mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86575 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			275 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass transforms loops by placing phi nodes at the end of the loops for
 | 
						|
// all values that are live across the loop boundary.  For example, it turns
 | 
						|
// the left into the right code:
 | 
						|
// 
 | 
						|
// for (...)                for (...)
 | 
						|
//   if (c)                   if (c)
 | 
						|
//     X1 = ...                 X1 = ...
 | 
						|
//   else                     else
 | 
						|
//     X2 = ...                 X2 = ...
 | 
						|
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
 | 
						|
// ... = X3 + 4             X4 = phi(X3)
 | 
						|
//                          ... = X4 + 4
 | 
						|
//
 | 
						|
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
 | 
						|
// be trivially eliminated by InstCombine.  The major benefit of this 
 | 
						|
// transformation is that it makes many other loop optimizations, such as 
 | 
						|
// LoopUnswitching, simpler.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "lcssa"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/PredIteratorCache.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct LCSSA : public LoopPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    LCSSA() : LoopPass(&ID) {}
 | 
						|
 | 
						|
    // Cached analysis information for the current function.
 | 
						|
    DominatorTree *DT;
 | 
						|
    std::vector<BasicBlock*> LoopBlocks;
 | 
						|
    PredIteratorCache PredCache;
 | 
						|
    Loop *L;
 | 
						|
    
 | 
						|
    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
 | 
						|
    /// This transformation requires natural loop information & requires that
 | 
						|
    /// loop preheaders be inserted into the CFG.  It maintains both of these,
 | 
						|
    /// as well as the CFG.  It also requires dominator information.
 | 
						|
    ///
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
 | 
						|
      // LCSSA doesn't actually require LoopSimplify, but the PassManager
 | 
						|
      // doesn't know how to schedule LoopSimplify by itself.
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addRequiredTransitive<LoopInfo>();
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addRequiredTransitive<DominatorTree>();
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
 | 
						|
      // Request DominanceFrontier now, even though LCSSA does
 | 
						|
      // not use it. This allows Pass Manager to schedule Dominance
 | 
						|
      // Frontier early enough such that one LPPassManager can handle
 | 
						|
      // multiple loop transformation passes.
 | 
						|
      AU.addRequired<DominanceFrontier>(); 
 | 
						|
      AU.addPreserved<DominanceFrontier>();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    bool ProcessInstruction(Instruction *Inst,
 | 
						|
                            const SmallVectorImpl<BasicBlock*> &ExitBlocks);
 | 
						|
    
 | 
						|
    /// verifyAnalysis() - Verify loop nest.
 | 
						|
    virtual void verifyAnalysis() const {
 | 
						|
      // Check the special guarantees that LCSSA makes.
 | 
						|
      assert(L->isLCSSAForm() && "LCSSA form not preserved!");
 | 
						|
    }
 | 
						|
 | 
						|
    /// inLoop - returns true if the given block is within the current loop
 | 
						|
    bool inLoop(BasicBlock *B) const {
 | 
						|
      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
  
 | 
						|
char LCSSA::ID = 0;
 | 
						|
static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
 | 
						|
 | 
						|
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
 | 
						|
const PassInfo *const llvm::LCSSAID = &X;
 | 
						|
 | 
						|
 | 
						|
/// BlockDominatesAnExit - Return true if the specified block dominates at least
 | 
						|
/// one of the blocks in the specified list.
 | 
						|
static bool BlockDominatesAnExit(BasicBlock *BB,
 | 
						|
                                 const SmallVectorImpl<BasicBlock*> &ExitBlocks,
 | 
						|
                                 DominatorTree *DT) {
 | 
						|
  DomTreeNode *DomNode = DT->getNode(BB);
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
    if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// runOnFunction - Process all loops in the function, inner-most out.
 | 
						|
bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
 | 
						|
  L = TheLoop;
 | 
						|
  
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
 | 
						|
  // Get the set of exiting blocks.
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  
 | 
						|
  if (ExitBlocks.empty())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Speed up queries by creating a sorted vector of blocks.
 | 
						|
  LoopBlocks.clear();
 | 
						|
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | 
						|
  array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
 | 
						|
  
 | 
						|
  // Look at all the instructions in the loop, checking to see if they have uses
 | 
						|
  // outside the loop.  If so, rewrite those uses.
 | 
						|
  bool MadeChange = false;
 | 
						|
  
 | 
						|
  for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
 | 
						|
       BBI != E; ++BBI) {
 | 
						|
    BasicBlock *BB = *BBI;
 | 
						|
    
 | 
						|
    // For large loops, avoid use-scanning by using dominance information:  In
 | 
						|
    // particular, if a block does not dominate any of the loop exits, then none
 | 
						|
    // of the values defined in the block could be used outside the loop.
 | 
						|
    if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // Reject two common cases fast: instructions with no uses (like stores)
 | 
						|
      // and instructions with one use that is in the same block as this.
 | 
						|
      if (I->use_empty() ||
 | 
						|
          (I->hasOneUse() && I->use_back()->getParent() == BB &&
 | 
						|
           !isa<PHINode>(I->use_back())))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      MadeChange |= ProcessInstruction(I, ExitBlocks);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(L->isLCSSAForm());
 | 
						|
  PredCache.clear();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// isExitBlock - Return true if the specified block is in the list.
 | 
						|
static bool isExitBlock(BasicBlock *BB,
 | 
						|
                        const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
    if (ExitBlocks[i] == BB)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessInstruction - Given an instruction in the loop, check to see if it
 | 
						|
/// has any uses that are outside the current loop.  If so, insert LCSSA PHI
 | 
						|
/// nodes and rewrite the uses.
 | 
						|
bool LCSSA::ProcessInstruction(Instruction *Inst,
 | 
						|
                               const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
 | 
						|
  SmallVector<Use*, 16> UsesToRewrite;
 | 
						|
  
 | 
						|
  BasicBlock *InstBB = Inst->getParent();
 | 
						|
  
 | 
						|
  for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | 
						|
      UserBB = PN->getIncomingBlock(UI);
 | 
						|
    
 | 
						|
    if (InstBB != UserBB && !inLoop(UserBB))
 | 
						|
      UsesToRewrite.push_back(&UI.getUse());
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If there are no uses outside the loop, exit with no change.
 | 
						|
  if (UsesToRewrite.empty()) return false;
 | 
						|
  
 | 
						|
  ++NumLCSSA; // We are applying the transformation
 | 
						|
 | 
						|
  // Invoke instructions are special in that their result value is not available
 | 
						|
  // along their unwind edge. The code below tests to see whether DomBB dominates
 | 
						|
  // the value, so adjust DomBB to the normal destination block, which is
 | 
						|
  // effectively where the value is first usable.
 | 
						|
  BasicBlock *DomBB = Inst->getParent();
 | 
						|
  if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
 | 
						|
    DomBB = Inv->getNormalDest();
 | 
						|
 | 
						|
  DomTreeNode *DomNode = DT->getNode(DomBB);
 | 
						|
 | 
						|
  SSAUpdater SSAUpdate;
 | 
						|
  SSAUpdate.Initialize(Inst);
 | 
						|
  
 | 
						|
  // Insert the LCSSA phi's into all of the exit blocks dominated by the
 | 
						|
  // value, and add them to the Phi's map.
 | 
						|
  for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
 | 
						|
      BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
 | 
						|
    BasicBlock *ExitBB = *BBI;
 | 
						|
    if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
 | 
						|
    
 | 
						|
    // If we already inserted something for this BB, don't reprocess it.
 | 
						|
    if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
 | 
						|
    
 | 
						|
    PHINode *PN = PHINode::Create(Inst->getType(), Inst->getName()+".lcssa",
 | 
						|
                                  ExitBB->begin());
 | 
						|
    PN->reserveOperandSpace(PredCache.GetNumPreds(ExitBB));
 | 
						|
 | 
						|
    // Add inputs from inside the loop for this PHI.
 | 
						|
    for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
 | 
						|
      PN->addIncoming(Inst, *PI);
 | 
						|
 | 
						|
      // If the exit block has a predecessor not within the loop, arrange for
 | 
						|
      // the incoming value use corresponding to that predecessor to be
 | 
						|
      // rewritten in terms of a different LCSSA PHI.
 | 
						|
      if (!inLoop(*PI))
 | 
						|
        UsesToRewrite.push_back(
 | 
						|
          &PN->getOperandUse(
 | 
						|
            PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1)));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Remember that this phi makes the value alive in this block.
 | 
						|
    SSAUpdate.AddAvailableValue(ExitBB, PN);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Rewrite all uses outside the loop in terms of the new PHIs we just
 | 
						|
  // inserted.
 | 
						|
  for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
 | 
						|
    // If this use is in an exit block, rewrite to use the newly inserted PHI.
 | 
						|
    // This is required for correctness because SSAUpdate doesn't handle uses in
 | 
						|
    // the same block.  It assumes the PHI we inserted is at the end of the
 | 
						|
    // block.
 | 
						|
    Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(User))
 | 
						|
      UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
 | 
						|
 | 
						|
    if (isa<PHINode>(UserBB->begin()) &&
 | 
						|
        isExitBlock(UserBB, ExitBlocks)) {
 | 
						|
      UsesToRewrite[i]->set(UserBB->begin());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, do full PHI insertion.
 | 
						|
    SSAUpdate.RewriteUse(*UsesToRewrite[i]);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 |