mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92260 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			668 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			668 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Local.cpp - Functions to perform local transformations ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform various local transformations to the
 | |
| // program.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ProfileInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local analysis.
 | |
| //
 | |
| 
 | |
| /// isSafeToLoadUnconditionally - Return true if we know that executing a load
 | |
| /// from this value cannot trap.  If it is not obviously safe to load from the
 | |
| /// specified pointer, we do a quick local scan of the basic block containing
 | |
| /// ScanFrom, to determine if the address is already accessed.
 | |
| bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
 | |
|   // If it is an alloca it is always safe to load from.
 | |
|   if (isa<AllocaInst>(V)) return true;
 | |
| 
 | |
|   // If it is a global variable it is mostly safe to load from.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
 | |
|     // Don't try to evaluate aliases.  External weak GV can be null.
 | |
|     return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
 | |
| 
 | |
|   // Otherwise, be a little bit agressive by scanning the local block where we
 | |
|   // want to check to see if the pointer is already being loaded or stored
 | |
|   // from/to.  If so, the previous load or store would have already trapped,
 | |
|   // so there is no harm doing an extra load (also, CSE will later eliminate
 | |
|   // the load entirely).
 | |
|   BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
 | |
| 
 | |
|   while (BBI != E) {
 | |
|     --BBI;
 | |
| 
 | |
|     // If we see a free or a call which may write to memory (i.e. which might do
 | |
|     // a free) the pointer could be marked invalid.
 | |
|     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
 | |
|         !isa<DbgInfoIntrinsic>(BBI))
 | |
|       return false;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI->getOperand(0) == V) return true;
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
 | |
|       if (SI->getOperand(1) == V) return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local constant propagation.
 | |
| //
 | |
| 
 | |
| // ConstantFoldTerminator - If a terminator instruction is predicated on a
 | |
| // constant value, convert it into an unconditional branch to the constant
 | |
| // destination.
 | |
| //
 | |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
 | |
|   TerminatorInst *T = BB->getTerminator();
 | |
| 
 | |
|   // Branch - See if we are conditional jumping on constant
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | |
|     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
 | |
|     BasicBlock *Dest1 = BI->getSuccessor(0);
 | |
|     BasicBlock *Dest2 = BI->getSuccessor(1);
 | |
| 
 | |
|     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
 | |
|       // Are we branching on constant?
 | |
|       // YES.  Change to unconditional branch...
 | |
|       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
 | |
|       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
 | |
| 
 | |
|       //cerr << "Function: " << T->getParent()->getParent()
 | |
|       //     << "\nRemoving branch from " << T->getParent()
 | |
|       //     << "\n\nTo: " << OldDest << endl;
 | |
| 
 | |
|       // Let the basic block know that we are letting go of it.  Based on this,
 | |
|       // it will adjust it's PHI nodes.
 | |
|       assert(BI->getParent() && "Terminator not inserted in block!");
 | |
|       OldDest->removePredecessor(BI->getParent());
 | |
| 
 | |
|       // Set the unconditional destination, and change the insn to be an
 | |
|       // unconditional branch.
 | |
|       BI->setUnconditionalDest(Destination);
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     if (Dest2 == Dest1) {       // Conditional branch to same location?
 | |
|       // This branch matches something like this:
 | |
|       //     br bool %cond, label %Dest, label %Dest
 | |
|       // and changes it into:  br label %Dest
 | |
| 
 | |
|       // Let the basic block know that we are letting go of one copy of it.
 | |
|       assert(BI->getParent() && "Terminator not inserted in block!");
 | |
|       Dest1->removePredecessor(BI->getParent());
 | |
| 
 | |
|       // Change a conditional branch to unconditional.
 | |
|       BI->setUnconditionalDest(Dest1);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
 | |
|     // If we are switching on a constant, we can convert the switch into a
 | |
|     // single branch instruction!
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|     BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
 | |
|     BasicBlock *DefaultDest = TheOnlyDest;
 | |
|     assert(TheOnlyDest == SI->getDefaultDest() &&
 | |
|            "Default destination is not successor #0?");
 | |
| 
 | |
|     // Figure out which case it goes to.
 | |
|     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
 | |
|       // Found case matching a constant operand?
 | |
|       if (SI->getSuccessorValue(i) == CI) {
 | |
|         TheOnlyDest = SI->getSuccessor(i);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Check to see if this branch is going to the same place as the default
 | |
|       // dest.  If so, eliminate it as an explicit compare.
 | |
|       if (SI->getSuccessor(i) == DefaultDest) {
 | |
|         // Remove this entry.
 | |
|         DefaultDest->removePredecessor(SI->getParent());
 | |
|         SI->removeCase(i);
 | |
|         --i; --e;  // Don't skip an entry...
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, check to see if the switch only branches to one destination.
 | |
|       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
 | |
|       // destinations.
 | |
|       if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
 | |
|     }
 | |
| 
 | |
|     if (CI && !TheOnlyDest) {
 | |
|       // Branching on a constant, but not any of the cases, go to the default
 | |
|       // successor.
 | |
|       TheOnlyDest = SI->getDefaultDest();
 | |
|     }
 | |
| 
 | |
|     // If we found a single destination that we can fold the switch into, do so
 | |
|     // now.
 | |
|     if (TheOnlyDest) {
 | |
|       // Insert the new branch.
 | |
|       BranchInst::Create(TheOnlyDest, SI);
 | |
|       BasicBlock *BB = SI->getParent();
 | |
| 
 | |
|       // Remove entries from PHI nodes which we no longer branch to...
 | |
|       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
 | |
|         // Found case matching a constant operand?
 | |
|         BasicBlock *Succ = SI->getSuccessor(i);
 | |
|         if (Succ == TheOnlyDest)
 | |
|           TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
 | |
|         else
 | |
|           Succ->removePredecessor(BB);
 | |
|       }
 | |
| 
 | |
|       // Delete the old switch.
 | |
|       BB->getInstList().erase(SI);
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     if (SI->getNumSuccessors() == 2) {
 | |
|       // Otherwise, we can fold this switch into a conditional branch
 | |
|       // instruction if it has only one non-default destination.
 | |
|       Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
 | |
|                                  SI->getSuccessorValue(1), "cond");
 | |
|       // Insert the new branch.
 | |
|       BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
 | |
| 
 | |
|       // Delete the old switch.
 | |
|       SI->eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
 | |
|     // indirectbr blockaddress(@F, @BB) -> br label @BB
 | |
|     if (BlockAddress *BA =
 | |
|           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
 | |
|       BasicBlock *TheOnlyDest = BA->getBasicBlock();
 | |
|       // Insert the new branch.
 | |
|       BranchInst::Create(TheOnlyDest, IBI);
 | |
|       
 | |
|       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | |
|         if (IBI->getDestination(i) == TheOnlyDest)
 | |
|           TheOnlyDest = 0;
 | |
|         else
 | |
|           IBI->getDestination(i)->removePredecessor(IBI->getParent());
 | |
|       }
 | |
|       IBI->eraseFromParent();
 | |
|       
 | |
|       // If we didn't find our destination in the IBI successor list, then we
 | |
|       // have undefined behavior.  Replace the unconditional branch with an
 | |
|       // 'unreachable' instruction.
 | |
|       if (TheOnlyDest) {
 | |
|         BB->getTerminator()->eraseFromParent();
 | |
|         new UnreachableInst(BB->getContext(), BB);
 | |
|       }
 | |
|       
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local dead code elimination.
 | |
| //
 | |
| 
 | |
| /// isInstructionTriviallyDead - Return true if the result produced by the
 | |
| /// instruction is not used, and the instruction has no side effects.
 | |
| ///
 | |
| bool llvm::isInstructionTriviallyDead(Instruction *I) {
 | |
|   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
 | |
| 
 | |
|   // We don't want debug info removed by anything this general.
 | |
|   if (isa<DbgInfoIntrinsic>(I)) return false;
 | |
| 
 | |
|   // Likewise for memory use markers.
 | |
|   if (isa<MemoryUseIntrinsic>(I)) return false;
 | |
| 
 | |
|   if (!I->mayHaveSideEffects()) return true;
 | |
| 
 | |
|   // Special case intrinsics that "may have side effects" but can be deleted
 | |
|   // when dead.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | |
|     // Safe to delete llvm.stacksave if dead.
 | |
|     if (II->getIntrinsicID() == Intrinsic::stacksave)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
 | |
| /// trivially dead instruction, delete it.  If that makes any of its operands
 | |
| /// trivially dead, delete them too, recursively.
 | |
| void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
 | |
|     return;
 | |
|   
 | |
|   SmallVector<Instruction*, 16> DeadInsts;
 | |
|   DeadInsts.push_back(I);
 | |
|   
 | |
|   while (!DeadInsts.empty()) {
 | |
|     I = DeadInsts.pop_back_val();
 | |
| 
 | |
|     // Null out all of the instruction's operands to see if any operand becomes
 | |
|     // dead as we go.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       Value *OpV = I->getOperand(i);
 | |
|       I->setOperand(i, 0);
 | |
|       
 | |
|       if (!OpV->use_empty()) continue;
 | |
|     
 | |
|       // If the operand is an instruction that became dead as we nulled out the
 | |
|       // operand, and if it is 'trivially' dead, delete it in a future loop
 | |
|       // iteration.
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | |
|         if (isInstructionTriviallyDead(OpI))
 | |
|           DeadInsts.push_back(OpI);
 | |
|     }
 | |
|     
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
 | |
| /// dead PHI node, due to being a def-use chain of single-use nodes that
 | |
| /// either forms a cycle or is terminated by a trivially dead instruction,
 | |
| /// delete it.  If that makes any of its operands trivially dead, delete them
 | |
| /// too, recursively.
 | |
| void
 | |
| llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
 | |
|   // We can remove a PHI if it is on a cycle in the def-use graph
 | |
|   // where each node in the cycle has degree one, i.e. only one use,
 | |
|   // and is an instruction with no side effects.
 | |
|   if (!PN->hasOneUse())
 | |
|     return;
 | |
| 
 | |
|   SmallPtrSet<PHINode *, 4> PHIs;
 | |
|   PHIs.insert(PN);
 | |
|   for (Instruction *J = cast<Instruction>(*PN->use_begin());
 | |
|        J->hasOneUse() && !J->mayHaveSideEffects();
 | |
|        J = cast<Instruction>(*J->use_begin()))
 | |
|     // If we find a PHI more than once, we're on a cycle that
 | |
|     // won't prove fruitful.
 | |
|     if (PHINode *JP = dyn_cast<PHINode>(J))
 | |
|       if (!PHIs.insert(cast<PHINode>(JP))) {
 | |
|         // Break the cycle and delete the PHI and its operands.
 | |
|         JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(JP);
 | |
|         break;
 | |
|       }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Control Flow Graph Restructuring.
 | |
| //
 | |
| 
 | |
| 
 | |
| /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
 | |
| /// method is called when we're about to delete Pred as a predecessor of BB.  If
 | |
| /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
 | |
| ///
 | |
| /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
 | |
| /// nodes that collapse into identity values.  For example, if we have:
 | |
| ///   x = phi(1, 0, 0, 0)
 | |
| ///   y = and x, z
 | |
| ///
 | |
| /// .. and delete the predecessor corresponding to the '1', this will attempt to
 | |
| /// recursively fold the and to 0.
 | |
| void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
 | |
|                                         TargetData *TD) {
 | |
|   // This only adjusts blocks with PHI nodes.
 | |
|   if (!isa<PHINode>(BB->begin()))
 | |
|     return;
 | |
|   
 | |
|   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
 | |
|   // them down.  This will leave us with single entry phi nodes and other phis
 | |
|   // that can be removed.
 | |
|   BB->removePredecessor(Pred, true);
 | |
|   
 | |
|   WeakVH PhiIt = &BB->front();
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
 | |
|     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
 | |
|     
 | |
|     Value *PNV = PN->hasConstantValue();
 | |
|     if (PNV == 0) continue;
 | |
|     
 | |
|     // If we're able to simplify the phi to a single value, substitute the new
 | |
|     // value into all of its uses.
 | |
|     assert(PNV != PN && "hasConstantValue broken");
 | |
|     
 | |
|     ReplaceAndSimplifyAllUses(PN, PNV, TD);
 | |
|     
 | |
|     // If recursive simplification ended up deleting the next PHI node we would
 | |
|     // iterate to, then our iterator is invalid, restart scanning from the top
 | |
|     // of the block.
 | |
|     if (PhiIt == 0) PhiIt = &BB->front();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
 | |
| /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
 | |
| /// between them, moving the instructions in the predecessor into DestBB and
 | |
| /// deleting the predecessor block.
 | |
| ///
 | |
| void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
 | |
|   // If BB has single-entry PHI nodes, fold them.
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | |
|     Value *NewVal = PN->getIncomingValue(0);
 | |
|     // Replace self referencing PHI with undef, it must be dead.
 | |
|     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
 | |
|     PN->replaceAllUsesWith(NewVal);
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   BasicBlock *PredBB = DestBB->getSinglePredecessor();
 | |
|   assert(PredBB && "Block doesn't have a single predecessor!");
 | |
|   
 | |
|   // Splice all the instructions from PredBB to DestBB.
 | |
|   PredBB->getTerminator()->eraseFromParent();
 | |
|   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
 | |
|   
 | |
|   // Anything that branched to PredBB now branches to DestBB.
 | |
|   PredBB->replaceAllUsesWith(DestBB);
 | |
|   
 | |
|   if (P) {
 | |
|     ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
 | |
|     if (PI) {
 | |
|       PI->replaceAllUses(PredBB, DestBB);
 | |
|       PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
 | |
|     }
 | |
|   }
 | |
|   // Nuke BB.
 | |
|   PredBB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
 | |
| /// almost-empty BB ending in an unconditional branch to Succ, into succ.
 | |
| ///
 | |
| /// Assumption: Succ is the single successor for BB.
 | |
| ///
 | |
| static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | |
| 
 | |
|   DEBUG(errs() << "Looking to fold " << BB->getName() << " into " 
 | |
|         << Succ->getName() << "\n");
 | |
|   // Shortcut, if there is only a single predecessor it must be BB and merging
 | |
|   // is always safe
 | |
|   if (Succ->getSinglePredecessor()) return true;
 | |
| 
 | |
|   // Make a list of the predecessors of BB
 | |
|   typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
 | |
|   BlockSet BBPreds(pred_begin(BB), pred_end(BB));
 | |
| 
 | |
|   // Use that list to make another list of common predecessors of BB and Succ
 | |
|   BlockSet CommonPreds;
 | |
|   for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
 | |
|         PI != PE; ++PI)
 | |
|     if (BBPreds.count(*PI))
 | |
|       CommonPreds.insert(*PI);
 | |
| 
 | |
|   // Shortcut, if there are no common predecessors, merging is always safe
 | |
|   if (CommonPreds.empty())
 | |
|     return true;
 | |
|   
 | |
|   // Look at all the phi nodes in Succ, to see if they present a conflict when
 | |
|   // merging these blocks
 | |
|   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
| 
 | |
|     // If the incoming value from BB is again a PHINode in
 | |
|     // BB which has the same incoming value for *PI as PN does, we can
 | |
|     // merge the phi nodes and then the blocks can still be merged
 | |
|     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
 | |
|     if (BBPN && BBPN->getParent() == BB) {
 | |
|       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
 | |
|             PI != PE; PI++) {
 | |
|         if (BBPN->getIncomingValueForBlock(*PI) 
 | |
|               != PN->getIncomingValueForBlock(*PI)) {
 | |
|           DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in " 
 | |
|                 << Succ->getName() << " is conflicting with " 
 | |
|                 << BBPN->getName() << " with regard to common predecessor "
 | |
|                 << (*PI)->getName() << "\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       Value* Val = PN->getIncomingValueForBlock(BB);
 | |
|       for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
 | |
|             PI != PE; PI++) {
 | |
|         // See if the incoming value for the common predecessor is equal to the
 | |
|         // one for BB, in which case this phi node will not prevent the merging
 | |
|         // of the block.
 | |
|         if (Val != PN->getIncomingValueForBlock(*PI)) {
 | |
|           DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in " 
 | |
|                 << Succ->getName() << " is conflicting with regard to common "
 | |
|                 << "predecessor " << (*PI)->getName() << "\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
 | |
| /// unconditional branch, and contains no instructions other than PHI nodes,
 | |
| /// potential debug intrinsics and the branch.  If possible, eliminate BB by
 | |
| /// rewriting all the predecessors to branch to the successor block and return
 | |
| /// true.  If we can't transform, return false.
 | |
| bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
 | |
|   // We can't eliminate infinite loops.
 | |
|   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
 | |
|   if (BB == Succ) return false;
 | |
|   
 | |
|   // Check to see if merging these blocks would cause conflicts for any of the
 | |
|   // phi nodes in BB or Succ. If not, we can safely merge.
 | |
|   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
 | |
| 
 | |
|   // Check for cases where Succ has multiple predecessors and a PHI node in BB
 | |
|   // has uses which will not disappear when the PHI nodes are merged.  It is
 | |
|   // possible to handle such cases, but difficult: it requires checking whether
 | |
|   // BB dominates Succ, which is non-trivial to calculate in the case where
 | |
|   // Succ has multiple predecessors.  Also, it requires checking whether
 | |
|   // constructing the necessary self-referential PHI node doesn't intoduce any
 | |
|   // conflicts; this isn't too difficult, but the previous code for doing this
 | |
|   // was incorrect.
 | |
|   //
 | |
|   // Note that if this check finds a live use, BB dominates Succ, so BB is
 | |
|   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
 | |
|   // folding the branch isn't profitable in that case anyway.
 | |
|   if (!Succ->getSinglePredecessor()) {
 | |
|     BasicBlock::iterator BBI = BB->begin();
 | |
|     while (isa<PHINode>(*BBI)) {
 | |
|       for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
 | |
|            UI != E; ++UI) {
 | |
|         if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
 | |
|           if (PN->getIncomingBlock(UI) != BB)
 | |
|             return false;
 | |
|         } else {
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       ++BBI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(errs() << "Killing Trivial BB: \n" << *BB);
 | |
|   
 | |
|   if (isa<PHINode>(Succ->begin())) {
 | |
|     // If there is more than one pred of succ, and there are PHI nodes in
 | |
|     // the successor, then we need to add incoming edges for the PHI nodes
 | |
|     //
 | |
|     const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | |
|     
 | |
|     // Loop over all of the PHI nodes in the successor of BB.
 | |
|     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       Value *OldVal = PN->removeIncomingValue(BB, false);
 | |
|       assert(OldVal && "No entry in PHI for Pred BB!");
 | |
|       
 | |
|       // If this incoming value is one of the PHI nodes in BB, the new entries
 | |
|       // in the PHI node are the entries from the old PHI.
 | |
|       if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | |
|         PHINode *OldValPN = cast<PHINode>(OldVal);
 | |
|         for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
 | |
|           // Note that, since we are merging phi nodes and BB and Succ might
 | |
|           // have common predecessors, we could end up with a phi node with
 | |
|           // identical incoming branches. This will be cleaned up later (and
 | |
|           // will trigger asserts if we try to clean it up now, without also
 | |
|           // simplifying the corresponding conditional branch).
 | |
|           PN->addIncoming(OldValPN->getIncomingValue(i),
 | |
|                           OldValPN->getIncomingBlock(i));
 | |
|       } else {
 | |
|         // Add an incoming value for each of the new incoming values.
 | |
|         for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
 | |
|           PN->addIncoming(OldVal, BBPreds[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | |
|     if (Succ->getSinglePredecessor()) {
 | |
|       // BB is the only predecessor of Succ, so Succ will end up with exactly
 | |
|       // the same predecessors BB had.
 | |
|       Succ->getInstList().splice(Succ->begin(),
 | |
|                                  BB->getInstList(), BB->begin());
 | |
|     } else {
 | |
|       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
 | |
|       assert(PN->use_empty() && "There shouldn't be any uses here!");
 | |
|       PN->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // Everything that jumped to BB now goes to Succ.
 | |
|   BB->replaceAllUsesWith(Succ);
 | |
|   if (!Succ->hasName()) Succ->takeName(BB);
 | |
|   BB->eraseFromParent();              // Delete the old basic block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
 | |
| /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled 
 | |
| /// with the DbgInfoIntrinsic that use the instruction I.
 | |
| bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I, 
 | |
|                                SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
 | |
|   if (DbgInUses)
 | |
|     DbgInUses->clear();
 | |
| 
 | |
|   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 
 | |
|        ++UI) {
 | |
|     if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
 | |
|       if (DbgInUses)
 | |
|         DbgInUses->push_back(DI);
 | |
|     } else {
 | |
|       if (DbgInUses)
 | |
|         DbgInUses->clear();
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
 | |
| /// nodes in this block. This doesn't try to be clever about PHI nodes
 | |
| /// which differ only in the order of the incoming values, but instcombine
 | |
| /// orders them so it usually won't matter.
 | |
| ///
 | |
| bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // This implementation doesn't currently consider undef operands
 | |
|   // specially. Theroetically, two phis which are identical except for
 | |
|   // one having an undef where the other doesn't could be collapsed.
 | |
| 
 | |
|   // Map from PHI hash values to PHI nodes. If multiple PHIs have
 | |
|   // the same hash value, the element is the first PHI in the
 | |
|   // linked list in CollisionMap.
 | |
|   DenseMap<uintptr_t, PHINode *> HashMap;
 | |
| 
 | |
|   // Maintain linked lists of PHI nodes with common hash values.
 | |
|   DenseMap<PHINode *, PHINode *> CollisionMap;
 | |
| 
 | |
|   // Examine each PHI.
 | |
|   for (BasicBlock::iterator I = BB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I++); ) {
 | |
|     // Compute a hash value on the operands. Instcombine will likely have sorted
 | |
|     // them, which helps expose duplicates, but we have to check all the
 | |
|     // operands to be safe in case instcombine hasn't run.
 | |
|     uintptr_t Hash = 0;
 | |
|     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
 | |
|       // This hash algorithm is quite weak as hash functions go, but it seems
 | |
|       // to do a good enough job for this particular purpose, and is very quick.
 | |
|       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
 | |
|       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
 | |
|     }
 | |
|     // If we've never seen this hash value before, it's a unique PHI.
 | |
|     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
 | |
|       HashMap.insert(std::make_pair(Hash, PN));
 | |
|     if (Pair.second) continue;
 | |
|     // Otherwise it's either a duplicate or a hash collision.
 | |
|     for (PHINode *OtherPN = Pair.first->second; ; ) {
 | |
|       if (OtherPN->isIdenticalTo(PN)) {
 | |
|         // A duplicate. Replace this PHI with its duplicate.
 | |
|         PN->replaceAllUsesWith(OtherPN);
 | |
|         PN->eraseFromParent();
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       // A non-duplicate hash collision.
 | |
|       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
 | |
|       if (I == CollisionMap.end()) {
 | |
|         // Set this PHI to be the head of the linked list of colliding PHIs.
 | |
|         PHINode *Old = Pair.first->second;
 | |
|         Pair.first->second = PN;
 | |
|         CollisionMap[PN] = Old;
 | |
|         break;
 | |
|       }
 | |
|       // Procede to the next PHI in the list.
 | |
|       OtherPN = I->second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 |