mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92211 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1402 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1402 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Jump Threading pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "jump-threading"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumThreads, "Number of jumps threaded");
 | 
						|
STATISTIC(NumFolds,   "Number of terminators folded");
 | 
						|
STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
Threshold("jump-threading-threshold", 
 | 
						|
          cl::desc("Max block size to duplicate for jump threading"),
 | 
						|
          cl::init(6), cl::Hidden);
 | 
						|
 | 
						|
// Turn on use of LazyValueInfo.
 | 
						|
static cl::opt<bool>
 | 
						|
EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
 | 
						|
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// This pass performs 'jump threading', which looks at blocks that have
 | 
						|
  /// multiple predecessors and multiple successors.  If one or more of the
 | 
						|
  /// predecessors of the block can be proven to always jump to one of the
 | 
						|
  /// successors, we forward the edge from the predecessor to the successor by
 | 
						|
  /// duplicating the contents of this block.
 | 
						|
  ///
 | 
						|
  /// An example of when this can occur is code like this:
 | 
						|
  ///
 | 
						|
  ///   if () { ...
 | 
						|
  ///     X = 4;
 | 
						|
  ///   }
 | 
						|
  ///   if (X < 3) {
 | 
						|
  ///
 | 
						|
  /// In this case, the unconditional branch at the end of the first if can be
 | 
						|
  /// revectored to the false side of the second if.
 | 
						|
  ///
 | 
						|
  class JumpThreading : public FunctionPass {
 | 
						|
    TargetData *TD;
 | 
						|
    LazyValueInfo *LVI;
 | 
						|
#ifdef NDEBUG
 | 
						|
    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
 | 
						|
#else
 | 
						|
    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
 | 
						|
#endif
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification
 | 
						|
    JumpThreading() : FunctionPass(&ID) {}
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
    
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      if (EnableLVI)
 | 
						|
        AU.addRequired<LazyValueInfo>();
 | 
						|
    }
 | 
						|
    
 | 
						|
    void FindLoopHeaders(Function &F);
 | 
						|
    bool ProcessBlock(BasicBlock *BB);
 | 
						|
    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
 | 
						|
                    BasicBlock *SuccBB);
 | 
						|
    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
 | 
						|
                                          BasicBlock *PredBB);
 | 
						|
    
 | 
						|
    typedef SmallVectorImpl<std::pair<ConstantInt*,
 | 
						|
                                      BasicBlock*> > PredValueInfo;
 | 
						|
    
 | 
						|
    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
 | 
						|
                                         PredValueInfo &Result);
 | 
						|
    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
 | 
						|
    
 | 
						|
    
 | 
						|
    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 | 
						|
    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 | 
						|
 | 
						|
    bool ProcessJumpOnPHI(PHINode *PN);
 | 
						|
    
 | 
						|
    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char JumpThreading::ID = 0;
 | 
						|
static RegisterPass<JumpThreading>
 | 
						|
X("jump-threading", "Jump Threading");
 | 
						|
 | 
						|
// Public interface to the Jump Threading pass
 | 
						|
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
 | 
						|
 | 
						|
/// runOnFunction - Top level algorithm.
 | 
						|
///
 | 
						|
bool JumpThreading::runOnFunction(Function &F) {
 | 
						|
  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
 | 
						|
  
 | 
						|
  FindLoopHeaders(F);
 | 
						|
  
 | 
						|
  bool AnotherIteration = true, EverChanged = false;
 | 
						|
  while (AnotherIteration) {
 | 
						|
    AnotherIteration = false;
 | 
						|
    bool Changed = false;
 | 
						|
    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
 | 
						|
      BasicBlock *BB = I;
 | 
						|
      // Thread all of the branches we can over this block. 
 | 
						|
      while (ProcessBlock(BB))
 | 
						|
        Changed = true;
 | 
						|
      
 | 
						|
      ++I;
 | 
						|
      
 | 
						|
      // If the block is trivially dead, zap it.  This eliminates the successor
 | 
						|
      // edges which simplifies the CFG.
 | 
						|
      if (pred_begin(BB) == pred_end(BB) &&
 | 
						|
          BB != &BB->getParent()->getEntryBlock()) {
 | 
						|
        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
 | 
						|
              << "' with terminator: " << *BB->getTerminator() << '\n');
 | 
						|
        LoopHeaders.erase(BB);
 | 
						|
        DeleteDeadBlock(BB);
 | 
						|
        Changed = true;
 | 
						|
      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | 
						|
        // Can't thread an unconditional jump, but if the block is "almost
 | 
						|
        // empty", we can replace uses of it with uses of the successor and make
 | 
						|
        // this dead.
 | 
						|
        if (BI->isUnconditional() && 
 | 
						|
            BB != &BB->getParent()->getEntryBlock()) {
 | 
						|
          BasicBlock::iterator BBI = BB->getFirstNonPHI();
 | 
						|
          // Ignore dbg intrinsics.
 | 
						|
          while (isa<DbgInfoIntrinsic>(BBI))
 | 
						|
            ++BBI;
 | 
						|
          // If the terminator is the only non-phi instruction, try to nuke it.
 | 
						|
          if (BBI->isTerminator()) {
 | 
						|
            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
 | 
						|
            // block, we have to make sure it isn't in the LoopHeaders set.  We
 | 
						|
            // reinsert afterward if needed.
 | 
						|
            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
 | 
						|
            BasicBlock *Succ = BI->getSuccessor(0);
 | 
						|
            
 | 
						|
            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
 | 
						|
              Changed = true;
 | 
						|
              // If we deleted BB and BB was the header of a loop, then the
 | 
						|
              // successor is now the header of the loop.
 | 
						|
              BB = Succ;
 | 
						|
            }
 | 
						|
            
 | 
						|
            if (ErasedFromLoopHeaders)
 | 
						|
              LoopHeaders.insert(BB);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    AnotherIteration = Changed;
 | 
						|
    EverChanged |= Changed;
 | 
						|
  }
 | 
						|
  
 | 
						|
  LoopHeaders.clear();
 | 
						|
  return EverChanged;
 | 
						|
}
 | 
						|
 | 
						|
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
 | 
						|
/// thread across it.
 | 
						|
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
 | 
						|
  /// Ignore PHI nodes, these will be flattened when duplication happens.
 | 
						|
  BasicBlock::const_iterator I = BB->getFirstNonPHI();
 | 
						|
  
 | 
						|
  // FIXME: THREADING will delete values that are just used to compute the
 | 
						|
  // branch, so they shouldn't count against the duplication cost.
 | 
						|
  
 | 
						|
  
 | 
						|
  // Sum up the cost of each instruction until we get to the terminator.  Don't
 | 
						|
  // include the terminator because the copy won't include it.
 | 
						|
  unsigned Size = 0;
 | 
						|
  for (; !isa<TerminatorInst>(I); ++I) {
 | 
						|
    // Debugger intrinsics don't incur code size.
 | 
						|
    if (isa<DbgInfoIntrinsic>(I)) continue;
 | 
						|
    
 | 
						|
    // If this is a pointer->pointer bitcast, it is free.
 | 
						|
    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // All other instructions count for at least one unit.
 | 
						|
    ++Size;
 | 
						|
    
 | 
						|
    // Calls are more expensive.  If they are non-intrinsic calls, we model them
 | 
						|
    // as having cost of 4.  If they are a non-vector intrinsic, we model them
 | 
						|
    // as having cost of 2 total, and if they are a vector intrinsic, we model
 | 
						|
    // them as having cost 1.
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
      if (!isa<IntrinsicInst>(CI))
 | 
						|
        Size += 3;
 | 
						|
      else if (!isa<VectorType>(CI->getType()))
 | 
						|
        Size += 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Threading through a switch statement is particularly profitable.  If this
 | 
						|
  // block ends in a switch, decrease its cost to make it more likely to happen.
 | 
						|
  if (isa<SwitchInst>(I))
 | 
						|
    Size = Size > 6 ? Size-6 : 0;
 | 
						|
  
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
/// FindLoopHeaders - We do not want jump threading to turn proper loop
 | 
						|
/// structures into irreducible loops.  Doing this breaks up the loop nesting
 | 
						|
/// hierarchy and pessimizes later transformations.  To prevent this from
 | 
						|
/// happening, we first have to find the loop headers.  Here we approximate this
 | 
						|
/// by finding targets of backedges in the CFG.
 | 
						|
///
 | 
						|
/// Note that there definitely are cases when we want to allow threading of
 | 
						|
/// edges across a loop header.  For example, threading a jump from outside the
 | 
						|
/// loop (the preheader) to an exit block of the loop is definitely profitable.
 | 
						|
/// It is also almost always profitable to thread backedges from within the loop
 | 
						|
/// to exit blocks, and is often profitable to thread backedges to other blocks
 | 
						|
/// within the loop (forming a nested loop).  This simple analysis is not rich
 | 
						|
/// enough to track all of these properties and keep it up-to-date as the CFG
 | 
						|
/// mutates, so we don't allow any of these transformations.
 | 
						|
///
 | 
						|
void JumpThreading::FindLoopHeaders(Function &F) {
 | 
						|
  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
 | 
						|
  FindFunctionBackedges(F, Edges);
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
 | 
						|
    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
 | 
						|
/// if we can infer that the value is a known ConstantInt in any of our
 | 
						|
/// predecessors.  If so, return the known list of value and pred BB in the
 | 
						|
/// result vector.  If a value is known to be undef, it is returned as null.
 | 
						|
///
 | 
						|
/// This returns true if there were any known values.
 | 
						|
///
 | 
						|
bool JumpThreading::
 | 
						|
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
 | 
						|
  // If V is a constantint, then it is known in all predecessors.
 | 
						|
  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(V);
 | 
						|
    
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
      Result.push_back(std::make_pair(CI, *PI));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If V is a non-instruction value, or an instruction in a different block,
 | 
						|
  // then it can't be derived from a PHI.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (I == 0 || I->getParent() != BB) {
 | 
						|
    
 | 
						|
    // Okay, if this is a live-in value, see if it has a known value at the end
 | 
						|
    // of any of our predecessors.
 | 
						|
    //
 | 
						|
    // FIXME: This should be an edge property, not a block end property.
 | 
						|
    /// TODO: Per PR2563, we could infer value range information about a
 | 
						|
    /// predecessor based on its terminator.
 | 
						|
    //
 | 
						|
    if (LVI) {
 | 
						|
      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
 | 
						|
      // "I" is a non-local compare-with-a-constant instruction.  This would be
 | 
						|
      // able to handle value inequalities better, for example if the compare is
 | 
						|
      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
 | 
						|
      // Perhaps getConstantOnEdge should be smart enough to do this?
 | 
						|
      
 | 
						|
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
        // If the value is known by LazyValueInfo to be a constant in a
 | 
						|
        // predecessor, use that information to try to thread this block.
 | 
						|
        Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
 | 
						|
        if (PredCst == 0 ||
 | 
						|
            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
 | 
						|
      }
 | 
						|
      
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
    
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// If I is a PHI node, then we know the incoming values for any constants.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *InVal = PN->getIncomingValue(i);
 | 
						|
      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
 | 
						|
        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
 | 
						|
        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return !Result.empty();
 | 
						|
  }
 | 
						|
  
 | 
						|
  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
 | 
						|
 | 
						|
  // Handle some boolean conditions.
 | 
						|
  if (I->getType()->getPrimitiveSizeInBits() == 1) { 
 | 
						|
    // X | true -> true
 | 
						|
    // X & false -> false
 | 
						|
    if (I->getOpcode() == Instruction::Or ||
 | 
						|
        I->getOpcode() == Instruction::And) {
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
 | 
						|
      
 | 
						|
      if (LHSVals.empty() && RHSVals.empty())
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      ConstantInt *InterestingVal;
 | 
						|
      if (I->getOpcode() == Instruction::Or)
 | 
						|
        InterestingVal = ConstantInt::getTrue(I->getContext());
 | 
						|
      else
 | 
						|
        InterestingVal = ConstantInt::getFalse(I->getContext());
 | 
						|
      
 | 
						|
      // Scan for the sentinel.
 | 
						|
      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
 | 
						|
        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
 | 
						|
          Result.push_back(LHSVals[i]);
 | 
						|
      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
 | 
						|
        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
 | 
						|
          Result.push_back(RHSVals[i]);
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Handle the NOT form of XOR.
 | 
						|
    if (I->getOpcode() == Instruction::Xor &&
 | 
						|
        isa<ConstantInt>(I->getOperand(1)) &&
 | 
						|
        cast<ConstantInt>(I->getOperand(1))->isOne()) {
 | 
						|
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
 | 
						|
      if (Result.empty())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Invert the known values.
 | 
						|
      for (unsigned i = 0, e = Result.size(); i != e; ++i)
 | 
						|
        if (Result[i].first)
 | 
						|
          Result[i].first =
 | 
						|
            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle compare with phi operand, where the PHI is defined in this block.
 | 
						|
  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
 | 
						|
    if (PN && PN->getParent() == BB) {
 | 
						|
      // We can do this simplification if any comparisons fold to true or false.
 | 
						|
      // See if any do.
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        BasicBlock *PredBB = PN->getIncomingBlock(i);
 | 
						|
        Value *LHS = PN->getIncomingValue(i);
 | 
						|
        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
 | 
						|
        
 | 
						|
        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
 | 
						|
        if (Res == 0) {
 | 
						|
          if (!LVI || !isa<Constant>(RHS))
 | 
						|
            continue;
 | 
						|
          
 | 
						|
          LazyValueInfo::Tristate 
 | 
						|
            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
 | 
						|
                                           cast<Constant>(RHS), PredBB, BB);
 | 
						|
          if (ResT == LazyValueInfo::Unknown)
 | 
						|
            continue;
 | 
						|
          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (isa<UndefValue>(Res))
 | 
						|
          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
 | 
						|
        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
 | 
						|
          Result.push_back(std::make_pair(CI, PredBB));
 | 
						|
      }
 | 
						|
      
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    // If comparing a live-in value against a constant, see if we know the
 | 
						|
    // live-in value on any predecessors.
 | 
						|
    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
 | 
						|
        Cmp->getType()->isInteger() && // Not vector compare.
 | 
						|
        (!isa<Instruction>(Cmp->getOperand(0)) ||
 | 
						|
         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
 | 
						|
      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
 | 
						|
      
 | 
						|
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
        // If the value is known by LazyValueInfo to be a constant in a
 | 
						|
        // predecessor, use that information to try to thread this block.
 | 
						|
        LazyValueInfo::Tristate
 | 
						|
          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
 | 
						|
                                        RHSCst, *PI, BB);
 | 
						|
        if (Res == LazyValueInfo::Unknown)
 | 
						|
          continue;
 | 
						|
 | 
						|
        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
 | 
						|
        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
 | 
						|
      }
 | 
						|
      
 | 
						|
      return !Result.empty();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
 | 
						|
/// in an undefined jump, decide which block is best to revector to.
 | 
						|
///
 | 
						|
/// Since we can pick an arbitrary destination, we pick the successor with the
 | 
						|
/// fewest predecessors.  This should reduce the in-degree of the others.
 | 
						|
///
 | 
						|
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
 | 
						|
  TerminatorInst *BBTerm = BB->getTerminator();
 | 
						|
  unsigned MinSucc = 0;
 | 
						|
  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
 | 
						|
  // Compute the successor with the minimum number of predecessors.
 | 
						|
  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | 
						|
  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
    TestBB = BBTerm->getSuccessor(i);
 | 
						|
    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | 
						|
    if (NumPreds < MinNumPreds)
 | 
						|
      MinSucc = i;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return MinSucc;
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBlock - If there are any predecessors whose control can be threaded
 | 
						|
/// through to a successor, transform them now.
 | 
						|
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
 | 
						|
  // If this block has a single predecessor, and if that pred has a single
 | 
						|
  // successor, merge the blocks.  This encourages recursive jump threading
 | 
						|
  // because now the condition in this block can be threaded through
 | 
						|
  // predecessors of our predecessor block.
 | 
						|
  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
 | 
						|
    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
        SinglePred != BB) {
 | 
						|
      // If SinglePred was a loop header, BB becomes one.
 | 
						|
      if (LoopHeaders.erase(SinglePred))
 | 
						|
        LoopHeaders.insert(BB);
 | 
						|
      
 | 
						|
      // Remember if SinglePred was the entry block of the function.  If so, we
 | 
						|
      // will need to move BB back to the entry position.
 | 
						|
      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | 
						|
      MergeBasicBlockIntoOnlyPred(BB);
 | 
						|
      
 | 
						|
      if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | 
						|
        BB->moveBefore(&BB->getParent()->getEntryBlock());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Look to see if the terminator is a branch of switch, if not we can't thread
 | 
						|
  // it.
 | 
						|
  Value *Condition;
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | 
						|
    // Can't thread an unconditional jump.
 | 
						|
    if (BI->isUnconditional()) return false;
 | 
						|
    Condition = BI->getCondition();
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
 | 
						|
    Condition = SI->getCondition();
 | 
						|
  else
 | 
						|
    return false; // Must be an invoke.
 | 
						|
  
 | 
						|
  // If the terminator of this block is branching on a constant, simplify the
 | 
						|
  // terminator to an unconditional branch.  This can occur due to threading in
 | 
						|
  // other blocks.
 | 
						|
  if (isa<ConstantInt>(Condition)) {
 | 
						|
    DEBUG(errs() << "  In block '" << BB->getName()
 | 
						|
          << "' folding terminator: " << *BB->getTerminator() << '\n');
 | 
						|
    ++NumFolds;
 | 
						|
    ConstantFoldTerminator(BB);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the terminator is branching on an undef, we can pick any of the
 | 
						|
  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
 | 
						|
  if (isa<UndefValue>(Condition)) {
 | 
						|
    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
 | 
						|
    
 | 
						|
    // Fold the branch/switch.
 | 
						|
    TerminatorInst *BBTerm = BB->getTerminator();
 | 
						|
    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | 
						|
      if (i == BestSucc) continue;
 | 
						|
      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
 | 
						|
    }
 | 
						|
    
 | 
						|
    DEBUG(errs() << "  In block '" << BB->getName()
 | 
						|
          << "' folding undef terminator: " << *BBTerm << '\n');
 | 
						|
    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
 | 
						|
    BBTerm->eraseFromParent();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Instruction *CondInst = dyn_cast<Instruction>(Condition);
 | 
						|
 | 
						|
  // If the condition is an instruction defined in another block, see if a
 | 
						|
  // predecessor has the same condition:
 | 
						|
  //     br COND, BBX, BBY
 | 
						|
  //  BBX:
 | 
						|
  //     br COND, BBZ, BBW
 | 
						|
  if (!LVI &&
 | 
						|
      !Condition->hasOneUse() && // Multiple uses.
 | 
						|
      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
 | 
						|
    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
 | 
						|
    if (isa<BranchInst>(BB->getTerminator())) {
 | 
						|
      for (; PI != E; ++PI)
 | 
						|
        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | 
						|
          if (PBI->isConditional() && PBI->getCondition() == Condition &&
 | 
						|
              ProcessBranchOnDuplicateCond(*PI, BB))
 | 
						|
            return true;
 | 
						|
    } else {
 | 
						|
      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
 | 
						|
      for (; PI != E; ++PI)
 | 
						|
        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
 | 
						|
          if (PSI->getCondition() == Condition &&
 | 
						|
              ProcessSwitchOnDuplicateCond(*PI, BB))
 | 
						|
            return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // All the rest of our checks depend on the condition being an instruction.
 | 
						|
  if (CondInst == 0) {
 | 
						|
    // FIXME: Unify this with code below.
 | 
						|
    if (LVI && ProcessThreadableEdges(Condition, BB))
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }  
 | 
						|
    
 | 
						|
  
 | 
						|
  // See if this is a phi node in the current block.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
 | 
						|
    if (PN->getParent() == BB)
 | 
						|
      return ProcessJumpOnPHI(PN);
 | 
						|
  
 | 
						|
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
 | 
						|
    if (!LVI &&
 | 
						|
        (!isa<PHINode>(CondCmp->getOperand(0)) ||
 | 
						|
         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
 | 
						|
      // If we have a comparison, loop over the predecessors to see if there is
 | 
						|
      // a condition with a lexically identical value.
 | 
						|
      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
 | 
						|
      for (; PI != E; ++PI)
 | 
						|
        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | 
						|
          if (PBI->isConditional() && *PI != BB) {
 | 
						|
            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
 | 
						|
              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
 | 
						|
                  CI->getOperand(1) == CondCmp->getOperand(1) &&
 | 
						|
                  CI->getPredicate() == CondCmp->getPredicate()) {
 | 
						|
                // TODO: Could handle things like (x != 4) --> (x == 17)
 | 
						|
                if (ProcessBranchOnDuplicateCond(*PI, BB))
 | 
						|
                  return true;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for some cases that are worth simplifying.  Right now we want to look
 | 
						|
  // for loads that are used by a switch or by the condition for the branch.  If
 | 
						|
  // we see one, check to see if it's partially redundant.  If so, insert a PHI
 | 
						|
  // which can then be used to thread the values.
 | 
						|
  //
 | 
						|
  // This is particularly important because reg2mem inserts loads and stores all
 | 
						|
  // over the place, and this blocks jump threading if we don't zap them.
 | 
						|
  Value *SimplifyValue = CondInst;
 | 
						|
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
 | 
						|
    if (isa<Constant>(CondCmp->getOperand(1)))
 | 
						|
      SimplifyValue = CondCmp->getOperand(0);
 | 
						|
  
 | 
						|
  // TODO: There are other places where load PRE would be profitable, such as
 | 
						|
  // more complex comparisons.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
 | 
						|
    if (SimplifyPartiallyRedundantLoad(LI))
 | 
						|
      return true;
 | 
						|
  
 | 
						|
  
 | 
						|
  // Handle a variety of cases where we are branching on something derived from
 | 
						|
  // a PHI node in the current block.  If we can prove that any predecessors
 | 
						|
  // compute a predictable value based on a PHI node, thread those predecessors.
 | 
						|
  //
 | 
						|
  if (ProcessThreadableEdges(CondInst, BB))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  
 | 
						|
  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
 | 
						|
  // "(X == 4)" thread through this block.
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
 | 
						|
/// block that jump on exactly the same condition.  This means that we almost
 | 
						|
/// always know the direction of the edge in the DESTBB:
 | 
						|
///  PREDBB:
 | 
						|
///     br COND, DESTBB, BBY
 | 
						|
///  DESTBB:
 | 
						|
///     br COND, BBZ, BBW
 | 
						|
///
 | 
						|
/// If DESTBB has multiple predecessors, we can't just constant fold the branch
 | 
						|
/// in DESTBB, we have to thread over it.
 | 
						|
bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
 | 
						|
                                                 BasicBlock *BB) {
 | 
						|
  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
 | 
						|
  
 | 
						|
  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
 | 
						|
  // fold the branch to an unconditional one, which allows other recursive
 | 
						|
  // simplifications.
 | 
						|
  bool BranchDir;
 | 
						|
  if (PredBI->getSuccessor(1) != BB)
 | 
						|
    BranchDir = true;
 | 
						|
  else if (PredBI->getSuccessor(0) != BB)
 | 
						|
    BranchDir = false;
 | 
						|
  else {
 | 
						|
    DEBUG(errs() << "  In block '" << PredBB->getName()
 | 
						|
          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
 | 
						|
    ++NumFolds;
 | 
						|
    ConstantFoldTerminator(PredBB);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
   
 | 
						|
  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
 | 
						|
 | 
						|
  // If the dest block has one predecessor, just fix the branch condition to a
 | 
						|
  // constant and fold it.
 | 
						|
  if (BB->getSinglePredecessor()) {
 | 
						|
    DEBUG(errs() << "  In block '" << BB->getName()
 | 
						|
          << "' folding condition to '" << BranchDir << "': "
 | 
						|
          << *BB->getTerminator() << '\n');
 | 
						|
    ++NumFolds;
 | 
						|
    Value *OldCond = DestBI->getCondition();
 | 
						|
    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
 | 
						|
                                          BranchDir));
 | 
						|
    ConstantFoldTerminator(BB);
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 
 | 
						|
  
 | 
						|
  // Next, figure out which successor we are threading to.
 | 
						|
  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
 | 
						|
  
 | 
						|
  SmallVector<BasicBlock*, 2> Preds;
 | 
						|
  Preds.push_back(PredBB);
 | 
						|
  
 | 
						|
  // Ok, try to thread it!
 | 
						|
  return ThreadEdge(BB, Preds, SuccBB);
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
 | 
						|
/// block that switch on exactly the same condition.  This means that we almost
 | 
						|
/// always know the direction of the edge in the DESTBB:
 | 
						|
///  PREDBB:
 | 
						|
///     switch COND [... DESTBB, BBY ... ]
 | 
						|
///  DESTBB:
 | 
						|
///     switch COND [... BBZ, BBW ]
 | 
						|
///
 | 
						|
/// Optimizing switches like this is very important, because simplifycfg builds
 | 
						|
/// switches out of repeated 'if' conditions.
 | 
						|
bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
 | 
						|
                                                 BasicBlock *DestBB) {
 | 
						|
  // Can't thread edge to self.
 | 
						|
  if (PredBB == DestBB)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
 | 
						|
  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
 | 
						|
 | 
						|
  // There are a variety of optimizations that we can potentially do on these
 | 
						|
  // blocks: we order them from most to least preferable.
 | 
						|
  
 | 
						|
  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
 | 
						|
  // directly to their destination.  This does not introduce *any* code size
 | 
						|
  // growth.  Skip debug info first.
 | 
						|
  BasicBlock::iterator BBI = DestBB->begin();
 | 
						|
  while (isa<DbgInfoIntrinsic>(BBI))
 | 
						|
    BBI++;
 | 
						|
  
 | 
						|
  // FIXME: Thread if it just contains a PHI.
 | 
						|
  if (isa<SwitchInst>(BBI)) {
 | 
						|
    bool MadeChange = false;
 | 
						|
    // Ignore the default edge for now.
 | 
						|
    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
 | 
						|
      ConstantInt *DestVal = DestSI->getCaseValue(i);
 | 
						|
      BasicBlock *DestSucc = DestSI->getSuccessor(i);
 | 
						|
      
 | 
						|
      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
 | 
						|
      // PredSI has an explicit case for it.  If so, forward.  If it is covered
 | 
						|
      // by the default case, we can't update PredSI.
 | 
						|
      unsigned PredCase = PredSI->findCaseValue(DestVal);
 | 
						|
      if (PredCase == 0) continue;
 | 
						|
      
 | 
						|
      // If PredSI doesn't go to DestBB on this value, then it won't reach the
 | 
						|
      // case on this condition.
 | 
						|
      if (PredSI->getSuccessor(PredCase) != DestBB &&
 | 
						|
          DestSI->getSuccessor(i) != DestBB)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Do not forward this if it already goes to this destination, this would
 | 
						|
      // be an infinite loop.
 | 
						|
      if (PredSI->getSuccessor(PredCase) == DestSucc)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Otherwise, we're safe to make the change.  Make sure that the edge from
 | 
						|
      // DestSI to DestSucc is not critical and has no PHI nodes.
 | 
						|
      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
 | 
						|
      DEBUG(errs() << "THROUGH: " << *DestSI);
 | 
						|
 | 
						|
      // If the destination has PHI nodes, just split the edge for updating
 | 
						|
      // simplicity.
 | 
						|
      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
 | 
						|
        SplitCriticalEdge(DestSI, i, this);
 | 
						|
        DestSucc = DestSI->getSuccessor(i);
 | 
						|
      }
 | 
						|
      FoldSingleEntryPHINodes(DestSucc);
 | 
						|
      PredSI->setSuccessor(PredCase, DestSucc);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (MadeChange)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
 | 
						|
/// load instruction, eliminate it by replacing it with a PHI node.  This is an
 | 
						|
/// important optimization that encourages jump threading, and needs to be run
 | 
						|
/// interlaced with other jump threading tasks.
 | 
						|
bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 | 
						|
  // Don't hack volatile loads.
 | 
						|
  if (LI->isVolatile()) return false;
 | 
						|
  
 | 
						|
  // If the load is defined in a block with exactly one predecessor, it can't be
 | 
						|
  // partially redundant.
 | 
						|
  BasicBlock *LoadBB = LI->getParent();
 | 
						|
  if (LoadBB->getSinglePredecessor())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  Value *LoadedPtr = LI->getOperand(0);
 | 
						|
 | 
						|
  // If the loaded operand is defined in the LoadBB, it can't be available.
 | 
						|
  // TODO: Could do simple PHI translation, that would be fun :)
 | 
						|
  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
 | 
						|
    if (PtrOp->getParent() == LoadBB)
 | 
						|
      return false;
 | 
						|
  
 | 
						|
  // Scan a few instructions up from the load, to see if it is obviously live at
 | 
						|
  // the entry to its block.
 | 
						|
  BasicBlock::iterator BBIt = LI;
 | 
						|
 | 
						|
  if (Value *AvailableVal = 
 | 
						|
        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
 | 
						|
    // If the value if the load is locally available within the block, just use
 | 
						|
    // it.  This frequently occurs for reg2mem'd allocas.
 | 
						|
    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
 | 
						|
    
 | 
						|
    // If the returned value is the load itself, replace with an undef. This can
 | 
						|
    // only happen in dead loops.
 | 
						|
    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
 | 
						|
    LI->replaceAllUsesWith(AvailableVal);
 | 
						|
    LI->eraseFromParent();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if we scanned the whole block and got to the top of the block,
 | 
						|
  // we know the block is locally transparent to the load.  If not, something
 | 
						|
  // might clobber its value.
 | 
						|
  if (BBIt != LoadBB->begin())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  
 | 
						|
  SmallPtrSet<BasicBlock*, 8> PredsScanned;
 | 
						|
  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
 | 
						|
  AvailablePredsTy AvailablePreds;
 | 
						|
  BasicBlock *OneUnavailablePred = 0;
 | 
						|
  
 | 
						|
  // If we got here, the loaded value is transparent through to the start of the
 | 
						|
  // block.  Check to see if it is available in any of the predecessor blocks.
 | 
						|
  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | 
						|
       PI != PE; ++PI) {
 | 
						|
    BasicBlock *PredBB = *PI;
 | 
						|
 | 
						|
    // If we already scanned this predecessor, skip it.
 | 
						|
    if (!PredsScanned.insert(PredBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Scan the predecessor to see if the value is available in the pred.
 | 
						|
    BBIt = PredBB->end();
 | 
						|
    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
 | 
						|
    if (!PredAvailable) {
 | 
						|
      OneUnavailablePred = PredBB;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If so, this load is partially redundant.  Remember this info so that we
 | 
						|
    // can create a PHI node.
 | 
						|
    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the loaded value isn't available in any predecessor, it isn't partially
 | 
						|
  // redundant.
 | 
						|
  if (AvailablePreds.empty()) return false;
 | 
						|
  
 | 
						|
  // Okay, the loaded value is available in at least one (and maybe all!)
 | 
						|
  // predecessors.  If the value is unavailable in more than one unique
 | 
						|
  // predecessor, we want to insert a merge block for those common predecessors.
 | 
						|
  // This ensures that we only have to insert one reload, thus not increasing
 | 
						|
  // code size.
 | 
						|
  BasicBlock *UnavailablePred = 0;
 | 
						|
  
 | 
						|
  // If there is exactly one predecessor where the value is unavailable, the
 | 
						|
  // already computed 'OneUnavailablePred' block is it.  If it ends in an
 | 
						|
  // unconditional branch, we know that it isn't a critical edge.
 | 
						|
  if (PredsScanned.size() == AvailablePreds.size()+1 &&
 | 
						|
      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
 | 
						|
    UnavailablePred = OneUnavailablePred;
 | 
						|
  } else if (PredsScanned.size() != AvailablePreds.size()) {
 | 
						|
    // Otherwise, we had multiple unavailable predecessors or we had a critical
 | 
						|
    // edge from the one.
 | 
						|
    SmallVector<BasicBlock*, 8> PredsToSplit;
 | 
						|
    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
 | 
						|
      AvailablePredSet.insert(AvailablePreds[i].first);
 | 
						|
 | 
						|
    // Add all the unavailable predecessors to the PredsToSplit list.
 | 
						|
    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | 
						|
         PI != PE; ++PI)
 | 
						|
      if (!AvailablePredSet.count(*PI))
 | 
						|
        PredsToSplit.push_back(*PI);
 | 
						|
    
 | 
						|
    // Split them out to their own block.
 | 
						|
    UnavailablePred =
 | 
						|
      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
 | 
						|
                             "thread-pre-split", this);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the value isn't available in all predecessors, then there will be
 | 
						|
  // exactly one where it isn't available.  Insert a load on that edge and add
 | 
						|
  // it to the AvailablePreds list.
 | 
						|
  if (UnavailablePred) {
 | 
						|
    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
           "Can't handle critical edge here!");
 | 
						|
    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
 | 
						|
                                 LI->getAlignment(),
 | 
						|
                                 UnavailablePred->getTerminator());
 | 
						|
    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now we know that each predecessor of this block has a value in
 | 
						|
  // AvailablePreds, sort them for efficient access as we're walking the preds.
 | 
						|
  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 | 
						|
  
 | 
						|
  // Create a PHI node at the start of the block for the PRE'd load value.
 | 
						|
  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
 | 
						|
  PN->takeName(LI);
 | 
						|
  
 | 
						|
  // Insert new entries into the PHI for each predecessor.  A single block may
 | 
						|
  // have multiple entries here.
 | 
						|
  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
 | 
						|
       ++PI) {
 | 
						|
    AvailablePredsTy::iterator I = 
 | 
						|
      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
 | 
						|
                       std::make_pair(*PI, (Value*)0));
 | 
						|
    
 | 
						|
    assert(I != AvailablePreds.end() && I->first == *PI &&
 | 
						|
           "Didn't find entry for predecessor!");
 | 
						|
    
 | 
						|
    PN->addIncoming(I->second, I->first);
 | 
						|
  }
 | 
						|
  
 | 
						|
  //cerr << "PRE: " << *LI << *PN << "\n";
 | 
						|
  
 | 
						|
  LI->replaceAllUsesWith(PN);
 | 
						|
  LI->eraseFromParent();
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindMostPopularDest - The specified list contains multiple possible
 | 
						|
/// threadable destinations.  Pick the one that occurs the most frequently in
 | 
						|
/// the list.
 | 
						|
static BasicBlock *
 | 
						|
FindMostPopularDest(BasicBlock *BB,
 | 
						|
                    const SmallVectorImpl<std::pair<BasicBlock*,
 | 
						|
                                  BasicBlock*> > &PredToDestList) {
 | 
						|
  assert(!PredToDestList.empty());
 | 
						|
  
 | 
						|
  // Determine popularity.  If there are multiple possible destinations, we
 | 
						|
  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
 | 
						|
  // blocks with known and real destinations to threading undef.  We'll handle
 | 
						|
  // them later if interesting.
 | 
						|
  DenseMap<BasicBlock*, unsigned> DestPopularity;
 | 
						|
  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
 | 
						|
    if (PredToDestList[i].second)
 | 
						|
      DestPopularity[PredToDestList[i].second]++;
 | 
						|
  
 | 
						|
  // Find the most popular dest.
 | 
						|
  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
 | 
						|
  BasicBlock *MostPopularDest = DPI->first;
 | 
						|
  unsigned Popularity = DPI->second;
 | 
						|
  SmallVector<BasicBlock*, 4> SamePopularity;
 | 
						|
  
 | 
						|
  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
 | 
						|
    // If the popularity of this entry isn't higher than the popularity we've
 | 
						|
    // seen so far, ignore it.
 | 
						|
    if (DPI->second < Popularity)
 | 
						|
      ; // ignore.
 | 
						|
    else if (DPI->second == Popularity) {
 | 
						|
      // If it is the same as what we've seen so far, keep track of it.
 | 
						|
      SamePopularity.push_back(DPI->first);
 | 
						|
    } else {
 | 
						|
      // If it is more popular, remember it.
 | 
						|
      SamePopularity.clear();
 | 
						|
      MostPopularDest = DPI->first;
 | 
						|
      Popularity = DPI->second;
 | 
						|
    }      
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, now we know the most popular destination.  If there is more than
 | 
						|
  // destination, we need to determine one.  This is arbitrary, but we need
 | 
						|
  // to make a deterministic decision.  Pick the first one that appears in the
 | 
						|
  // successor list.
 | 
						|
  if (!SamePopularity.empty()) {
 | 
						|
    SamePopularity.push_back(MostPopularDest);
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
    for (unsigned i = 0; ; ++i) {
 | 
						|
      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
 | 
						|
      
 | 
						|
      if (std::find(SamePopularity.begin(), SamePopularity.end(),
 | 
						|
                    TI->getSuccessor(i)) == SamePopularity.end())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      MostPopularDest = TI->getSuccessor(i);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, we have finally picked the most popular destination.
 | 
						|
  return MostPopularDest;
 | 
						|
}
 | 
						|
 | 
						|
bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
 | 
						|
  // If threading this would thread across a loop header, don't even try to
 | 
						|
  // thread the edge.
 | 
						|
  if (LoopHeaders.count(BB))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
 | 
						|
  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
 | 
						|
    return false;
 | 
						|
  assert(!PredValues.empty() &&
 | 
						|
         "ComputeValueKnownInPredecessors returned true with no values");
 | 
						|
 | 
						|
  DEBUG(errs() << "IN BB: " << *BB;
 | 
						|
        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
 | 
						|
          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
 | 
						|
          if (PredValues[i].first)
 | 
						|
            errs() << *PredValues[i].first;
 | 
						|
          else
 | 
						|
            errs() << "UNDEF";
 | 
						|
          errs() << " for pred '" << PredValues[i].second->getName()
 | 
						|
          << "'.\n";
 | 
						|
        });
 | 
						|
  
 | 
						|
  // Decide what we want to thread through.  Convert our list of known values to
 | 
						|
  // a list of known destinations for each pred.  This also discards duplicate
 | 
						|
  // predecessors and keeps track of the undefined inputs (which are represented
 | 
						|
  // as a null dest in the PredToDestList).
 | 
						|
  SmallPtrSet<BasicBlock*, 16> SeenPreds;
 | 
						|
  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
 | 
						|
  
 | 
						|
  BasicBlock *OnlyDest = 0;
 | 
						|
  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
 | 
						|
    BasicBlock *Pred = PredValues[i].second;
 | 
						|
    if (!SeenPreds.insert(Pred))
 | 
						|
      continue;  // Duplicate predecessor entry.
 | 
						|
    
 | 
						|
    // If the predecessor ends with an indirect goto, we can't change its
 | 
						|
    // destination.
 | 
						|
    if (isa<IndirectBrInst>(Pred->getTerminator()))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    ConstantInt *Val = PredValues[i].first;
 | 
						|
    
 | 
						|
    BasicBlock *DestBB;
 | 
						|
    if (Val == 0)      // Undef.
 | 
						|
      DestBB = 0;
 | 
						|
    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
 | 
						|
      DestBB = BI->getSuccessor(Val->isZero());
 | 
						|
    else {
 | 
						|
      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
 | 
						|
      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have exactly one destination, remember it for efficiency below.
 | 
						|
    if (i == 0)
 | 
						|
      OnlyDest = DestBB;
 | 
						|
    else if (OnlyDest != DestBB)
 | 
						|
      OnlyDest = MultipleDestSentinel;
 | 
						|
    
 | 
						|
    PredToDestList.push_back(std::make_pair(Pred, DestBB));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If all edges were unthreadable, we fail.
 | 
						|
  if (PredToDestList.empty())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Determine which is the most common successor.  If we have many inputs and
 | 
						|
  // this block is a switch, we want to start by threading the batch that goes
 | 
						|
  // to the most popular destination first.  If we only know about one
 | 
						|
  // threadable destination (the common case) we can avoid this.
 | 
						|
  BasicBlock *MostPopularDest = OnlyDest;
 | 
						|
  
 | 
						|
  if (MostPopularDest == MultipleDestSentinel)
 | 
						|
    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
 | 
						|
  
 | 
						|
  // Now that we know what the most popular destination is, factor all
 | 
						|
  // predecessors that will jump to it into a single predecessor.
 | 
						|
  SmallVector<BasicBlock*, 16> PredsToFactor;
 | 
						|
  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
 | 
						|
    if (PredToDestList[i].second == MostPopularDest) {
 | 
						|
      BasicBlock *Pred = PredToDestList[i].first;
 | 
						|
      
 | 
						|
      // This predecessor may be a switch or something else that has multiple
 | 
						|
      // edges to the block.  Factor each of these edges by listing them
 | 
						|
      // according to # occurrences in PredsToFactor.
 | 
						|
      TerminatorInst *PredTI = Pred->getTerminator();
 | 
						|
      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
 | 
						|
        if (PredTI->getSuccessor(i) == BB)
 | 
						|
          PredsToFactor.push_back(Pred);
 | 
						|
    }
 | 
						|
 | 
						|
  // If the threadable edges are branching on an undefined value, we get to pick
 | 
						|
  // the destination that these predecessors should get to.
 | 
						|
  if (MostPopularDest == 0)
 | 
						|
    MostPopularDest = BB->getTerminator()->
 | 
						|
                            getSuccessor(GetBestDestForJumpOnUndef(BB));
 | 
						|
        
 | 
						|
  // Ok, try to thread it!
 | 
						|
  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
 | 
						|
/// the current block.  See if there are any simplifications we can do based on
 | 
						|
/// inputs to the phi node.
 | 
						|
/// 
 | 
						|
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
 | 
						|
  BasicBlock *BB = PN->getParent();
 | 
						|
  
 | 
						|
  // If any of the predecessor blocks end in an unconditional branch, we can
 | 
						|
  // *duplicate* the jump into that block in order to further encourage jump
 | 
						|
  // threading and to eliminate cases where we have branch on a phi of an icmp
 | 
						|
  // (branch on icmp is much better).
 | 
						|
 | 
						|
  // We don't want to do this tranformation for switches, because we don't
 | 
						|
  // really want to duplicate a switch.
 | 
						|
  if (isa<SwitchInst>(BB->getTerminator()))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Look for unconditional branch predecessors.
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *PredBB = PN->getIncomingBlock(i);
 | 
						|
    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
 | 
						|
      if (PredBr->isUnconditional() &&
 | 
						|
          // Try to duplicate BB into PredBB.
 | 
						|
          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
 | 
						|
/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
 | 
						|
/// NewPred using the entries from OldPred (suitably mapped).
 | 
						|
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
 | 
						|
                                            BasicBlock *OldPred,
 | 
						|
                                            BasicBlock *NewPred,
 | 
						|
                                     DenseMap<Instruction*, Value*> &ValueMap) {
 | 
						|
  for (BasicBlock::iterator PNI = PHIBB->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
 | 
						|
    // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | 
						|
    // DestBlock.
 | 
						|
    Value *IV = PN->getIncomingValueForBlock(OldPred);
 | 
						|
    
 | 
						|
    // Remap the value if necessary.
 | 
						|
    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
 | 
						|
      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
 | 
						|
      if (I != ValueMap.end())
 | 
						|
        IV = I->second;
 | 
						|
    }
 | 
						|
    
 | 
						|
    PN->addIncoming(IV, NewPred);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ThreadEdge - We have decided that it is safe and profitable to factor the
 | 
						|
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
 | 
						|
/// across BB.  Transform the IR to reflect this change.
 | 
						|
bool JumpThreading::ThreadEdge(BasicBlock *BB, 
 | 
						|
                               const SmallVectorImpl<BasicBlock*> &PredBBs, 
 | 
						|
                               BasicBlock *SuccBB) {
 | 
						|
  // If threading to the same block as we come from, we would infinite loop.
 | 
						|
  if (SuccBB == BB) {
 | 
						|
    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
 | 
						|
          << "' - would thread to self!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If threading this would thread across a loop header, don't thread the edge.
 | 
						|
  // See the comments above FindLoopHeaders for justifications and caveats.
 | 
						|
  if (LoopHeaders.count(BB)) {
 | 
						|
    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
 | 
						|
          << "' to dest BB '" << SuccBB->getName()
 | 
						|
          << "' - it might create an irreducible loop!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
 | 
						|
  if (JumpThreadCost > Threshold) {
 | 
						|
    DEBUG(errs() << "  Not threading BB '" << BB->getName()
 | 
						|
          << "' - Cost is too high: " << JumpThreadCost << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // And finally, do it!  Start by factoring the predecessors is needed.
 | 
						|
  BasicBlock *PredBB;
 | 
						|
  if (PredBBs.size() == 1)
 | 
						|
    PredBB = PredBBs[0];
 | 
						|
  else {
 | 
						|
    DEBUG(errs() << "  Factoring out " << PredBBs.size()
 | 
						|
          << " common predecessors.\n");
 | 
						|
    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
 | 
						|
                                    ".thr_comm", this);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // And finally, do it!
 | 
						|
  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
 | 
						|
        << SuccBB->getName() << "' with cost: " << JumpThreadCost
 | 
						|
        << ", across block:\n    "
 | 
						|
        << *BB << "\n");
 | 
						|
  
 | 
						|
  // We are going to have to map operands from the original BB block to the new
 | 
						|
  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
 | 
						|
  // account for entry from PredBB.
 | 
						|
  DenseMap<Instruction*, Value*> ValueMapping;
 | 
						|
  
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 
 | 
						|
                                         BB->getName()+".thread", 
 | 
						|
                                         BB->getParent(), BB);
 | 
						|
  NewBB->moveAfter(PredBB);
 | 
						|
  
 | 
						|
  BasicBlock::iterator BI = BB->begin();
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | 
						|
  
 | 
						|
  // Clone the non-phi instructions of BB into NewBB, keeping track of the
 | 
						|
  // mapping and using it to remap operands in the cloned instructions.
 | 
						|
  for (; !isa<TerminatorInst>(BI); ++BI) {
 | 
						|
    Instruction *New = BI->clone();
 | 
						|
    New->setName(BI->getName());
 | 
						|
    NewBB->getInstList().push_back(New);
 | 
						|
    ValueMapping[BI] = New;
 | 
						|
   
 | 
						|
    // Remap operands to patch up intra-block references.
 | 
						|
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | 
						|
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | 
						|
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | 
						|
        if (I != ValueMapping.end())
 | 
						|
          New->setOperand(i, I->second);
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We didn't copy the terminator from BB over to NewBB, because there is now
 | 
						|
  // an unconditional jump to SuccBB.  Insert the unconditional jump.
 | 
						|
  BranchInst::Create(SuccBB, NewBB);
 | 
						|
  
 | 
						|
  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
 | 
						|
  // PHI nodes for NewBB now.
 | 
						|
  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
 | 
						|
  
 | 
						|
  // If there were values defined in BB that are used outside the block, then we
 | 
						|
  // now have to update all uses of the value to use either the original value,
 | 
						|
  // the cloned value, or some PHI derived value.  This can require arbitrary
 | 
						|
  // PHI insertion, of which we are prepared to do, clean these up now.
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SmallVector<Use*, 16> UsesToRename;
 | 
						|
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | 
						|
    // Scan all uses of this instruction to see if it is used outside of its
 | 
						|
    // block, and if so, record them in UsesToRename.
 | 
						|
    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
         ++UI) {
 | 
						|
      Instruction *User = cast<Instruction>(*UI);
 | 
						|
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
        if (UserPN->getIncomingBlock(UI) == BB)
 | 
						|
          continue;
 | 
						|
      } else if (User->getParent() == BB)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      UsesToRename.push_back(&UI.getUse());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If there are no uses outside the block, we're done with this instruction.
 | 
						|
    if (UsesToRename.empty())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
 | 
						|
 | 
						|
    // We found a use of I outside of BB.  Rename all uses of I that are outside
 | 
						|
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | 
						|
    // with the two values we know.
 | 
						|
    SSAUpdate.Initialize(I);
 | 
						|
    SSAUpdate.AddAvailableValue(BB, I);
 | 
						|
    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
 | 
						|
    
 | 
						|
    while (!UsesToRename.empty())
 | 
						|
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | 
						|
    DEBUG(errs() << "\n");
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
 | 
						|
  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
 | 
						|
  // us to simplify any PHI nodes in BB.
 | 
						|
  TerminatorInst *PredTerm = PredBB->getTerminator();
 | 
						|
  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
 | 
						|
    if (PredTerm->getSuccessor(i) == BB) {
 | 
						|
      RemovePredecessorAndSimplify(BB, PredBB, TD);
 | 
						|
      PredTerm->setSuccessor(i, NewBB);
 | 
						|
    }
 | 
						|
  
 | 
						|
  // At this point, the IR is fully up to date and consistent.  Do a quick scan
 | 
						|
  // over the new instructions and zap any that are constants or dead.  This
 | 
						|
  // frequently happens because of phi translation.
 | 
						|
  BI = NewBB->begin();
 | 
						|
  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
 | 
						|
    Instruction *Inst = BI++;
 | 
						|
    
 | 
						|
    if (Value *V = SimplifyInstruction(Inst, TD)) {
 | 
						|
      WeakVH BIHandle(BI);
 | 
						|
      ReplaceAndSimplifyAllUses(Inst, V, TD);
 | 
						|
      if (BIHandle == 0)
 | 
						|
        BI = NewBB->begin();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Threaded an edge!
 | 
						|
  ++NumThreads;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
 | 
						|
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
 | 
						|
/// If we can duplicate the contents of BB up into PredBB do so now, this
 | 
						|
/// improves the odds that the branch will be on an analyzable instruction like
 | 
						|
/// a compare.
 | 
						|
bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
 | 
						|
                                                     BasicBlock *PredBB) {
 | 
						|
  // If BB is a loop header, then duplicating this block outside the loop would
 | 
						|
  // cause us to transform this into an irreducible loop, don't do this.
 | 
						|
  // See the comments above FindLoopHeaders for justifications and caveats.
 | 
						|
  if (LoopHeaders.count(BB)) {
 | 
						|
    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
 | 
						|
          << "' into predecessor block '" << PredBB->getName()
 | 
						|
          << "' - it might create an irreducible loop!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
 | 
						|
  if (DuplicationCost > Threshold) {
 | 
						|
    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
 | 
						|
          << "' - Cost is too high: " << DuplicationCost << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
 | 
						|
  // of PredBB.
 | 
						|
  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
 | 
						|
        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
 | 
						|
        << DuplicationCost << " block is:" << *BB << "\n");
 | 
						|
  
 | 
						|
  // We are going to have to map operands from the original BB block into the
 | 
						|
  // PredBB block.  Evaluate PHI nodes in BB.
 | 
						|
  DenseMap<Instruction*, Value*> ValueMapping;
 | 
						|
  
 | 
						|
  BasicBlock::iterator BI = BB->begin();
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | 
						|
  
 | 
						|
  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
 | 
						|
  
 | 
						|
  // Clone the non-phi instructions of BB into PredBB, keeping track of the
 | 
						|
  // mapping and using it to remap operands in the cloned instructions.
 | 
						|
  for (; BI != BB->end(); ++BI) {
 | 
						|
    Instruction *New = BI->clone();
 | 
						|
    New->setName(BI->getName());
 | 
						|
    PredBB->getInstList().insert(OldPredBranch, New);
 | 
						|
    ValueMapping[BI] = New;
 | 
						|
    
 | 
						|
    // Remap operands to patch up intra-block references.
 | 
						|
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | 
						|
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | 
						|
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | 
						|
        if (I != ValueMapping.end())
 | 
						|
          New->setOperand(i, I->second);
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check to see if the targets of the branch had PHI nodes. If so, we need to
 | 
						|
  // add entries to the PHI nodes for branch from PredBB now.
 | 
						|
  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
 | 
						|
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
 | 
						|
                                  ValueMapping);
 | 
						|
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
 | 
						|
                                  ValueMapping);
 | 
						|
  
 | 
						|
  // If there were values defined in BB that are used outside the block, then we
 | 
						|
  // now have to update all uses of the value to use either the original value,
 | 
						|
  // the cloned value, or some PHI derived value.  This can require arbitrary
 | 
						|
  // PHI insertion, of which we are prepared to do, clean these up now.
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SmallVector<Use*, 16> UsesToRename;
 | 
						|
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | 
						|
    // Scan all uses of this instruction to see if it is used outside of its
 | 
						|
    // block, and if so, record them in UsesToRename.
 | 
						|
    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
         ++UI) {
 | 
						|
      Instruction *User = cast<Instruction>(*UI);
 | 
						|
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
        if (UserPN->getIncomingBlock(UI) == BB)
 | 
						|
          continue;
 | 
						|
      } else if (User->getParent() == BB)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      UsesToRename.push_back(&UI.getUse());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If there are no uses outside the block, we're done with this instruction.
 | 
						|
    if (UsesToRename.empty())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
 | 
						|
    
 | 
						|
    // We found a use of I outside of BB.  Rename all uses of I that are outside
 | 
						|
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | 
						|
    // with the two values we know.
 | 
						|
    SSAUpdate.Initialize(I);
 | 
						|
    SSAUpdate.AddAvailableValue(BB, I);
 | 
						|
    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
 | 
						|
    
 | 
						|
    while (!UsesToRename.empty())
 | 
						|
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | 
						|
    DEBUG(errs() << "\n");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
 | 
						|
  // that we nuked.
 | 
						|
  RemovePredecessorAndSimplify(BB, PredBB, TD);
 | 
						|
  
 | 
						|
  // Remove the unconditional branch at the end of the PredBB block.
 | 
						|
  OldPredBranch->eraseFromParent();
 | 
						|
  
 | 
						|
  ++NumDupes;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 |