mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86769 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2196 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2196 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a DAG pattern matching instruction selector for X86,
 | |
| // converting from a legalized dag to a X86 dag.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Force NDEBUG on in any optimized build on Darwin.
 | |
| //
 | |
| // FIXME: This is a huge hack, to work around ridiculously awful compile times
 | |
| // on this file with gcc-4.2 on Darwin, in Release mode.
 | |
| #if (!defined(__llvm__) && defined(__APPLE__) && \
 | |
|      defined(__OPTIMIZE__) && !defined(NDEBUG))
 | |
| #define NDEBUG
 | |
| #endif
 | |
| 
 | |
| #define DEBUG_TYPE "x86-isel"
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Pattern Matcher Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
 | |
|   /// SDValue's instead of register numbers for the leaves of the matched
 | |
|   /// tree.
 | |
|   struct X86ISelAddressMode {
 | |
|     enum {
 | |
|       RegBase,
 | |
|       FrameIndexBase
 | |
|     } BaseType;
 | |
| 
 | |
|     struct {            // This is really a union, discriminated by BaseType!
 | |
|       SDValue Reg;
 | |
|       int FrameIndex;
 | |
|     } Base;
 | |
| 
 | |
|     unsigned Scale;
 | |
|     SDValue IndexReg; 
 | |
|     int32_t Disp;
 | |
|     SDValue Segment;
 | |
|     GlobalValue *GV;
 | |
|     Constant *CP;
 | |
|     BlockAddress *BlockAddr;
 | |
|     const char *ES;
 | |
|     int JT;
 | |
|     unsigned Align;    // CP alignment.
 | |
|     unsigned char SymbolFlags;  // X86II::MO_*
 | |
| 
 | |
|     X86ISelAddressMode()
 | |
|       : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
 | |
|         Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
 | |
|         SymbolFlags(X86II::MO_NO_FLAG) {
 | |
|     }
 | |
| 
 | |
|     bool hasSymbolicDisplacement() const {
 | |
|       return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
 | |
|     }
 | |
|     
 | |
|     bool hasBaseOrIndexReg() const {
 | |
|       return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
 | |
|     }
 | |
|     
 | |
|     /// isRIPRelative - Return true if this addressing mode is already RIP
 | |
|     /// relative.
 | |
|     bool isRIPRelative() const {
 | |
|       if (BaseType != RegBase) return false;
 | |
|       if (RegisterSDNode *RegNode =
 | |
|             dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
 | |
|         return RegNode->getReg() == X86::RIP;
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     void setBaseReg(SDValue Reg) {
 | |
|       BaseType = RegBase;
 | |
|       Base.Reg = Reg;
 | |
|     }
 | |
| 
 | |
|     void dump() {
 | |
|       errs() << "X86ISelAddressMode " << this << '\n';
 | |
|       errs() << "Base.Reg ";
 | |
|       if (Base.Reg.getNode() != 0)
 | |
|         Base.Reg.getNode()->dump(); 
 | |
|       else
 | |
|         errs() << "nul";
 | |
|       errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
 | |
|              << " Scale" << Scale << '\n'
 | |
|              << "IndexReg ";
 | |
|       if (IndexReg.getNode() != 0)
 | |
|         IndexReg.getNode()->dump();
 | |
|       else
 | |
|         errs() << "nul"; 
 | |
|       errs() << " Disp " << Disp << '\n'
 | |
|              << "GV ";
 | |
|       if (GV)
 | |
|         GV->dump();
 | |
|       else
 | |
|         errs() << "nul";
 | |
|       errs() << " CP ";
 | |
|       if (CP)
 | |
|         CP->dump();
 | |
|       else
 | |
|         errs() << "nul";
 | |
|       errs() << '\n'
 | |
|              << "ES ";
 | |
|       if (ES)
 | |
|         errs() << ES;
 | |
|       else
 | |
|         errs() << "nul";
 | |
|       errs() << " JT" << JT << " Align" << Align << '\n';
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISel - X86 specific code to select X86 machine instructions for
 | |
|   /// SelectionDAG operations.
 | |
|   ///
 | |
|   class X86DAGToDAGISel : public SelectionDAGISel {
 | |
|     /// X86Lowering - This object fully describes how to lower LLVM code to an
 | |
|     /// X86-specific SelectionDAG.
 | |
|     X86TargetLowering &X86Lowering;
 | |
| 
 | |
|     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | |
|     /// make the right decision when generating code for different targets.
 | |
|     const X86Subtarget *Subtarget;
 | |
| 
 | |
|     /// OptForSize - If true, selector should try to optimize for code size
 | |
|     /// instead of performance.
 | |
|     bool OptForSize;
 | |
| 
 | |
|   public:
 | |
|     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
 | |
|       : SelectionDAGISel(tm, OptLevel),
 | |
|         X86Lowering(*tm.getTargetLowering()),
 | |
|         Subtarget(&tm.getSubtarget<X86Subtarget>()),
 | |
|         OptForSize(false) {}
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 DAG->DAG Instruction Selection";
 | |
|     }
 | |
| 
 | |
|     /// InstructionSelect - This callback is invoked by
 | |
|     /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|     virtual void InstructionSelect();
 | |
| 
 | |
|     virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
 | |
| 
 | |
|     virtual
 | |
|       bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "X86GenDAGISel.inc"
 | |
| 
 | |
|   private:
 | |
|     SDNode *Select(SDValue N);
 | |
|     SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
 | |
|     SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
 | |
| 
 | |
|     bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
 | |
|     bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
 | |
|     bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
 | |
|     bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
 | |
|     bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
 | |
|                                  unsigned Depth);
 | |
|     bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
 | |
|     bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                     SDValue &Scale, SDValue &Index, SDValue &Disp,
 | |
|                     SDValue &Segment);
 | |
|     bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                        SDValue &Scale, SDValue &Index, SDValue &Disp);
 | |
|     bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                        SDValue &Scale, SDValue &Index, SDValue &Disp);
 | |
|     bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
 | |
|                              SDValue N, SDValue &Base, SDValue &Scale,
 | |
|                              SDValue &Index, SDValue &Disp,
 | |
|                              SDValue &Segment,
 | |
|                              SDValue &InChain, SDValue &OutChain);
 | |
|     bool TryFoldLoad(SDValue P, SDValue N,
 | |
|                      SDValue &Base, SDValue &Scale,
 | |
|                      SDValue &Index, SDValue &Disp,
 | |
|                      SDValue &Segment);
 | |
|     void PreprocessForRMW();
 | |
|     void PreprocessForFPConvert();
 | |
| 
 | |
|     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|     /// inline asm expressions.
 | |
|     virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                                               char ConstraintCode,
 | |
|                                               std::vector<SDValue> &OutOps);
 | |
|     
 | |
|     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
 | |
| 
 | |
|     inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 
 | |
|                                    SDValue &Scale, SDValue &Index,
 | |
|                                    SDValue &Disp, SDValue &Segment) {
 | |
|       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
 | |
|         CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
 | |
|         AM.Base.Reg;
 | |
|       Scale = getI8Imm(AM.Scale);
 | |
|       Index = AM.IndexReg;
 | |
|       // These are 32-bit even in 64-bit mode since RIP relative offset
 | |
|       // is 32-bit.
 | |
|       if (AM.GV)
 | |
|         Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
 | |
|                                               AM.SymbolFlags);
 | |
|       else if (AM.CP)
 | |
|         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
 | |
|                                              AM.Align, AM.Disp, AM.SymbolFlags);
 | |
|       else if (AM.ES)
 | |
|         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
 | |
|       else if (AM.JT != -1)
 | |
|         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
 | |
|       else if (AM.BlockAddr)
 | |
|         Disp = CurDAG->getBlockAddress(AM.BlockAddr, DebugLoc()/*MVT::i32*/,
 | |
|                                        true /*AM.SymbolFlags*/);
 | |
|       else
 | |
|         Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
 | |
| 
 | |
|       if (AM.Segment.getNode())
 | |
|         Segment = AM.Segment;
 | |
|       else
 | |
|         Segment = CurDAG->getRegister(0, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getI8Imm - Return a target constant with the specified value, of type
 | |
|     /// i8.
 | |
|     inline SDValue getI8Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i8);
 | |
|     }
 | |
| 
 | |
|     /// getI16Imm - Return a target constant with the specified value, of type
 | |
|     /// i16.
 | |
|     inline SDValue getI16Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i16);
 | |
|     }
 | |
| 
 | |
|     /// getI32Imm - Return a target constant with the specified value, of type
 | |
|     /// i32.
 | |
|     inline SDValue getI32Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getGlobalBaseReg - Return an SDNode that returns the value of
 | |
|     /// the global base register. Output instructions required to
 | |
|     /// initialize the global base register, if necessary.
 | |
|     ///
 | |
|     SDNode *getGlobalBaseReg();
 | |
| 
 | |
|     /// getTargetMachine - Return a reference to the TargetMachine, casted
 | |
|     /// to the target-specific type.
 | |
|     const X86TargetMachine &getTargetMachine() {
 | |
|       return static_cast<const X86TargetMachine &>(TM);
 | |
|     }
 | |
| 
 | |
|     /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
 | |
|     /// to the target-specific type.
 | |
|     const X86InstrInfo *getInstrInfo() {
 | |
|       return getTargetMachine().getInstrInfo();
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     unsigned Indent;
 | |
| #endif
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
 | |
|                                                  SDNode *Root) const {
 | |
|   if (OptLevel == CodeGenOpt::None) return false;
 | |
| 
 | |
|   if (U == Root)
 | |
|     switch (U->getOpcode()) {
 | |
|     default: break;
 | |
|     case ISD::ADD:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::AND:
 | |
|     case ISD::OR:
 | |
|     case ISD::XOR: {
 | |
|       SDValue Op1 = U->getOperand(1);
 | |
| 
 | |
|       // If the other operand is a 8-bit immediate we should fold the immediate
 | |
|       // instead. This reduces code size.
 | |
|       // e.g.
 | |
|       // movl 4(%esp), %eax
 | |
|       // addl $4, %eax
 | |
|       // vs.
 | |
|       // movl $4, %eax
 | |
|       // addl 4(%esp), %eax
 | |
|       // The former is 2 bytes shorter. In case where the increment is 1, then
 | |
|       // the saving can be 4 bytes (by using incl %eax).
 | |
|       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
 | |
|         if (Imm->getAPIntValue().isSignedIntN(8))
 | |
|           return false;
 | |
| 
 | |
|       // If the other operand is a TLS address, we should fold it instead.
 | |
|       // This produces
 | |
|       // movl    %gs:0, %eax
 | |
|       // leal    i@NTPOFF(%eax), %eax
 | |
|       // instead of
 | |
|       // movl    $i@NTPOFF, %eax
 | |
|       // addl    %gs:0, %eax
 | |
|       // if the block also has an access to a second TLS address this will save
 | |
|       // a load.
 | |
|       // FIXME: This is probably also true for non TLS addresses.
 | |
|       if (Op1.getOpcode() == X86ISD::Wrapper) {
 | |
|         SDValue Val = Op1.getOperand(0);
 | |
|         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     }
 | |
| 
 | |
|   // Proceed to 'generic' cycle finder code
 | |
|   return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
 | |
| }
 | |
| 
 | |
| /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
 | |
| /// and move load below the TokenFactor. Replace store's chain operand with
 | |
| /// load's chain result.
 | |
| static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
 | |
|                                  SDValue Store, SDValue TF) {
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
 | |
|     if (Load.getNode() == TF.getOperand(i).getNode())
 | |
|       Ops.push_back(Load.getOperand(0));
 | |
|     else
 | |
|       Ops.push_back(TF.getOperand(i));
 | |
|   SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
 | |
|   SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
 | |
|                                                Load.getOperand(1),
 | |
|                                                Load.getOperand(2));
 | |
|   CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
 | |
|                              Store.getOperand(2), Store.getOperand(3));
 | |
| }
 | |
| 
 | |
| /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.  The 
 | |
| /// chain produced by the load must only be used by the store's chain operand,
 | |
| /// otherwise this may produce a cycle in the DAG.
 | |
| /// 
 | |
| static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
 | |
|                       SDValue &Load) {
 | |
|   if (N.getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N.getOperand(0);
 | |
| 
 | |
|   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
 | |
|   if (!LD || LD->isVolatile())
 | |
|     return false;
 | |
|   if (LD->getAddressingMode() != ISD::UNINDEXED)
 | |
|     return false;
 | |
| 
 | |
|   ISD::LoadExtType ExtType = LD->getExtensionType();
 | |
|   if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
 | |
|     return false;
 | |
| 
 | |
|   if (N.hasOneUse() &&
 | |
|       LD->hasNUsesOfValue(1, 1) &&
 | |
|       N.getOperand(1) == Address &&
 | |
|       LD->isOperandOf(Chain.getNode())) {
 | |
|     Load = N;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
 | |
| /// operand and move load below the call's chain operand.
 | |
| static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
 | |
|                                   SDValue Call, SDValue CallSeqStart) {
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   SDValue Chain = CallSeqStart.getOperand(0);
 | |
|   if (Chain.getNode() == Load.getNode())
 | |
|     Ops.push_back(Load.getOperand(0));
 | |
|   else {
 | |
|     assert(Chain.getOpcode() == ISD::TokenFactor &&
 | |
|            "Unexpected CallSeqStart chain operand");
 | |
|     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
 | |
|       if (Chain.getOperand(i).getNode() == Load.getNode())
 | |
|         Ops.push_back(Load.getOperand(0));
 | |
|       else
 | |
|         Ops.push_back(Chain.getOperand(i));
 | |
|     SDValue NewChain =
 | |
|       CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
 | |
|                       MVT::Other, &Ops[0], Ops.size());
 | |
|     Ops.clear();
 | |
|     Ops.push_back(NewChain);
 | |
|   }
 | |
|   for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
 | |
|     Ops.push_back(CallSeqStart.getOperand(i));
 | |
|   CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
 | |
|   CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
 | |
|                              Load.getOperand(1), Load.getOperand(2));
 | |
|   Ops.clear();
 | |
|   Ops.push_back(SDValue(Load.getNode(), 1));
 | |
|   for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
 | |
|     Ops.push_back(Call.getOperand(i));
 | |
|   CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| /// isCalleeLoad - Return true if call address is a load and it can be
 | |
| /// moved below CALLSEQ_START and the chains leading up to the call.
 | |
| /// Return the CALLSEQ_START by reference as a second output.
 | |
| static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
 | |
|   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
 | |
|     return false;
 | |
|   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
 | |
|   if (!LD ||
 | |
|       LD->isVolatile() ||
 | |
|       LD->getAddressingMode() != ISD::UNINDEXED ||
 | |
|       LD->getExtensionType() != ISD::NON_EXTLOAD)
 | |
|     return false;
 | |
| 
 | |
|   // Now let's find the callseq_start.
 | |
|   while (Chain.getOpcode() != ISD::CALLSEQ_START) {
 | |
|     if (!Chain.hasOneUse())
 | |
|       return false;
 | |
|     Chain = Chain.getOperand(0);
 | |
|   }
 | |
|   
 | |
|   if (Chain.getOperand(0).getNode() == Callee.getNode())
 | |
|     return true;
 | |
|   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
 | |
|       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
 | |
|       Callee.getValue(1).hasOneUse())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
 | |
| /// This is only run if not in -O0 mode.
 | |
| /// This allows the instruction selector to pick more read-modify-write
 | |
| /// instructions. This is a common case:
 | |
| ///
 | |
| ///     [Load chain]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///       [Load]
 | |
| ///       ^    ^
 | |
| ///       |    |
 | |
| ///      /      \-
 | |
| ///     /         |
 | |
| /// [TokenFactor] [Op]
 | |
| ///     ^          ^
 | |
| ///     |          |
 | |
| ///      \        /
 | |
| ///       \      /
 | |
| ///       [Store]
 | |
| ///
 | |
| /// The fact the store's chain operand != load's chain will prevent the
 | |
| /// (store (op (load))) instruction from being selected. We can transform it to:
 | |
| ///
 | |
| ///     [Load chain]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///    [TokenFactor]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///       [Load]
 | |
| ///       ^    ^
 | |
| ///       |    |
 | |
| ///       |     \- 
 | |
| ///       |       | 
 | |
| ///       |     [Op]
 | |
| ///       |       ^
 | |
| ///       |       |
 | |
| ///       \      /
 | |
| ///        \    /
 | |
| ///       [Store]
 | |
| void X86DAGToDAGISel::PreprocessForRMW() {
 | |
|   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | |
|          E = CurDAG->allnodes_end(); I != E; ++I) {
 | |
|     if (I->getOpcode() == X86ISD::CALL) {
 | |
|       /// Also try moving call address load from outside callseq_start to just
 | |
|       /// before the call to allow it to be folded.
 | |
|       ///
 | |
|       ///     [Load chain]
 | |
|       ///         ^
 | |
|       ///         |
 | |
|       ///       [Load]
 | |
|       ///       ^    ^
 | |
|       ///       |    |
 | |
|       ///      /      \--
 | |
|       ///     /          |
 | |
|       ///[CALLSEQ_START] |
 | |
|       ///     ^          |
 | |
|       ///     |          |
 | |
|       /// [LOAD/C2Reg]   |
 | |
|       ///     |          |
 | |
|       ///      \        /
 | |
|       ///       \      /
 | |
|       ///       [CALL]
 | |
|       SDValue Chain = I->getOperand(0);
 | |
|       SDValue Load  = I->getOperand(1);
 | |
|       if (!isCalleeLoad(Load, Chain))
 | |
|         continue;
 | |
|       MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
 | |
|       ++NumLoadMoved;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!ISD::isNON_TRUNCStore(I))
 | |
|       continue;
 | |
|     SDValue Chain = I->getOperand(0);
 | |
| 
 | |
|     if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
 | |
|       continue;
 | |
| 
 | |
|     SDValue N1 = I->getOperand(1);
 | |
|     SDValue N2 = I->getOperand(2);
 | |
|     if ((N1.getValueType().isFloatingPoint() &&
 | |
|          !N1.getValueType().isVector()) ||
 | |
|         !N1.hasOneUse())
 | |
|       continue;
 | |
| 
 | |
|     bool RModW = false;
 | |
|     SDValue Load;
 | |
|     unsigned Opcode = N1.getNode()->getOpcode();
 | |
|     switch (Opcode) {
 | |
|     case ISD::ADD:
 | |
|     case ISD::MUL:
 | |
|     case ISD::AND:
 | |
|     case ISD::OR:
 | |
|     case ISD::XOR:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::VECTOR_SHUFFLE: {
 | |
|       SDValue N10 = N1.getOperand(0);
 | |
|       SDValue N11 = N1.getOperand(1);
 | |
|       RModW = isRMWLoad(N10, Chain, N2, Load);
 | |
|       if (!RModW)
 | |
|         RModW = isRMWLoad(N11, Chain, N2, Load);
 | |
|       break;
 | |
|     }
 | |
|     case ISD::SUB:
 | |
|     case ISD::SHL:
 | |
|     case ISD::SRA:
 | |
|     case ISD::SRL:
 | |
|     case ISD::ROTL:
 | |
|     case ISD::ROTR:
 | |
|     case ISD::SUBC:
 | |
|     case ISD::SUBE:
 | |
|     case X86ISD::SHLD:
 | |
|     case X86ISD::SHRD: {
 | |
|       SDValue N10 = N1.getOperand(0);
 | |
|       RModW = isRMWLoad(N10, Chain, N2, Load);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     if (RModW) {
 | |
|       MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
 | |
|       ++NumLoadMoved;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
 | |
| /// nodes that target the FP stack to be store and load to the stack.  This is a
 | |
| /// gross hack.  We would like to simply mark these as being illegal, but when
 | |
| /// we do that, legalize produces these when it expands calls, then expands
 | |
| /// these in the same legalize pass.  We would like dag combine to be able to
 | |
| /// hack on these between the call expansion and the node legalization.  As such
 | |
| /// this pass basically does "really late" legalization of these inline with the
 | |
| /// X86 isel pass.
 | |
| void X86DAGToDAGISel::PreprocessForFPConvert() {
 | |
|   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | |
|        E = CurDAG->allnodes_end(); I != E; ) {
 | |
|     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
 | |
|     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
 | |
|       continue;
 | |
|     
 | |
|     // If the source and destination are SSE registers, then this is a legal
 | |
|     // conversion that should not be lowered.
 | |
|     EVT SrcVT = N->getOperand(0).getValueType();
 | |
|     EVT DstVT = N->getValueType(0);
 | |
|     bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
 | |
|     bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
 | |
|     if (SrcIsSSE && DstIsSSE)
 | |
|       continue;
 | |
| 
 | |
|     if (!SrcIsSSE && !DstIsSSE) {
 | |
|       // If this is an FPStack extension, it is a noop.
 | |
|       if (N->getOpcode() == ISD::FP_EXTEND)
 | |
|         continue;
 | |
|       // If this is a value-preserving FPStack truncation, it is a noop.
 | |
|       if (N->getConstantOperandVal(1))
 | |
|         continue;
 | |
|     }
 | |
|    
 | |
|     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
 | |
|     // FPStack has extload and truncstore.  SSE can fold direct loads into other
 | |
|     // operations.  Based on this, decide what we want to do.
 | |
|     EVT MemVT;
 | |
|     if (N->getOpcode() == ISD::FP_ROUND)
 | |
|       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
 | |
|     else
 | |
|       MemVT = SrcIsSSE ? SrcVT : DstVT;
 | |
|     
 | |
|     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
 | |
|     DebugLoc dl = N->getDebugLoc();
 | |
|     
 | |
|     // FIXME: optimize the case where the src/dest is a load or store?
 | |
|     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
 | |
|                                           N->getOperand(0),
 | |
|                                           MemTmp, NULL, 0, MemVT);
 | |
|     SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
 | |
|                                         NULL, 0, MemVT);
 | |
| 
 | |
|     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
 | |
|     // extload we created.  This will cause general havok on the dag because
 | |
|     // anything below the conversion could be folded into other existing nodes.
 | |
|     // To avoid invalidating 'I', back it up to the convert node.
 | |
|     --I;
 | |
|     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
 | |
|     
 | |
|     // Now that we did that, the node is dead.  Increment the iterator to the
 | |
|     // next node to process, then delete N.
 | |
|     ++I;
 | |
|     CurDAG->DeleteNode(N);
 | |
|   }  
 | |
| }
 | |
| 
 | |
| /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
 | |
| /// when it has created a SelectionDAG for us to codegen.
 | |
| void X86DAGToDAGISel::InstructionSelect() {
 | |
|   const Function *F = MF->getFunction();
 | |
|   OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
 | |
| 
 | |
|   if (OptLevel != CodeGenOpt::None)
 | |
|     PreprocessForRMW();
 | |
| 
 | |
|   // FIXME: This should only happen when not compiled with -O0.
 | |
|   PreprocessForFPConvert();
 | |
| 
 | |
|   // Codegen the basic block.
 | |
| #ifndef NDEBUG
 | |
|   DEBUG(errs() << "===== Instruction selection begins:\n");
 | |
|   Indent = 0;
 | |
| #endif
 | |
|   SelectRoot(*CurDAG);
 | |
| #ifndef NDEBUG
 | |
|   DEBUG(errs() << "===== Instruction selection ends:\n");
 | |
| #endif
 | |
| 
 | |
|   CurDAG->RemoveDeadNodes();
 | |
| }
 | |
| 
 | |
| /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
 | |
| /// the main function.
 | |
| void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
 | |
|                                              MachineFrameInfo *MFI) {
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   if (Subtarget->isTargetCygMing())
 | |
|     BuildMI(BB, DebugLoc::getUnknownLoc(),
 | |
|             TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
 | |
| }
 | |
| 
 | |
| void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
 | |
|   // If this is main, emit special code for main.
 | |
|   MachineBasicBlock *BB = MF.begin();
 | |
|   if (Fn.hasExternalLinkage() && Fn.getName() == "main")
 | |
|     EmitSpecialCodeForMain(BB, MF.getFrameInfo());
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
 | |
|                                               X86ISelAddressMode &AM) {
 | |
|   assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
 | |
|   SDValue Segment = N.getOperand(0);
 | |
| 
 | |
|   if (AM.Segment.getNode() == 0) {
 | |
|     AM.Segment = Segment;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
 | |
|   // This optimization is valid because the GNU TLS model defines that
 | |
|   // gs:0 (or fs:0 on X86-64) contains its own address.
 | |
|   // For more information see http://people.redhat.com/drepper/tls.pdf
 | |
| 
 | |
|   SDValue Address = N.getOperand(1);
 | |
|   if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
 | |
|       !MatchSegmentBaseAddress (Address, AM))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
 | |
| /// into an addressing mode.  These wrap things that will resolve down into a
 | |
| /// symbol reference.  If no match is possible, this returns true, otherwise it
 | |
| /// returns false.
 | |
| bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
 | |
|   // If the addressing mode already has a symbol as the displacement, we can
 | |
|   // never match another symbol.
 | |
|   if (AM.hasSymbolicDisplacement())
 | |
|     return true;
 | |
| 
 | |
|   SDValue N0 = N.getOperand(0);
 | |
|   CodeModel::Model M = TM.getCodeModel();
 | |
| 
 | |
|   // Handle X86-64 rip-relative addresses.  We check this before checking direct
 | |
|   // folding because RIP is preferable to non-RIP accesses.
 | |
|   if (Subtarget->is64Bit() &&
 | |
|       // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
 | |
|       // they cannot be folded into immediate fields.
 | |
|       // FIXME: This can be improved for kernel and other models?
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel) &&
 | |
|       // Base and index reg must be 0 in order to use %rip as base and lowering
 | |
|       // must allow RIP.
 | |
|       !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
 | |
|       int64_t Offset = AM.Disp + G->getOffset();
 | |
|       if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
 | |
|       AM.GV = G->getGlobal();
 | |
|       AM.Disp = Offset;
 | |
|       AM.SymbolFlags = G->getTargetFlags();
 | |
|     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
 | |
|       int64_t Offset = AM.Disp + CP->getOffset();
 | |
|       if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
 | |
|       AM.CP = CP->getConstVal();
 | |
|       AM.Align = CP->getAlignment();
 | |
|       AM.Disp = Offset;
 | |
|       AM.SymbolFlags = CP->getTargetFlags();
 | |
|     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
 | |
|       AM.ES = S->getSymbol();
 | |
|       AM.SymbolFlags = S->getTargetFlags();
 | |
|     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
 | |
|       AM.JT = J->getIndex();
 | |
|       AM.SymbolFlags = J->getTargetFlags();
 | |
|     } else {
 | |
|       AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
 | |
|       //AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
 | |
|     }
 | |
| 
 | |
|     if (N.getOpcode() == X86ISD::WrapperRIP)
 | |
|       AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Handle the case when globals fit in our immediate field: This is true for
 | |
|   // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
 | |
|   // mode, this results in a non-RIP-relative computation.
 | |
|   if (!Subtarget->is64Bit() ||
 | |
|       ((M == CodeModel::Small || M == CodeModel::Kernel) &&
 | |
|        TM.getRelocationModel() == Reloc::Static)) {
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
 | |
|       AM.GV = G->getGlobal();
 | |
|       AM.Disp += G->getOffset();
 | |
|       AM.SymbolFlags = G->getTargetFlags();
 | |
|     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
 | |
|       AM.CP = CP->getConstVal();
 | |
|       AM.Align = CP->getAlignment();
 | |
|       AM.Disp += CP->getOffset();
 | |
|       AM.SymbolFlags = CP->getTargetFlags();
 | |
|     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
 | |
|       AM.ES = S->getSymbol();
 | |
|       AM.SymbolFlags = S->getTargetFlags();
 | |
|     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
 | |
|       AM.JT = J->getIndex();
 | |
|       AM.SymbolFlags = J->getTargetFlags();
 | |
|     } else {
 | |
|       AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
 | |
|       //AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// MatchAddress - Add the specified node to the specified addressing mode,
 | |
| /// returning true if it cannot be done.  This just pattern matches for the
 | |
| /// addressing mode.
 | |
| bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
 | |
|   if (MatchAddressRecursively(N, AM, 0))
 | |
|     return true;
 | |
| 
 | |
|   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
 | |
|   // a smaller encoding and avoids a scaled-index.
 | |
|   if (AM.Scale == 2 &&
 | |
|       AM.BaseType == X86ISelAddressMode::RegBase &&
 | |
|       AM.Base.Reg.getNode() == 0) {
 | |
|     AM.Base.Reg = AM.IndexReg;
 | |
|     AM.Scale = 1;
 | |
|   }
 | |
| 
 | |
|   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
 | |
|   // because it has a smaller encoding.
 | |
|   // TODO: Which other code models can use this?
 | |
|   if (TM.getCodeModel() == CodeModel::Small &&
 | |
|       Subtarget->is64Bit() &&
 | |
|       AM.Scale == 1 &&
 | |
|       AM.BaseType == X86ISelAddressMode::RegBase &&
 | |
|       AM.Base.Reg.getNode() == 0 &&
 | |
|       AM.IndexReg.getNode() == 0 &&
 | |
|       AM.SymbolFlags == X86II::MO_NO_FLAG &&
 | |
|       AM.hasSymbolicDisplacement())
 | |
|     AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
 | |
|                                               unsigned Depth) {
 | |
|   bool is64Bit = Subtarget->is64Bit();
 | |
|   DebugLoc dl = N.getDebugLoc();
 | |
|   DEBUG({
 | |
|       errs() << "MatchAddress: ";
 | |
|       AM.dump();
 | |
|     });
 | |
|   // Limit recursion.
 | |
|   if (Depth > 5)
 | |
|     return MatchAddressBase(N, AM);
 | |
| 
 | |
|   CodeModel::Model M = TM.getCodeModel();
 | |
| 
 | |
|   // If this is already a %rip relative address, we can only merge immediates
 | |
|   // into it.  Instead of handling this in every case, we handle it here.
 | |
|   // RIP relative addressing: %rip + 32-bit displacement!
 | |
|   if (AM.isRIPRelative()) {
 | |
|     // FIXME: JumpTable and ExternalSymbol address currently don't like
 | |
|     // displacements.  It isn't very important, but this should be fixed for
 | |
|     // consistency.
 | |
|     if (!AM.ES && AM.JT != -1) return true;
 | |
| 
 | |
|     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
 | |
|       int64_t Val = AM.Disp + Cst->getSExtValue();
 | |
|       if (X86::isOffsetSuitableForCodeModel(Val, M,
 | |
|                                             AM.hasSymbolicDisplacement())) {
 | |
|         AM.Disp = Val;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   switch (N.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::Constant: {
 | |
|     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
 | |
|     if (!is64Bit ||
 | |
|         X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
 | |
|                                           AM.hasSymbolicDisplacement())) {
 | |
|       AM.Disp += Val;
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86ISD::SegmentBaseAddress:
 | |
|     if (!MatchSegmentBaseAddress(N, AM))
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   case X86ISD::Wrapper:
 | |
|   case X86ISD::WrapperRIP:
 | |
|     if (!MatchWrapper(N, AM))
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   case ISD::LOAD:
 | |
|     if (!MatchLoad(N, AM))
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   case ISD::FrameIndex:
 | |
|     if (AM.BaseType == X86ISelAddressMode::RegBase
 | |
|         && AM.Base.Reg.getNode() == 0) {
 | |
|       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
 | |
|       break;
 | |
|       
 | |
|     if (ConstantSDNode
 | |
|           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
 | |
|       unsigned Val = CN->getZExtValue();
 | |
|       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
 | |
|       // that the base operand remains free for further matching. If
 | |
|       // the base doesn't end up getting used, a post-processing step
 | |
|       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
 | |
|       if (Val == 1 || Val == 2 || Val == 3) {
 | |
|         AM.Scale = 1 << Val;
 | |
|         SDValue ShVal = N.getNode()->getOperand(0);
 | |
| 
 | |
|         // Okay, we know that we have a scale by now.  However, if the scaled
 | |
|         // value is an add of something and a constant, we can fold the
 | |
|         // constant into the disp field here.
 | |
|         if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
 | |
|             isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
 | |
|           AM.IndexReg = ShVal.getNode()->getOperand(0);
 | |
|           ConstantSDNode *AddVal =
 | |
|             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
 | |
|           uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
 | |
|           if (!is64Bit ||
 | |
|               X86::isOffsetSuitableForCodeModel(Disp, M,
 | |
|                                                 AM.hasSymbolicDisplacement()))
 | |
|             AM.Disp = Disp;
 | |
|           else
 | |
|             AM.IndexReg = ShVal;
 | |
|         } else {
 | |
|           AM.IndexReg = ShVal;
 | |
|         }
 | |
|         return false;
 | |
|       }
 | |
|     break;
 | |
|     }
 | |
| 
 | |
|   case ISD::SMUL_LOHI:
 | |
|   case ISD::UMUL_LOHI:
 | |
|     // A mul_lohi where we need the low part can be folded as a plain multiply.
 | |
|     if (N.getResNo() != 0) break;
 | |
|     // FALL THROUGH
 | |
|   case ISD::MUL:
 | |
|   case X86ISD::MUL_IMM:
 | |
|     // X*[3,5,9] -> X+X*[2,4,8]
 | |
|     if (AM.BaseType == X86ISelAddressMode::RegBase &&
 | |
|         AM.Base.Reg.getNode() == 0 &&
 | |
|         AM.IndexReg.getNode() == 0) {
 | |
|       if (ConstantSDNode
 | |
|             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
 | |
|         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
 | |
|             CN->getZExtValue() == 9) {
 | |
|           AM.Scale = unsigned(CN->getZExtValue())-1;
 | |
| 
 | |
|           SDValue MulVal = N.getNode()->getOperand(0);
 | |
|           SDValue Reg;
 | |
| 
 | |
|           // Okay, we know that we have a scale by now.  However, if the scaled
 | |
|           // value is an add of something and a constant, we can fold the
 | |
|           // constant into the disp field here.
 | |
|           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
 | |
|               isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
 | |
|             Reg = MulVal.getNode()->getOperand(0);
 | |
|             ConstantSDNode *AddVal =
 | |
|               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
 | |
|             uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
 | |
|                                       CN->getZExtValue();
 | |
|             if (!is64Bit ||
 | |
|                 X86::isOffsetSuitableForCodeModel(Disp, M,
 | |
|                                                   AM.hasSymbolicDisplacement()))
 | |
|               AM.Disp = Disp;
 | |
|             else
 | |
|               Reg = N.getNode()->getOperand(0);
 | |
|           } else {
 | |
|             Reg = N.getNode()->getOperand(0);
 | |
|           }
 | |
| 
 | |
|           AM.IndexReg = AM.Base.Reg = Reg;
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SUB: {
 | |
|     // Given A-B, if A can be completely folded into the address and
 | |
|     // the index field with the index field unused, use -B as the index.
 | |
|     // This is a win if a has multiple parts that can be folded into
 | |
|     // the address. Also, this saves a mov if the base register has
 | |
|     // other uses, since it avoids a two-address sub instruction, however
 | |
|     // it costs an additional mov if the index register has other uses.
 | |
| 
 | |
|     // Test if the LHS of the sub can be folded.
 | |
|     X86ISelAddressMode Backup = AM;
 | |
|     if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
 | |
|       AM = Backup;
 | |
|       break;
 | |
|     }
 | |
|     // Test if the index field is free for use.
 | |
|     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
 | |
|       AM = Backup;
 | |
|       break;
 | |
|     }
 | |
|     int Cost = 0;
 | |
|     SDValue RHS = N.getNode()->getOperand(1);
 | |
|     // If the RHS involves a register with multiple uses, this
 | |
|     // transformation incurs an extra mov, due to the neg instruction
 | |
|     // clobbering its operand.
 | |
|     if (!RHS.getNode()->hasOneUse() ||
 | |
|         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
 | |
|         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
 | |
|         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
 | |
|         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
 | |
|          RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
 | |
|       ++Cost;
 | |
|     // If the base is a register with multiple uses, this
 | |
|     // transformation may save a mov.
 | |
|     if ((AM.BaseType == X86ISelAddressMode::RegBase &&
 | |
|          AM.Base.Reg.getNode() &&
 | |
|          !AM.Base.Reg.getNode()->hasOneUse()) ||
 | |
|         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | |
|       --Cost;
 | |
|     // If the folded LHS was interesting, this transformation saves
 | |
|     // address arithmetic.
 | |
|     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
 | |
|         ((AM.Disp != 0) && (Backup.Disp == 0)) +
 | |
|         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
 | |
|       --Cost;
 | |
|     // If it doesn't look like it may be an overall win, don't do it.
 | |
|     if (Cost >= 0) {
 | |
|       AM = Backup;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Ok, the transformation is legal and appears profitable. Go for it.
 | |
|     SDValue Zero = CurDAG->getConstant(0, N.getValueType());
 | |
|     SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
 | |
|     AM.IndexReg = Neg;
 | |
|     AM.Scale = 1;
 | |
| 
 | |
|     // Insert the new nodes into the topological ordering.
 | |
|     if (Zero.getNode()->getNodeId() == -1 ||
 | |
|         Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(N.getNode(), Zero.getNode());
 | |
|       Zero.getNode()->setNodeId(N.getNode()->getNodeId());
 | |
|     }
 | |
|     if (Neg.getNode()->getNodeId() == -1 ||
 | |
|         Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(N.getNode(), Neg.getNode());
 | |
|       Neg.getNode()->setNodeId(N.getNode()->getNodeId());
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case ISD::ADD: {
 | |
|     X86ISelAddressMode Backup = AM;
 | |
|     if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
 | |
|         !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
 | |
|       return false;
 | |
|     AM = Backup;
 | |
|     if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
 | |
|         !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
 | |
|       return false;
 | |
|     AM = Backup;
 | |
| 
 | |
|     // If we couldn't fold both operands into the address at the same time,
 | |
|     // see if we can just put each operand into a register and fold at least
 | |
|     // the add.
 | |
|     if (AM.BaseType == X86ISelAddressMode::RegBase &&
 | |
|         !AM.Base.Reg.getNode() &&
 | |
|         !AM.IndexReg.getNode()) {
 | |
|       AM.Base.Reg = N.getNode()->getOperand(0);
 | |
|       AM.IndexReg = N.getNode()->getOperand(1);
 | |
|       AM.Scale = 1;
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::OR:
 | |
|     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       X86ISelAddressMode Backup = AM;
 | |
|       uint64_t Offset = CN->getSExtValue();
 | |
|       // Start with the LHS as an addr mode.
 | |
|       if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
 | |
|           // Address could not have picked a GV address for the displacement.
 | |
|           AM.GV == NULL &&
 | |
|           // On x86-64, the resultant disp must fit in 32-bits.
 | |
|           (!is64Bit ||
 | |
|            X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
 | |
|                                              AM.hasSymbolicDisplacement())) &&
 | |
|           // Check to see if the LHS & C is zero.
 | |
|           CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
 | |
|         AM.Disp += Offset;
 | |
|         return false;
 | |
|       }
 | |
|       AM = Backup;
 | |
|     }
 | |
|     break;
 | |
|       
 | |
|   case ISD::AND: {
 | |
|     // Perform some heroic transforms on an and of a constant-count shift
 | |
|     // with a constant to enable use of the scaled offset field.
 | |
| 
 | |
|     SDValue Shift = N.getOperand(0);
 | |
|     if (Shift.getNumOperands() != 2) break;
 | |
| 
 | |
|     // Scale must not be used already.
 | |
|     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
 | |
| 
 | |
|     SDValue X = Shift.getOperand(0);
 | |
|     ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|     ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
 | |
|     if (!C1 || !C2) break;
 | |
| 
 | |
|     // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
 | |
|     // allows us to convert the shift and and into an h-register extract and
 | |
|     // a scaled index.
 | |
|     if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
 | |
|       unsigned ScaleLog = 8 - C1->getZExtValue();
 | |
|       if (ScaleLog > 0 && ScaleLog < 4 &&
 | |
|           C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
 | |
|         SDValue Eight = CurDAG->getConstant(8, MVT::i8);
 | |
|         SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
 | |
|         SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
 | |
|                                       X, Eight);
 | |
|         SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
 | |
|                                       Srl, Mask);
 | |
|         SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
 | |
|         SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
 | |
|                                       And, ShlCount);
 | |
| 
 | |
|         // Insert the new nodes into the topological ordering.
 | |
|         if (Eight.getNode()->getNodeId() == -1 ||
 | |
|             Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
 | |
|           CurDAG->RepositionNode(X.getNode(), Eight.getNode());
 | |
|           Eight.getNode()->setNodeId(X.getNode()->getNodeId());
 | |
|         }
 | |
|         if (Mask.getNode()->getNodeId() == -1 ||
 | |
|             Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
 | |
|           CurDAG->RepositionNode(X.getNode(), Mask.getNode());
 | |
|           Mask.getNode()->setNodeId(X.getNode()->getNodeId());
 | |
|         }
 | |
|         if (Srl.getNode()->getNodeId() == -1 ||
 | |
|             Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
 | |
|           CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
 | |
|           Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
 | |
|         }
 | |
|         if (And.getNode()->getNodeId() == -1 ||
 | |
|             And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
 | |
|           CurDAG->RepositionNode(N.getNode(), And.getNode());
 | |
|           And.getNode()->setNodeId(N.getNode()->getNodeId());
 | |
|         }
 | |
|         if (ShlCount.getNode()->getNodeId() == -1 ||
 | |
|             ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
 | |
|           CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
 | |
|           ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
 | |
|         }
 | |
|         if (Shl.getNode()->getNodeId() == -1 ||
 | |
|             Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
 | |
|           CurDAG->RepositionNode(N.getNode(), Shl.getNode());
 | |
|           Shl.getNode()->setNodeId(N.getNode()->getNodeId());
 | |
|         }
 | |
|         CurDAG->ReplaceAllUsesWith(N, Shl);
 | |
|         AM.IndexReg = And;
 | |
|         AM.Scale = (1 << ScaleLog);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
 | |
|     // allows us to fold the shift into this addressing mode.
 | |
|     if (Shift.getOpcode() != ISD::SHL) break;
 | |
| 
 | |
|     // Not likely to be profitable if either the AND or SHIFT node has more
 | |
|     // than one use (unless all uses are for address computation). Besides,
 | |
|     // isel mechanism requires their node ids to be reused.
 | |
|     if (!N.hasOneUse() || !Shift.hasOneUse())
 | |
|       break;
 | |
|     
 | |
|     // Verify that the shift amount is something we can fold.
 | |
|     unsigned ShiftCst = C1->getZExtValue();
 | |
|     if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
 | |
|       break;
 | |
|     
 | |
|     // Get the new AND mask, this folds to a constant.
 | |
|     SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
 | |
|                                          SDValue(C2, 0), SDValue(C1, 0));
 | |
|     SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, 
 | |
|                                      NewANDMask);
 | |
|     SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
 | |
|                                        NewAND, SDValue(C1, 0));
 | |
| 
 | |
|     // Insert the new nodes into the topological ordering.
 | |
|     if (C1->getNodeId() > X.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(X.getNode(), C1);
 | |
|       C1->setNodeId(X.getNode()->getNodeId());
 | |
|     }
 | |
|     if (NewANDMask.getNode()->getNodeId() == -1 ||
 | |
|         NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
 | |
|       NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
 | |
|     }
 | |
|     if (NewAND.getNode()->getNodeId() == -1 ||
 | |
|         NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
 | |
|       NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
 | |
|     }
 | |
|     if (NewSHIFT.getNode()->getNodeId() == -1 ||
 | |
|         NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
 | |
|       NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
 | |
|     }
 | |
| 
 | |
|     CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
 | |
|     
 | |
|     AM.Scale = 1 << ShiftCst;
 | |
|     AM.IndexReg = NewAND;
 | |
|     return false;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return MatchAddressBase(N, AM);
 | |
| }
 | |
| 
 | |
| /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
 | |
| /// specified addressing mode without any further recursion.
 | |
| bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
 | |
|   // Is the base register already occupied?
 | |
|   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
 | |
|     // If so, check to see if the scale index register is set.
 | |
|     if (AM.IndexReg.getNode() == 0) {
 | |
|       AM.IndexReg = N;
 | |
|       AM.Scale = 1;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we cannot select it.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Default, generate it as a register.
 | |
|   AM.BaseType = X86ISelAddressMode::RegBase;
 | |
|   AM.Base.Reg = N;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectAddr - returns true if it is able pattern match an addressing mode.
 | |
| /// It returns the operands which make up the maximal addressing mode it can
 | |
| /// match by reference.
 | |
| bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                                  SDValue &Scale, SDValue &Index,
 | |
|                                  SDValue &Disp, SDValue &Segment) {
 | |
|   X86ISelAddressMode AM;
 | |
|   bool Done = false;
 | |
|   if (AvoidDupAddrCompute && !N.hasOneUse()) {
 | |
|     unsigned Opcode = N.getOpcode();
 | |
|     if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
 | |
|         Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) {
 | |
|       // If we are able to fold N into addressing mode, then we'll allow it even
 | |
|       // if N has multiple uses. In general, addressing computation is used as
 | |
|       // addresses by all of its uses. But watch out for CopyToReg uses, that
 | |
|       // means the address computation is liveout. It will be computed by a LEA
 | |
|       // so we want to avoid computing the address twice.
 | |
|       for (SDNode::use_iterator UI = N.getNode()->use_begin(),
 | |
|              UE = N.getNode()->use_end(); UI != UE; ++UI) {
 | |
|         if (UI->getOpcode() == ISD::CopyToReg) {
 | |
|           MatchAddressBase(N, AM);
 | |
|           Done = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Done && MatchAddress(N, AM))
 | |
|     return false;
 | |
| 
 | |
|   EVT VT = N.getValueType();
 | |
|   if (AM.BaseType == X86ISelAddressMode::RegBase) {
 | |
|     if (!AM.Base.Reg.getNode())
 | |
|       AM.Base.Reg = CurDAG->getRegister(0, VT);
 | |
|   }
 | |
| 
 | |
|   if (!AM.IndexReg.getNode())
 | |
|     AM.IndexReg = CurDAG->getRegister(0, VT);
 | |
| 
 | |
|   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
 | |
| /// match a load whose top elements are either undef or zeros.  The load flavor
 | |
| /// is derived from the type of N, which is either v4f32 or v2f64.
 | |
| bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
 | |
|                                           SDValue N, SDValue &Base,
 | |
|                                           SDValue &Scale, SDValue &Index,
 | |
|                                           SDValue &Disp, SDValue &Segment,
 | |
|                                           SDValue &InChain,
 | |
|                                           SDValue &OutChain) {
 | |
|   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|     InChain = N.getOperand(0).getValue(1);
 | |
|     if (ISD::isNON_EXTLoad(InChain.getNode()) &&
 | |
|         InChain.getValue(0).hasOneUse() &&
 | |
|         N.hasOneUse() &&
 | |
|         IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(InChain);
 | |
|       if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
 | |
|         return false;
 | |
|       OutChain = LD->getChain();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Also handle the case where we explicitly require zeros in the top
 | |
|   // elements.  This is a vector shuffle from the zero vector.
 | |
|   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
 | |
|       // Check to see if the top elements are all zeros (or bitcast of zeros).
 | |
|       N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 
 | |
|       N.getOperand(0).getNode()->hasOneUse() &&
 | |
|       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
 | |
|       N.getOperand(0).getOperand(0).hasOneUse()) {
 | |
|     // Okay, this is a zero extending load.  Fold it.
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
 | |
|     if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
 | |
|       return false;
 | |
|     OutChain = LD->getChain();
 | |
|     InChain = SDValue(LD, 1);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
 | |
| /// mode it matches can be cost effectively emitted as an LEA instruction.
 | |
| bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
 | |
|                                     SDValue &Base, SDValue &Scale,
 | |
|                                     SDValue &Index, SDValue &Disp) {
 | |
|   X86ISelAddressMode AM;
 | |
| 
 | |
|   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
 | |
|   // segments.
 | |
|   SDValue Copy = AM.Segment;
 | |
|   SDValue T = CurDAG->getRegister(0, MVT::i32);
 | |
|   AM.Segment = T;
 | |
|   if (MatchAddress(N, AM))
 | |
|     return false;
 | |
|   assert (T == AM.Segment);
 | |
|   AM.Segment = Copy;
 | |
| 
 | |
|   EVT VT = N.getValueType();
 | |
|   unsigned Complexity = 0;
 | |
|   if (AM.BaseType == X86ISelAddressMode::RegBase)
 | |
|     if (AM.Base.Reg.getNode())
 | |
|       Complexity = 1;
 | |
|     else
 | |
|       AM.Base.Reg = CurDAG->getRegister(0, VT);
 | |
|   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | |
|     Complexity = 4;
 | |
| 
 | |
|   if (AM.IndexReg.getNode())
 | |
|     Complexity++;
 | |
|   else
 | |
|     AM.IndexReg = CurDAG->getRegister(0, VT);
 | |
| 
 | |
|   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
 | |
|   // a simple shift.
 | |
|   if (AM.Scale > 1)
 | |
|     Complexity++;
 | |
| 
 | |
|   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
 | |
|   // to a LEA. This is determined with some expermentation but is by no means
 | |
|   // optimal (especially for code size consideration). LEA is nice because of
 | |
|   // its three-address nature. Tweak the cost function again when we can run
 | |
|   // convertToThreeAddress() at register allocation time.
 | |
|   if (AM.hasSymbolicDisplacement()) {
 | |
|     // For X86-64, we should always use lea to materialize RIP relative
 | |
|     // addresses.
 | |
|     if (Subtarget->is64Bit())
 | |
|       Complexity = 4;
 | |
|     else
 | |
|       Complexity += 2;
 | |
|   }
 | |
| 
 | |
|   if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
 | |
|     Complexity++;
 | |
| 
 | |
|   // If it isn't worth using an LEA, reject it.
 | |
|   if (Complexity <= 2)
 | |
|     return false;
 | |
|   
 | |
|   SDValue Segment;
 | |
|   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
 | |
| bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                                         SDValue &Scale, SDValue &Index,
 | |
|                                         SDValue &Disp) {
 | |
|   assert(Op.getOpcode() == X86ISD::TLSADDR);
 | |
|   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
 | |
|   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
 | |
|   
 | |
|   X86ISelAddressMode AM;
 | |
|   AM.GV = GA->getGlobal();
 | |
|   AM.Disp += GA->getOffset();
 | |
|   AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
 | |
|   AM.SymbolFlags = GA->getTargetFlags();
 | |
| 
 | |
|   if (N.getValueType() == MVT::i32) {
 | |
|     AM.Scale = 1;
 | |
|     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
 | |
|   } else {
 | |
|     AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
 | |
|   }
 | |
|   
 | |
|   SDValue Segment;
 | |
|   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
 | |
|                                   SDValue &Base, SDValue &Scale,
 | |
|                                   SDValue &Index, SDValue &Disp,
 | |
|                                   SDValue &Segment) {
 | |
|   if (ISD::isNON_EXTLoad(N.getNode()) &&
 | |
|       N.hasOneUse() &&
 | |
|       IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
 | |
|     return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Return an SDNode that returns the value of
 | |
| /// the global base register. Output instructions required to
 | |
| /// initialize the global base register, if necessary.
 | |
| ///
 | |
| SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
 | |
|   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
 | |
|   return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
 | |
| }
 | |
| 
 | |
| static SDNode *FindCallStartFromCall(SDNode *Node) {
 | |
|   if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
 | |
|     assert(Node->getOperand(0).getValueType() == MVT::Other &&
 | |
|          "Node doesn't have a token chain argument!");
 | |
|   return FindCallStartFromCall(Node->getOperand(0).getNode());
 | |
| }
 | |
| 
 | |
| SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
 | |
|   SDValue Chain = Node->getOperand(0);
 | |
|   SDValue In1 = Node->getOperand(1);
 | |
|   SDValue In2L = Node->getOperand(2);
 | |
|   SDValue In2H = Node->getOperand(3);
 | |
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | |
|   if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
 | |
|     return NULL;
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
 | |
|   const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
 | |
|   SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
 | |
|                                            MVT::i32, MVT::i32, MVT::Other, Ops,
 | |
|                                            array_lengthof(Ops));
 | |
|   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
 | |
|   return ResNode;
 | |
| }
 | |
| 
 | |
| SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
 | |
|   if (Node->hasAnyUseOfValue(0))
 | |
|     return 0;
 | |
| 
 | |
|   // Optimize common patterns for __sync_add_and_fetch and
 | |
|   // __sync_sub_and_fetch where the result is not used. This allows us
 | |
|   // to use "lock" version of add, sub, inc, dec instructions.
 | |
|   // FIXME: Do not use special instructions but instead add the "lock"
 | |
|   // prefix to the target node somehow. The extra information will then be
 | |
|   // transferred to machine instruction and it denotes the prefix.
 | |
|   SDValue Chain = Node->getOperand(0);
 | |
|   SDValue Ptr = Node->getOperand(1);
 | |
|   SDValue Val = Node->getOperand(2);
 | |
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | |
|   if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
 | |
|     return 0;
 | |
| 
 | |
|   bool isInc = false, isDec = false, isSub = false, isCN = false;
 | |
|   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
 | |
|   if (CN) {
 | |
|     isCN = true;
 | |
|     int64_t CNVal = CN->getSExtValue();
 | |
|     if (CNVal == 1)
 | |
|       isInc = true;
 | |
|     else if (CNVal == -1)
 | |
|       isDec = true;
 | |
|     else if (CNVal >= 0)
 | |
|       Val = CurDAG->getTargetConstant(CNVal, NVT);
 | |
|     else {
 | |
|       isSub = true;
 | |
|       Val = CurDAG->getTargetConstant(-CNVal, NVT);
 | |
|     }
 | |
|   } else if (Val.hasOneUse() &&
 | |
|              Val.getOpcode() == ISD::SUB &&
 | |
|              X86::isZeroNode(Val.getOperand(0))) {
 | |
|     isSub = true;
 | |
|     Val = Val.getOperand(1);
 | |
|   }
 | |
| 
 | |
|   unsigned Opc = 0;
 | |
|   switch (NVT.getSimpleVT().SimpleTy) {
 | |
|   default: return 0;
 | |
|   case MVT::i8:
 | |
|     if (isInc)
 | |
|       Opc = X86::LOCK_INC8m;
 | |
|     else if (isDec)
 | |
|       Opc = X86::LOCK_DEC8m;
 | |
|     else if (isSub) {
 | |
|       if (isCN)
 | |
|         Opc = X86::LOCK_SUB8mi;
 | |
|       else
 | |
|         Opc = X86::LOCK_SUB8mr;
 | |
|     } else {
 | |
|       if (isCN)
 | |
|         Opc = X86::LOCK_ADD8mi;
 | |
|       else
 | |
|         Opc = X86::LOCK_ADD8mr;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     if (isInc)
 | |
|       Opc = X86::LOCK_INC16m;
 | |
|     else if (isDec)
 | |
|       Opc = X86::LOCK_DEC16m;
 | |
|     else if (isSub) {
 | |
|       if (isCN) {
 | |
|         if (Predicate_i16immSExt8(Val.getNode()))
 | |
|           Opc = X86::LOCK_SUB16mi8;
 | |
|         else
 | |
|           Opc = X86::LOCK_SUB16mi;
 | |
|       } else
 | |
|         Opc = X86::LOCK_SUB16mr;
 | |
|     } else {
 | |
|       if (isCN) {
 | |
|         if (Predicate_i16immSExt8(Val.getNode()))
 | |
|           Opc = X86::LOCK_ADD16mi8;
 | |
|         else
 | |
|           Opc = X86::LOCK_ADD16mi;
 | |
|       } else
 | |
|         Opc = X86::LOCK_ADD16mr;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     if (isInc)
 | |
|       Opc = X86::LOCK_INC32m;
 | |
|     else if (isDec)
 | |
|       Opc = X86::LOCK_DEC32m;
 | |
|     else if (isSub) {
 | |
|       if (isCN) {
 | |
|         if (Predicate_i32immSExt8(Val.getNode()))
 | |
|           Opc = X86::LOCK_SUB32mi8;
 | |
|         else
 | |
|           Opc = X86::LOCK_SUB32mi;
 | |
|       } else
 | |
|         Opc = X86::LOCK_SUB32mr;
 | |
|     } else {
 | |
|       if (isCN) {
 | |
|         if (Predicate_i32immSExt8(Val.getNode()))
 | |
|           Opc = X86::LOCK_ADD32mi8;
 | |
|         else
 | |
|           Opc = X86::LOCK_ADD32mi;
 | |
|       } else
 | |
|         Opc = X86::LOCK_ADD32mr;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     if (isInc)
 | |
|       Opc = X86::LOCK_INC64m;
 | |
|     else if (isDec)
 | |
|       Opc = X86::LOCK_DEC64m;
 | |
|     else if (isSub) {
 | |
|       Opc = X86::LOCK_SUB64mr;
 | |
|       if (isCN) {
 | |
|         if (Predicate_i64immSExt8(Val.getNode()))
 | |
|           Opc = X86::LOCK_SUB64mi8;
 | |
|         else if (Predicate_i64immSExt32(Val.getNode()))
 | |
|           Opc = X86::LOCK_SUB64mi32;
 | |
|       }
 | |
|     } else {
 | |
|       Opc = X86::LOCK_ADD64mr;
 | |
|       if (isCN) {
 | |
|         if (Predicate_i64immSExt8(Val.getNode()))
 | |
|           Opc = X86::LOCK_ADD64mi8;
 | |
|         else if (Predicate_i64immSExt32(Val.getNode()))
 | |
|           Opc = X86::LOCK_ADD64mi32;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
 | |
|                                                  dl, NVT), 0);
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
 | |
|   if (isInc || isDec) {
 | |
|     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
 | |
|     SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
 | |
|     cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
 | |
|     SDValue RetVals[] = { Undef, Ret };
 | |
|     return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
 | |
|   } else {
 | |
|     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
 | |
|     SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
 | |
|     cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
 | |
|     SDValue RetVals[] = { Undef, Ret };
 | |
|     return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
 | |
| /// any uses which require the SF or OF bits to be accurate.
 | |
| static bool HasNoSignedComparisonUses(SDNode *N) {
 | |
|   // Examine each user of the node.
 | |
|   for (SDNode::use_iterator UI = N->use_begin(),
 | |
|          UE = N->use_end(); UI != UE; ++UI) {
 | |
|     // Only examine CopyToReg uses.
 | |
|     if (UI->getOpcode() != ISD::CopyToReg)
 | |
|       return false;
 | |
|     // Only examine CopyToReg uses that copy to EFLAGS.
 | |
|     if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
 | |
|           X86::EFLAGS)
 | |
|       return false;
 | |
|     // Examine each user of the CopyToReg use.
 | |
|     for (SDNode::use_iterator FlagUI = UI->use_begin(),
 | |
|            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
 | |
|       // Only examine the Flag result.
 | |
|       if (FlagUI.getUse().getResNo() != 1) continue;
 | |
|       // Anything unusual: assume conservatively.
 | |
|       if (!FlagUI->isMachineOpcode()) return false;
 | |
|       // Examine the opcode of the user.
 | |
|       switch (FlagUI->getMachineOpcode()) {
 | |
|       // These comparisons don't treat the most significant bit specially.
 | |
|       case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
 | |
|       case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
 | |
|       case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
 | |
|       case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
 | |
|       case X86::JA: case X86::JAE: case X86::JB: case X86::JBE:
 | |
|       case X86::JE: case X86::JNE: case X86::JP: case X86::JNP:
 | |
|       case X86::CMOVA16rr: case X86::CMOVA16rm:
 | |
|       case X86::CMOVA32rr: case X86::CMOVA32rm:
 | |
|       case X86::CMOVA64rr: case X86::CMOVA64rm:
 | |
|       case X86::CMOVAE16rr: case X86::CMOVAE16rm:
 | |
|       case X86::CMOVAE32rr: case X86::CMOVAE32rm:
 | |
|       case X86::CMOVAE64rr: case X86::CMOVAE64rm:
 | |
|       case X86::CMOVB16rr: case X86::CMOVB16rm:
 | |
|       case X86::CMOVB32rr: case X86::CMOVB32rm:
 | |
|       case X86::CMOVB64rr: case X86::CMOVB64rm:
 | |
|       case X86::CMOVBE16rr: case X86::CMOVBE16rm:
 | |
|       case X86::CMOVBE32rr: case X86::CMOVBE32rm:
 | |
|       case X86::CMOVBE64rr: case X86::CMOVBE64rm:
 | |
|       case X86::CMOVE16rr: case X86::CMOVE16rm:
 | |
|       case X86::CMOVE32rr: case X86::CMOVE32rm:
 | |
|       case X86::CMOVE64rr: case X86::CMOVE64rm:
 | |
|       case X86::CMOVNE16rr: case X86::CMOVNE16rm:
 | |
|       case X86::CMOVNE32rr: case X86::CMOVNE32rm:
 | |
|       case X86::CMOVNE64rr: case X86::CMOVNE64rm:
 | |
|       case X86::CMOVNP16rr: case X86::CMOVNP16rm:
 | |
|       case X86::CMOVNP32rr: case X86::CMOVNP32rm:
 | |
|       case X86::CMOVNP64rr: case X86::CMOVNP64rm:
 | |
|       case X86::CMOVP16rr: case X86::CMOVP16rm:
 | |
|       case X86::CMOVP32rr: case X86::CMOVP32rm:
 | |
|       case X86::CMOVP64rr: case X86::CMOVP64rm:
 | |
|         continue;
 | |
|       // Anything else: assume conservatively.
 | |
|       default: return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDNode *X86DAGToDAGISel::Select(SDValue N) {
 | |
|   SDNode *Node = N.getNode();
 | |
|   EVT NVT = Node->getValueType(0);
 | |
|   unsigned Opc, MOpc;
 | |
|   unsigned Opcode = Node->getOpcode();
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   DEBUG({
 | |
|       errs() << std::string(Indent, ' ') << "Selecting: ";
 | |
|       Node->dump(CurDAG);
 | |
|       errs() << '\n';
 | |
|     });
 | |
|   Indent += 2;
 | |
| #endif
 | |
| 
 | |
|   if (Node->isMachineOpcode()) {
 | |
| #ifndef NDEBUG
 | |
|     DEBUG({
 | |
|         errs() << std::string(Indent-2, ' ') << "== ";
 | |
|         Node->dump(CurDAG);
 | |
|         errs() << '\n';
 | |
|       });
 | |
|     Indent -= 2;
 | |
| #endif
 | |
|     return NULL;   // Already selected.
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case X86ISD::GlobalBaseReg:
 | |
|     return getGlobalBaseReg();
 | |
| 
 | |
|   case X86ISD::ATOMOR64_DAG:
 | |
|     return SelectAtomic64(Node, X86::ATOMOR6432);
 | |
|   case X86ISD::ATOMXOR64_DAG:
 | |
|     return SelectAtomic64(Node, X86::ATOMXOR6432);
 | |
|   case X86ISD::ATOMADD64_DAG:
 | |
|     return SelectAtomic64(Node, X86::ATOMADD6432);
 | |
|   case X86ISD::ATOMSUB64_DAG:
 | |
|     return SelectAtomic64(Node, X86::ATOMSUB6432);
 | |
|   case X86ISD::ATOMNAND64_DAG:
 | |
|     return SelectAtomic64(Node, X86::ATOMNAND6432);
 | |
|   case X86ISD::ATOMAND64_DAG:
 | |
|     return SelectAtomic64(Node, X86::ATOMAND6432);
 | |
|   case X86ISD::ATOMSWAP64_DAG:
 | |
|     return SelectAtomic64(Node, X86::ATOMSWAP6432);
 | |
| 
 | |
|   case ISD::ATOMIC_LOAD_ADD: {
 | |
|     SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
 | |
|     if (RetVal)
 | |
|       return RetVal;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::SMUL_LOHI:
 | |
|   case ISD::UMUL_LOHI: {
 | |
|     SDValue N0 = Node->getOperand(0);
 | |
|     SDValue N1 = Node->getOperand(1);
 | |
| 
 | |
|     bool isSigned = Opcode == ISD::SMUL_LOHI;
 | |
|     if (!isSigned) {
 | |
|       switch (NVT.getSimpleVT().SimpleTy) {
 | |
|       default: llvm_unreachable("Unsupported VT!");
 | |
|       case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
 | |
|       case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
 | |
|       case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
 | |
|       case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
 | |
|       }
 | |
|     } else {
 | |
|       switch (NVT.getSimpleVT().SimpleTy) {
 | |
|       default: llvm_unreachable("Unsupported VT!");
 | |
|       case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
 | |
|       case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
 | |
|       case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
 | |
|       case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned LoReg, HiReg;
 | |
|     switch (NVT.getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unsupported VT!");
 | |
|     case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
 | |
|     case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
 | |
|     case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
 | |
|     case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
 | |
|     }
 | |
| 
 | |
|     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | |
|     bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | |
|     // Multiply is commmutative.
 | |
|     if (!foldedLoad) {
 | |
|       foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | |
|       if (foldedLoad)
 | |
|         std::swap(N0, N1);
 | |
|     }
 | |
| 
 | |
|     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
 | |
|                                             N0, SDValue()).getValue(1);
 | |
| 
 | |
|     if (foldedLoad) {
 | |
|       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
 | |
|                         InFlag };
 | |
|       SDNode *CNode =
 | |
|         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
 | |
|                                array_lengthof(Ops));
 | |
|       InFlag = SDValue(CNode, 1);
 | |
|       // Update the chain.
 | |
|       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
 | |
|     } else {
 | |
|       InFlag =
 | |
|         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
 | |
|     }
 | |
| 
 | |
|     // Copy the low half of the result, if it is needed.
 | |
|     if (!N.getValue(0).use_empty()) {
 | |
|       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                                 LoReg, NVT, InFlag);
 | |
|       InFlag = Result.getValue(2);
 | |
|       ReplaceUses(N.getValue(0), Result);
 | |
| #ifndef NDEBUG
 | |
|       DEBUG({
 | |
|           errs() << std::string(Indent-2, ' ') << "=> ";
 | |
|           Result.getNode()->dump(CurDAG);
 | |
|           errs() << '\n';
 | |
|         });
 | |
| #endif
 | |
|     }
 | |
|     // Copy the high half of the result, if it is needed.
 | |
|     if (!N.getValue(1).use_empty()) {
 | |
|       SDValue Result;
 | |
|       if (HiReg == X86::AH && Subtarget->is64Bit()) {
 | |
|         // Prevent use of AH in a REX instruction by referencing AX instead.
 | |
|         // Shift it down 8 bits.
 | |
|         Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                         X86::AX, MVT::i16, InFlag);
 | |
|         InFlag = Result.getValue(2);
 | |
|         Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
 | |
|                                                 Result,
 | |
|                                    CurDAG->getTargetConstant(8, MVT::i8)), 0);
 | |
|         // Then truncate it down to i8.
 | |
|         Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
 | |
|                                                 MVT::i8, Result);
 | |
|       } else {
 | |
|         Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                         HiReg, NVT, InFlag);
 | |
|         InFlag = Result.getValue(2);
 | |
|       }
 | |
|       ReplaceUses(N.getValue(1), Result);
 | |
| #ifndef NDEBUG
 | |
|       DEBUG({
 | |
|           errs() << std::string(Indent-2, ' ') << "=> ";
 | |
|           Result.getNode()->dump(CurDAG);
 | |
|           errs() << '\n';
 | |
|         });
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case ISD::SDIVREM:
 | |
|   case ISD::UDIVREM: {
 | |
|     SDValue N0 = Node->getOperand(0);
 | |
|     SDValue N1 = Node->getOperand(1);
 | |
| 
 | |
|     bool isSigned = Opcode == ISD::SDIVREM;
 | |
|     if (!isSigned) {
 | |
|       switch (NVT.getSimpleVT().SimpleTy) {
 | |
|       default: llvm_unreachable("Unsupported VT!");
 | |
|       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
 | |
|       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
 | |
|       case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
 | |
|       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
 | |
|       }
 | |
|     } else {
 | |
|       switch (NVT.getSimpleVT().SimpleTy) {
 | |
|       default: llvm_unreachable("Unsupported VT!");
 | |
|       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
 | |
|       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
 | |
|       case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
 | |
|       case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned LoReg, HiReg;
 | |
|     unsigned ClrOpcode, SExtOpcode;
 | |
|     switch (NVT.getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unsupported VT!");
 | |
|     case MVT::i8:
 | |
|       LoReg = X86::AL;  HiReg = X86::AH;
 | |
|       ClrOpcode  = 0;
 | |
|       SExtOpcode = X86::CBW;
 | |
|       break;
 | |
|     case MVT::i16:
 | |
|       LoReg = X86::AX;  HiReg = X86::DX;
 | |
|       ClrOpcode  = X86::MOV16r0;
 | |
|       SExtOpcode = X86::CWD;
 | |
|       break;
 | |
|     case MVT::i32:
 | |
|       LoReg = X86::EAX; HiReg = X86::EDX;
 | |
|       ClrOpcode  = X86::MOV32r0;
 | |
|       SExtOpcode = X86::CDQ;
 | |
|       break;
 | |
|     case MVT::i64:
 | |
|       LoReg = X86::RAX; HiReg = X86::RDX;
 | |
|       ClrOpcode  = ~0U; // NOT USED.
 | |
|       SExtOpcode = X86::CQO;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | |
|     bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | |
|     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
 | |
| 
 | |
|     SDValue InFlag;
 | |
|     if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
 | |
|       // Special case for div8, just use a move with zero extension to AX to
 | |
|       // clear the upper 8 bits (AH).
 | |
|       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
 | |
|       if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | |
|         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
 | |
|         Move =
 | |
|           SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
 | |
|                                          MVT::Other, Ops,
 | |
|                                          array_lengthof(Ops)), 0);
 | |
|         Chain = Move.getValue(1);
 | |
|         ReplaceUses(N0.getValue(1), Chain);
 | |
|       } else {
 | |
|         Move =
 | |
|           SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
 | |
|         Chain = CurDAG->getEntryNode();
 | |
|       }
 | |
|       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
 | |
|       InFlag = Chain.getValue(1);
 | |
|     } else {
 | |
|       InFlag =
 | |
|         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
 | |
|                              LoReg, N0, SDValue()).getValue(1);
 | |
|       if (isSigned && !signBitIsZero) {
 | |
|         // Sign extend the low part into the high part.
 | |
|         InFlag =
 | |
|           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
 | |
|       } else {
 | |
|         // Zero out the high part, effectively zero extending the input.
 | |
|         SDValue ClrNode;
 | |
| 
 | |
|         if (NVT.getSimpleVT() == MVT::i64) {
 | |
|           ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, MVT::i32),
 | |
|                             0);
 | |
|           // We just did a 32-bit clear, insert it into a 64-bit register to
 | |
|           // clear the whole 64-bit reg.
 | |
|           SDValue Zero = CurDAG->getTargetConstant(0, MVT::i64);
 | |
|           SDValue SubRegNo =
 | |
|             CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32);
 | |
|           ClrNode =
 | |
|             SDValue(CurDAG->getMachineNode(TargetInstrInfo::SUBREG_TO_REG, dl,
 | |
|                                            MVT::i64, Zero, ClrNode, SubRegNo),
 | |
|                     0);
 | |
|         } else {
 | |
|           ClrNode = SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
 | |
|         }
 | |
| 
 | |
|         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
 | |
|                                       ClrNode, InFlag).getValue(1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (foldedLoad) {
 | |
|       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
 | |
|                         InFlag };
 | |
|       SDNode *CNode =
 | |
|         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
 | |
|                                array_lengthof(Ops));
 | |
|       InFlag = SDValue(CNode, 1);
 | |
|       // Update the chain.
 | |
|       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
 | |
|     } else {
 | |
|       InFlag =
 | |
|         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
 | |
|     }
 | |
| 
 | |
|     // Copy the division (low) result, if it is needed.
 | |
|     if (!N.getValue(0).use_empty()) {
 | |
|       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                                 LoReg, NVT, InFlag);
 | |
|       InFlag = Result.getValue(2);
 | |
|       ReplaceUses(N.getValue(0), Result);
 | |
| #ifndef NDEBUG
 | |
|       DEBUG({
 | |
|           errs() << std::string(Indent-2, ' ') << "=> ";
 | |
|           Result.getNode()->dump(CurDAG);
 | |
|           errs() << '\n';
 | |
|         });
 | |
| #endif
 | |
|     }
 | |
|     // Copy the remainder (high) result, if it is needed.
 | |
|     if (!N.getValue(1).use_empty()) {
 | |
|       SDValue Result;
 | |
|       if (HiReg == X86::AH && Subtarget->is64Bit()) {
 | |
|         // Prevent use of AH in a REX instruction by referencing AX instead.
 | |
|         // Shift it down 8 bits.
 | |
|         Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                         X86::AX, MVT::i16, InFlag);
 | |
|         InFlag = Result.getValue(2);
 | |
|         Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
 | |
|                                       Result,
 | |
|                                       CurDAG->getTargetConstant(8, MVT::i8)),
 | |
|                          0);
 | |
|         // Then truncate it down to i8.
 | |
|         Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
 | |
|                                                 MVT::i8, Result);
 | |
|       } else {
 | |
|         Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                         HiReg, NVT, InFlag);
 | |
|         InFlag = Result.getValue(2);
 | |
|       }
 | |
|       ReplaceUses(N.getValue(1), Result);
 | |
| #ifndef NDEBUG
 | |
|       DEBUG({
 | |
|           errs() << std::string(Indent-2, ' ') << "=> ";
 | |
|           Result.getNode()->dump(CurDAG);
 | |
|           errs() << '\n';
 | |
|         });
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case X86ISD::CMP: {
 | |
|     SDValue N0 = Node->getOperand(0);
 | |
|     SDValue N1 = Node->getOperand(1);
 | |
| 
 | |
|     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
 | |
|     // use a smaller encoding.
 | |
|     if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
 | |
|         N0.getValueType() != MVT::i8 &&
 | |
|         X86::isZeroNode(N1)) {
 | |
|       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
 | |
|       if (!C) break;
 | |
| 
 | |
|       // For example, convert "testl %eax, $8" to "testb %al, $8"
 | |
|       if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
 | |
|           (!(C->getZExtValue() & 0x80) ||
 | |
|            HasNoSignedComparisonUses(Node))) {
 | |
|         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
 | |
|         SDValue Reg = N0.getNode()->getOperand(0);
 | |
| 
 | |
|         // On x86-32, only the ABCD registers have 8-bit subregisters.
 | |
|         if (!Subtarget->is64Bit()) {
 | |
|           TargetRegisterClass *TRC = 0;
 | |
|           switch (N0.getValueType().getSimpleVT().SimpleTy) {
 | |
|           case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
 | |
|           case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
 | |
|           default: llvm_unreachable("Unsupported TEST operand type!");
 | |
|           }
 | |
|           SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
 | |
|           Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
 | |
|                                                Reg.getValueType(), Reg, RC), 0);
 | |
|         }
 | |
| 
 | |
|         // Extract the l-register.
 | |
|         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
 | |
|                                                         MVT::i8, Reg);
 | |
| 
 | |
|         // Emit a testb.
 | |
|         return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
 | |
|       }
 | |
| 
 | |
|       // For example, "testl %eax, $2048" to "testb %ah, $8".
 | |
|       if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
 | |
|           (!(C->getZExtValue() & 0x8000) ||
 | |
|            HasNoSignedComparisonUses(Node))) {
 | |
|         // Shift the immediate right by 8 bits.
 | |
|         SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
 | |
|                                                        MVT::i8);
 | |
|         SDValue Reg = N0.getNode()->getOperand(0);
 | |
| 
 | |
|         // Put the value in an ABCD register.
 | |
|         TargetRegisterClass *TRC = 0;
 | |
|         switch (N0.getValueType().getSimpleVT().SimpleTy) {
 | |
|         case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
 | |
|         case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
 | |
|         case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
 | |
|         default: llvm_unreachable("Unsupported TEST operand type!");
 | |
|         }
 | |
|         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
 | |
|         Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
 | |
|                                              Reg.getValueType(), Reg, RC), 0);
 | |
| 
 | |
|         // Extract the h-register.
 | |
|         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
 | |
|                                                         MVT::i8, Reg);
 | |
| 
 | |
|         // Emit a testb. No special NOREX tricks are needed since there's
 | |
|         // only one GPR operand!
 | |
|         return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
 | |
|                                       Subreg, ShiftedImm);
 | |
|       }
 | |
| 
 | |
|       // For example, "testl %eax, $32776" to "testw %ax, $32776".
 | |
|       if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
 | |
|           N0.getValueType() != MVT::i16 &&
 | |
|           (!(C->getZExtValue() & 0x8000) ||
 | |
|            HasNoSignedComparisonUses(Node))) {
 | |
|         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
 | |
|         SDValue Reg = N0.getNode()->getOperand(0);
 | |
| 
 | |
|         // Extract the 16-bit subregister.
 | |
|         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
 | |
|                                                         MVT::i16, Reg);
 | |
| 
 | |
|         // Emit a testw.
 | |
|         return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
 | |
|       }
 | |
| 
 | |
|       // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
 | |
|       if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
 | |
|           N0.getValueType() == MVT::i64 &&
 | |
|           (!(C->getZExtValue() & 0x80000000) ||
 | |
|            HasNoSignedComparisonUses(Node))) {
 | |
|         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
 | |
|         SDValue Reg = N0.getNode()->getOperand(0);
 | |
| 
 | |
|         // Extract the 32-bit subregister.
 | |
|         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
 | |
|                                                         MVT::i32, Reg);
 | |
| 
 | |
|         // Emit a testl.
 | |
|         return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   SDNode *ResNode = SelectCode(N);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DEBUG({
 | |
|       errs() << std::string(Indent-2, ' ') << "=> ";
 | |
|       if (ResNode == NULL || ResNode == N.getNode())
 | |
|         N.getNode()->dump(CurDAG);
 | |
|       else
 | |
|         ResNode->dump(CurDAG);
 | |
|       errs() << '\n';
 | |
|     });
 | |
|   Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|   return ResNode;
 | |
| }
 | |
| 
 | |
| bool X86DAGToDAGISel::
 | |
| SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
 | |
|                              std::vector<SDValue> &OutOps) {
 | |
|   SDValue Op0, Op1, Op2, Op3, Op4;
 | |
|   switch (ConstraintCode) {
 | |
|   case 'o':   // offsetable        ??
 | |
|   case 'v':   // not offsetable    ??
 | |
|   default: return true;
 | |
|   case 'm':   // memory
 | |
|     if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   OutOps.push_back(Op0);
 | |
|   OutOps.push_back(Op1);
 | |
|   OutOps.push_back(Op2);
 | |
|   OutOps.push_back(Op3);
 | |
|   OutOps.push_back(Op4);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// createX86ISelDag - This pass converts a legalized DAG into a 
 | |
| /// X86-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
 | |
|                                      llvm::CodeGenOpt::Level OptLevel) {
 | |
|   return new X86DAGToDAGISel(TM, OptLevel);
 | |
| }
 |