 | |
|     // Add the addrecs onto the end of the list.
 | |
|     Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
 | |
|     // Resort the operand list, moving any constants to the front.
 | |
|     SimplifyAddOperands(Ops, Ty, SE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expandAddToGEP - Expand an addition expression with a pointer type into
 | |
| /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
 | |
| /// BasicAliasAnalysis and other passes analyze the result. See the rules
 | |
| /// for getelementptr vs. inttoptr in
 | |
| /// http://llvm.org/docs/LangRef.html#pointeraliasing
 | |
| /// for details.
 | |
| ///
 | |
| /// Design note: The correctness of using getelmeentptr here depends on
 | |
| /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
 | |
| /// they may introduce pointer arithmetic which may not be safely converted
 | |
| /// into getelementptr.
 | |
| ///
 | |
| /// Design note: It might seem desirable for this function to be more
 | |
| /// loop-aware. If some of the indices are loop-invariant while others
 | |
| /// aren't, it might seem desirable to emit multiple GEPs, keeping the
 | |
| /// loop-invariant portions of the overall computation outside the loop.
 | |
| /// However, there are a few reasons this is not done here. Hoisting simple
 | |
| /// arithmetic is a low-level optimization that often isn't very
 | |
| /// important until late in the optimization process. In fact, passes
 | |
| /// like InstructionCombining will combine GEPs, even if it means
 | |
| /// pushing loop-invariant computation down into loops, so even if the
 | |
| /// GEPs were split here, the work would quickly be undone. The
 | |
| /// LoopStrengthReduction pass, which is usually run quite late (and
 | |
| /// after the last InstructionCombining pass), takes care of hoisting
 | |
| /// loop-invariant portions of expressions, after considering what
 | |
| /// can be folded using target addressing modes.
 | |
| ///
 | |
| Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
 | |
|                                     const SCEV *const *op_end,
 | |
|                                     const PointerType *PTy,
 | |
|                                     const Type *Ty,
 | |
|                                     Value *V) {
 | |
|   const Type *ElTy = PTy->getElementType();
 | |
|   SmallVector<Value *, 4> GepIndices;
 | |
|   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
 | |
|   bool AnyNonZeroIndices = false;
 | |
| 
 | |
|   // Split AddRecs up into parts as either of the parts may be usable
 | |
|   // without the other.
 | |
|   SplitAddRecs(Ops, Ty, SE);
 | |
| 
 | |
|   // Descend down the pointer's type and attempt to convert the other
 | |
|   // operands into GEP indices, at each level. The first index in a GEP
 | |
|   // indexes into the array implied by the pointer operand; the rest of
 | |
|   // the indices index into the element or field type selected by the
 | |
|   // preceding index.
 | |
|   for (;;) {
 | |
|     const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
 | |
|     // If the scale size is not 0, attempt to factor out a scale for
 | |
|     // array indexing.
 | |
|     SmallVector<const SCEV *, 8> ScaledOps;
 | |
|     if (ElTy->isSized() && !ElSize->isZero()) {
 | |
|       SmallVector<const SCEV *, 8> NewOps;
 | |
|       for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|         const SCEV *Op = Ops[i];
 | |
|         const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
 | |
|         if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
 | |
|           // Op now has ElSize factored out.
 | |
|           ScaledOps.push_back(Op);
 | |
|           if (!Remainder->isZero())
 | |
|             NewOps.push_back(Remainder);
 | |
|           AnyNonZeroIndices = true;
 | |
|         } else {
 | |
|           // The operand was not divisible, so add it to the list of operands
 | |
|           // we'll scan next iteration.
 | |
|           NewOps.push_back(Ops[i]);
 | |
|         }
 | |
|       }
 | |
|       // If we made any changes, update Ops.
 | |
|       if (!ScaledOps.empty()) {
 | |
|         Ops = NewOps;
 | |
|         SimplifyAddOperands(Ops, Ty, SE);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Record the scaled array index for this level of the type. If
 | |
|     // we didn't find any operands that could be factored, tentatively
 | |
|     // assume that element zero was selected (since the zero offset
 | |
|     // would obviously be folded away).
 | |
|     Value *Scaled = ScaledOps.empty() ?
 | |
|                     Constant::getNullValue(Ty) :
 | |
|                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
 | |
|     GepIndices.push_back(Scaled);
 | |
| 
 | |
|     // Collect struct field index operands.
 | |
|     while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
 | |
|       bool FoundFieldNo = false;
 | |
|       // An empty struct has no fields.
 | |
|       if (STy->getNumElements() == 0) break;
 | |
|       if (SE.TD) {
 | |
|         // With TargetData, field offsets are known. See if a constant offset
 | |
|         // falls within any of the struct fields.
 | |
|         if (Ops.empty()) break;
 | |
|         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
 | |
|           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
 | |
|             const StructLayout &SL = *SE.TD->getStructLayout(STy);
 | |
|             uint64_t FullOffset = C->getValue()->getZExtValue();
 | |
|             if (FullOffset < SL.getSizeInBytes()) {
 | |
|               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
 | |
|               GepIndices.push_back(
 | |
|                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
 | |
|               ElTy = STy->getTypeAtIndex(ElIdx);
 | |
|               Ops[0] =
 | |
|                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
 | |
|               AnyNonZeroIndices = true;
 | |
|               FoundFieldNo = true;
 | |
|             }
 | |
|           }
 | |
|       } else {
 | |
|         // Without TargetData, just check for a SCEVFieldOffsetExpr of the
 | |
|         // appropriate struct type.
 | |
|         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|           if (const SCEVFieldOffsetExpr *FO =
 | |
|                 dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
 | |
|             if (FO->getStructType() == STy) {
 | |
|               unsigned FieldNo = FO->getFieldNo();
 | |
|               GepIndices.push_back(
 | |
|                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | |
|                                    FieldNo));
 | |
|               ElTy = STy->getTypeAtIndex(FieldNo);
 | |
|               Ops[i] = SE.getConstant(Ty, 0);
 | |
|               AnyNonZeroIndices = true;
 | |
|               FoundFieldNo = true;
 | |
|               break;
 | |
|             }
 | |
|       }
 | |
|       // If no struct field offsets were found, tentatively assume that
 | |
|       // field zero was selected (since the zero offset would obviously
 | |
|       // be folded away).
 | |
|       if (!FoundFieldNo) {
 | |
|         ElTy = STy->getTypeAtIndex(0u);
 | |
|         GepIndices.push_back(
 | |
|           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
 | |
|       ElTy = ATy->getElementType();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If none of the operands were convertable to proper GEP indices, cast
 | |
|   // the base to i8* and do an ugly getelementptr with that. It's still
 | |
|   // better than ptrtoint+arithmetic+inttoptr at least.
 | |
|   if (!AnyNonZeroIndices) {
 | |
|     // Cast the base to i8*.
 | |
|     V = InsertNoopCastOfTo(V,
 | |
|        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
 | |
| 
 | |
|     // Expand the operands for a plain byte offset.
 | |
|     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
 | |
| 
 | |
|     // Fold a GEP with constant operands.
 | |
|     if (Constant *CLHS = dyn_cast<Constant>(V))
 | |
|       if (Constant *CRHS = dyn_cast<Constant>(Idx))
 | |
|         return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
 | |
| 
 | |
|     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
 | |
|     unsigned ScanLimit = 6;
 | |
|     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
 | |
|     // Scanning starts from the last instruction before the insertion point.
 | |
|     BasicBlock::iterator IP = Builder.GetInsertPoint();
 | |
|     if (IP != BlockBegin) {
 | |
|       --IP;
 | |
|       for (; ScanLimit; --IP, --ScanLimit) {
 | |
|         if (IP->getOpcode() == Instruction::GetElementPtr &&
 | |
|             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
 | |
|           return IP;
 | |
|         if (IP == BlockBegin) break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Emit a GEP.
 | |
|     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
 | |
|     InsertedValues.insert(GEP);
 | |
|     return GEP;
 | |
|   }
 | |
| 
 | |
|   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
 | |
|   // because ScalarEvolution may have changed the address arithmetic to
 | |
|   // compute a value which is beyond the end of the allocated object.
 | |
|   Value *GEP = Builder.CreateGEP(V,
 | |
|                                  GepIndices.begin(),
 | |
|                                  GepIndices.end(),
 | |
|                                  "scevgep");
 | |
|   Ops.push_back(SE.getUnknown(GEP));
 | |
|   InsertedValues.insert(GEP);
 | |
|   return expand(SE.getAddExpr(Ops));
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
 | |
|   int NumOperands = S->getNumOperands();
 | |
|   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
| 
 | |
|   // Find the index of an operand to start with. Choose the operand with
 | |
|   // pointer type, if there is one, or the last operand otherwise.
 | |
|   int PIdx = 0;
 | |
|   for (; PIdx != NumOperands - 1; ++PIdx)
 | |
|     if (isa<PointerType>(S->getOperand(PIdx)->getType())) break;
 | |
| 
 | |
|   // Expand code for the operand that we chose.
 | |
|   Value *V = expand(S->getOperand(PIdx));
 | |
| 
 | |
|   // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
 | |
|   // comments on expandAddToGEP for details.
 | |
|   if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
 | |
|     // Take the operand at PIdx out of the list.
 | |
|     const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
 | |
|     SmallVector<const SCEV *, 8> NewOps;
 | |
|     NewOps.insert(NewOps.end(), Ops.begin(), Ops.begin() + PIdx);
 | |
|     NewOps.insert(NewOps.end(), Ops.begin() + PIdx + 1, Ops.end());
 | |
|     // Make a GEP.
 | |
|     return expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, V);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we'll expand the rest of the SCEVAddExpr as plain integer
 | |
|   // arithmetic.
 | |
|   V = InsertNoopCastOfTo(V, Ty);
 | |
| 
 | |
|   // Emit a bunch of add instructions
 | |
|   for (int i = NumOperands-1; i >= 0; --i) {
 | |
|     if (i == PIdx) continue;
 | |
|     Value *W = expandCodeFor(S->getOperand(i), Ty);
 | |
|     V = InsertBinop(Instruction::Add, V, W);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
 | |
|   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   int FirstOp = 0;  // Set if we should emit a subtract.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
 | |
|     if (SC->getValue()->isAllOnesValue())
 | |
|       FirstOp = 1;
 | |
| 
 | |
|   int i = S->getNumOperands()-2;
 | |
|   Value *V = expandCodeFor(S->getOperand(i+1), Ty);
 | |
| 
 | |
|   // Emit a bunch of multiply instructions
 | |
|   for (; i >= FirstOp; --i) {
 | |
|     Value *W = expandCodeFor(S->getOperand(i), Ty);
 | |
|     V = InsertBinop(Instruction::Mul, V, W);
 | |
|   }
 | |
| 
 | |
|   // -1 * ...  --->  0 - ...
 | |
|   if (FirstOp == 1)
 | |
|     V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
 | |
|   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
| 
 | |
|   Value *LHS = expandCodeFor(S->getLHS(), Ty);
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
 | |
|     const APInt &RHS = SC->getValue()->getValue();
 | |
|     if (RHS.isPowerOf2())
 | |
|       return InsertBinop(Instruction::LShr, LHS,
 | |
|                          ConstantInt::get(Ty, RHS.logBase2()));
 | |
|   }
 | |
| 
 | |
|   Value *RHS = expandCodeFor(S->getRHS(), Ty);
 | |
|   return InsertBinop(Instruction::UDiv, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// Move parts of Base into Rest to leave Base with the minimal
 | |
| /// expression that provides a pointer operand suitable for a
 | |
| /// GEP expansion.
 | |
| static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
 | |
|                               ScalarEvolution &SE) {
 | |
|   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
 | |
|     Base = A->getStart();
 | |
|     Rest = SE.getAddExpr(Rest,
 | |
|                          SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
 | |
|                                           A->getStepRecurrence(SE),
 | |
|                                           A->getLoop()));
 | |
|   }
 | |
|   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
 | |
|     Base = A->getOperand(A->getNumOperands()-1);
 | |
|     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
 | |
|     NewAddOps.back() = Rest;
 | |
|     Rest = SE.getAddExpr(NewAddOps);
 | |
|     ExposePointerBase(Base, Rest, SE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
 | |
|   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   const Loop *L = S->getLoop();
 | |
| 
 | |
|   // First check for an existing canonical IV in a suitable type.
 | |
|   PHINode *CanonicalIV = 0;
 | |
|   if (PHINode *PN = L->getCanonicalInductionVariable())
 | |
|     if (SE.isSCEVable(PN->getType()) &&
 | |
|         isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
 | |
|         SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
 | |
|       CanonicalIV = PN;
 | |
| 
 | |
|   // Rewrite an AddRec in terms of the canonical induction variable, if
 | |
|   // its type is more narrow.
 | |
|   if (CanonicalIV &&
 | |
|       SE.getTypeSizeInBits(CanonicalIV->getType()) >
 | |
|       SE.getTypeSizeInBits(Ty)) {
 | |
|     const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
 | |
|     SmallVector<const SCEV *, 4> NewOps(Ops.size());
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
 | |
|     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
 | |
|     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
 | |
|     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
 | |
|     BasicBlock::iterator NewInsertPt =
 | |
|       llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
 | |
|     while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
 | |
|     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
 | |
|                       NewInsertPt);
 | |
|     Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // {X,+,F} --> X + {0,+,F}
 | |
|   if (!S->getStart()->isZero()) {
 | |
|     const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
 | |
|     SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
 | |
|     NewOps[0] = SE.getIntegerSCEV(0, Ty);
 | |
|     const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
 | |
| 
 | |
|     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
 | |
|     // comments on expandAddToGEP for details.
 | |
|     const SCEV *Base = S->getStart();
 | |
|     const SCEV *RestArray[1] = { Rest };
 | |
|     // Dig into the expression to find the pointer base for a GEP.
 | |
|     ExposePointerBase(Base, RestArray[0], SE);
 | |
|     // If we found a pointer, expand the AddRec with a GEP.
 | |
|     if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
 | |
|       // Make sure the Base isn't something exotic, such as a multiplied
 | |
|       // or divided pointer value. In those cases, the result type isn't
 | |
|       // actually a pointer type.
 | |
|       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
 | |
|         Value *StartV = expand(Base);
 | |
|         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
 | |
|         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Just do a normal add. Pre-expand the operands to suppress folding.
 | |
|     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
 | |
|                                 SE.getUnknown(expand(Rest))));
 | |
|   }
 | |
| 
 | |
|   // {0,+,1} --> Insert a canonical induction variable into the loop!
 | |
|   if (S->isAffine() &&
 | |
|       S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
 | |
|     // If there's a canonical IV, just use it.
 | |
|     if (CanonicalIV) {
 | |
|       assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
 | |
|              "IVs with types different from the canonical IV should "
 | |
|              "already have been handled!");
 | |
|       return CanonicalIV;
 | |
|     }
 | |
| 
 | |
|     // Create and insert the PHI node for the induction variable in the
 | |
|     // specified loop.
 | |
|     BasicBlock *Header = L->getHeader();
 | |
|     PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
 | |
|     InsertedValues.insert(PN);
 | |
| 
 | |
|     Constant *One = ConstantInt::get(Ty, 1);
 | |
|     for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
 | |
|          HPI != HPE; ++HPI)
 | |
|       if (L->contains(*HPI)) {
 | |
|         // Insert a unit add instruction right before the terminator corresponding
 | |
|         // to the back-edge.
 | |
|         Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
 | |
|                                                      (*HPI)->getTerminator());
 | |
|         InsertedValues.insert(Add);
 | |
|         PN->addIncoming(Add, *HPI);
 | |
|       } else {
 | |
|         PN->addIncoming(Constant::getNullValue(Ty), *HPI);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // {0,+,F} --> {0,+,1} * F
 | |
|   // Get the canonical induction variable I for this loop.
 | |
|   Value *I = CanonicalIV ?
 | |
|              CanonicalIV :
 | |
|              getOrInsertCanonicalInductionVariable(L, Ty);
 | |
| 
 | |
|   // If this is a simple linear addrec, emit it now as a special case.
 | |
|   if (S->isAffine())    // {0,+,F} --> i*F
 | |
|     return
 | |
|       expand(SE.getTruncateOrNoop(
 | |
|         SE.getMulExpr(SE.getUnknown(I),
 | |
|                       SE.getNoopOrAnyExtend(S->getOperand(1),
 | |
|                                             I->getType())),
 | |
|         Ty));
 | |
| 
 | |
|   // If this is a chain of recurrences, turn it into a closed form, using the
 | |
|   // folders, then expandCodeFor the closed form.  This allows the folders to
 | |
|   // simplify the expression without having to build a bunch of special code
 | |
|   // into this folder.
 | |
|   const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
 | |
| 
 | |
|   // Promote S up to the canonical IV type, if the cast is foldable.
 | |
|   const SCEV *NewS = S;
 | |
|   const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
 | |
|   if (isa<SCEVAddRecExpr>(Ext))
 | |
|     NewS = Ext;
 | |
| 
 | |
|   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
 | |
|   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
 | |
| 
 | |
|   // Truncate the result down to the original type, if needed.
 | |
|   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
 | |
|   return expand(T);
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
 | |
|   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   Value *V = expandCodeFor(S->getOperand(),
 | |
|                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | |
|   Value *I = Builder.CreateTrunc(V, Ty, "tmp");
 | |
|   InsertedValues.insert(I);
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
 | |
|   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   Value *V = expandCodeFor(S->getOperand(),
 | |
|                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | |
|   Value *I = Builder.CreateZExt(V, Ty, "tmp");
 | |
|   InsertedValues.insert(I);
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
 | |
|   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   Value *V = expandCodeFor(S->getOperand(),
 | |
|                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | |
|   Value *I = Builder.CreateSExt(V, Ty, "tmp");
 | |
|   InsertedValues.insert(I);
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
 | |
|   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
 | |
|   const Type *Ty = LHS->getType();
 | |
|   for (int i = S->getNumOperands()-2; i >= 0; --i) {
 | |
|     // In the case of mixed integer and pointer types, do the
 | |
|     // rest of the comparisons as integer.
 | |
|     if (S->getOperand(i)->getType() != Ty) {
 | |
|       Ty = SE.getEffectiveSCEVType(Ty);
 | |
|       LHS = InsertNoopCastOfTo(LHS, Ty);
 | |
|     }
 | |
|     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
 | |
|     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
 | |
|     InsertedValues.insert(ICmp);
 | |
|     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
 | |
|     InsertedValues.insert(Sel);
 | |
|     LHS = Sel;
 | |
|   }
 | |
|   // In the case of mixed integer and pointer types, cast the
 | |
|   // final result back to the pointer type.
 | |
|   if (LHS->getType() != S->getType())
 | |
|     LHS = InsertNoopCastOfTo(LHS, S->getType());
 | |
|   return LHS;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
 | |
|   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
 | |
|   const Type *Ty = LHS->getType();
 | |
|   for (int i = S->getNumOperands()-2; i >= 0; --i) {
 | |
|     // In the case of mixed integer and pointer types, do the
 | |
|     // rest of the comparisons as integer.
 | |
|     if (S->getOperand(i)->getType() != Ty) {
 | |
|       Ty = SE.getEffectiveSCEVType(Ty);
 | |
|       LHS = InsertNoopCastOfTo(LHS, Ty);
 | |
|     }
 | |
|     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
 | |
|     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
 | |
|     InsertedValues.insert(ICmp);
 | |
|     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
 | |
|     InsertedValues.insert(Sel);
 | |
|     LHS = Sel;
 | |
|   }
 | |
|   // In the case of mixed integer and pointer types, cast the
 | |
|   // final result back to the pointer type.
 | |
|   if (LHS->getType() != S->getType())
 | |
|     LHS = InsertNoopCastOfTo(LHS, S->getType());
 | |
|   return LHS;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
 | |
|   return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
 | |
|   return ConstantExpr::getSizeOf(S->getAllocType());
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
 | |
|   // Expand the code for this SCEV.
 | |
|   Value *V = expand(SH);
 | |
|   if (Ty) {
 | |
|     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
 | |
|            "non-trivial casts should be done with the SCEVs directly!");
 | |
|     V = InsertNoopCastOfTo(V, Ty);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::expand(const SCEV *S) {
 | |
|   // Compute an insertion point for this SCEV object. Hoist the instructions
 | |
|   // as far out in the loop nest as possible.
 | |
|   Instruction *InsertPt = Builder.GetInsertPoint();
 | |
|   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
 | |
|        L = L->getParentLoop())
 | |
|     if (S->isLoopInvariant(L)) {
 | |
|       if (!L) break;
 | |
|       if (BasicBlock *Preheader = L->getLoopPreheader())
 | |
|         InsertPt = Preheader->getTerminator();
 | |
|     } else {
 | |
|       // If the SCEV is computable at this level, insert it into the header
 | |
|       // after the PHIs (and after any other instructions that we've inserted
 | |
|       // there) so that it is guaranteed to dominate any user inside the loop.
 | |
|       if (L && S->hasComputableLoopEvolution(L))
 | |
|         InsertPt = L->getHeader()->getFirstNonPHI();
 | |
|       while (isInsertedInstruction(InsertPt))
 | |
|         InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Check to see if we already expanded this here.
 | |
|   std::map<std::pair<const SCEV *, Instruction *>,
 | |
|            AssertingVH<Value> >::iterator I =
 | |
|     InsertedExpressions.find(std::make_pair(S, InsertPt));
 | |
|   if (I != InsertedExpressions.end())
 | |
|     return I->second;
 | |
| 
 | |
|   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
 | |
|   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
 | |
|   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
 | |
| 
 | |
|   // Expand the expression into instructions.
 | |
|   Value *V = visit(S);
 | |
| 
 | |
|   // Remember the expanded value for this SCEV at this location.
 | |
|   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
 | |
| 
 | |
|   Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getOrInsertCanonicalInductionVariable - This method returns the
 | |
| /// canonical induction variable of the specified type for the specified
 | |
| /// loop (inserting one if there is none).  A canonical induction variable
 | |
| /// starts at zero and steps by one on each iteration.
 | |
| Value *
 | |
| SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
 | |
|                                                     const Type *Ty) {
 | |
|   assert(Ty->isInteger() && "Can only insert integer induction variables!");
 | |
|   const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
 | |
|                                    SE.getIntegerSCEV(1, Ty), L);
 | |
|   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
 | |
|   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
 | |
|   Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
 | |
|   if (SaveInsertBB)
 | |
|     Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
 | |
|   return V;
 | |
| }
 |