mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-28 21:34:23 +00:00
aeef83c6af
a TargetMachine to construct (and thus isn't always available), to an analysis group that supports layered implementations much like AliasAnalysis does. This is a pretty massive change, with a few parts that I was unable to easily separate (sorry), so I'll walk through it. The first step of this conversion was to make TargetTransformInfo an analysis group, and to sink the nonce implementations in ScalarTargetTransformInfo and VectorTargetTranformInfo into a NoTargetTransformInfo pass. This allows other passes to add a hard requirement on TTI, and assume they will always get at least on implementation. The TargetTransformInfo analysis group leverages the delegation chaining trick that AliasAnalysis uses, where the base class for the analysis group delegates to the previous analysis *pass*, allowing all but tho NoFoo analysis passes to only implement the parts of the interfaces they support. It also introduces a new trick where each pass in the group retains a pointer to the top-most pass that has been initialized. This allows passes to implement one API in terms of another API and benefit when some other pass above them in the stack has more precise results for the second API. The second step of this conversion is to create a pass that implements the TargetTransformInfo analysis using the target-independent abstractions in the code generator. This replaces the ScalarTargetTransformImpl and VectorTargetTransformImpl classes in lib/Target with a single pass in lib/CodeGen called BasicTargetTransformInfo. This class actually provides most of the TTI functionality, basing it upon the TargetLowering abstraction and other information in the target independent code generator. The third step of the conversion adds support to all TargetMachines to register custom analysis passes. This allows building those passes with access to TargetLowering or other target-specific classes, and it also allows each target to customize the set of analysis passes desired in the pass manager. The baseline LLVMTargetMachine implements this interface to add the BasicTTI pass to the pass manager, and all of the tools that want to support target-aware TTI passes call this routine on whatever target machine they end up with to add the appropriate passes. The fourth step of the conversion created target-specific TTI analysis passes for the X86 and ARM backends. These passes contain the custom logic that was previously in their extensions of the ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces. I separated them into their own file, as now all of the interface bits are private and they just expose a function to create the pass itself. Then I extended these target machines to set up a custom set of analysis passes, first adding BasicTTI as a fallback, and then adding their customized TTI implementations. The fourth step required logic that was shared between the target independent layer and the specific targets to move to a different interface, as they no longer derive from each other. As a consequence, a helper functions were added to TargetLowering representing the common logic needed both in the target implementation and the codegen implementation of the TTI pass. While technically this is the only change that could have been committed separately, it would have been a nightmare to extract. The final step of the conversion was just to delete all the old boilerplate. This got rid of the ScalarTargetTransformInfo and VectorTargetTransformInfo classes, all of the support in all of the targets for producing instances of them, and all of the support in the tools for manually constructing a pass based around them. Now that TTI is a relatively normal analysis group, two things become straightforward. First, we can sink it into lib/Analysis which is a more natural layer for it to live. Second, clients of this interface can depend on it *always* being available which will simplify their code and behavior. These (and other) simplifications will follow in subsequent commits, this one is clearly big enough. Finally, I'm very aware that much of the comments and documentation needs to be updated. As soon as I had this working, and plausibly well commented, I wanted to get it committed and in front of the build bots. I'll be doing a few passes over documentation later if it sticks. Commits to update DragonEgg and Clang will be made presently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
//===---------------------------------------------------------------------===// Common register allocation / spilling problem: mul lr, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 ldr r4, [sp, #+52] mla r4, r3, lr, r4 can be: mul lr, r4, lr mov r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 and then "merge" mul and mov: mul r4, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 It also increase the likelihood the store may become dead. //===---------------------------------------------------------------------===// bb27 ... ... %reg1037 = ADDri %reg1039, 1 %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10 Successors according to CFG: 0x8b03bf0 (#5) bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5): Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4) %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0> Note ADDri is not a two-address instruction. However, its result %reg1037 is an operand of the PHI node in bb76 and its operand %reg1039 is the result of the PHI node. We should treat it as a two-address code and make sure the ADDri is scheduled after any node that reads %reg1039. //===---------------------------------------------------------------------===// Use local info (i.e. register scavenger) to assign it a free register to allow reuse: ldr r3, [sp, #+4] add r3, r3, #3 ldr r2, [sp, #+8] add r2, r2, #2 ldr r1, [sp, #+4] <== add r1, r1, #1 ldr r0, [sp, #+4] add r0, r0, #2 //===---------------------------------------------------------------------===// LLVM aggressively lift CSE out of loop. Sometimes this can be negative side- effects: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: load [i + R1] ... load [i + R2] ... load [i + R3] Suppose there is high register pressure, R1, R2, R3, can be spilled. We need to implement proper re-materialization to handle this: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: R1 = X + 4 @ re-materialized load [i + R1] ... R2 = X + 7 @ re-materialized load [i + R2] ... R3 = X + 15 @ re-materialized load [i + R3] Furthermore, with re-association, we can enable sharing: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: T = i + X load [T + 4] ... load [T + 7] ... load [T + 15] //===---------------------------------------------------------------------===// It's not always a good idea to choose rematerialization over spilling. If all the load / store instructions would be folded then spilling is cheaper because it won't require new live intervals / registers. See 2003-05-31-LongShifts for an example. //===---------------------------------------------------------------------===// With a copying garbage collector, derived pointers must not be retained across collector safe points; the collector could move the objects and invalidate the derived pointer. This is bad enough in the first place, but safe points can crop up unpredictably. Consider: %array = load { i32, [0 x %obj] }** %array_addr %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n %old = load %obj** %nth_el %z = div i64 %x, %y store %obj* %new, %obj** %nth_el If the i64 division is lowered to a libcall, then a safe point will (must) appear for the call site. If a collection occurs, %array and %nth_el no longer point into the correct object. The fix for this is to copy address calculations so that dependent pointers are never live across safe point boundaries. But the loads cannot be copied like this if there was an intervening store, so may be hard to get right. Only a concurrent mutator can trigger a collection at the libcall safe point. So single-threaded programs do not have this requirement, even with a copying collector. Still, LLVM optimizations would probably undo a front-end's careful work. //===---------------------------------------------------------------------===// The ocaml frametable structure supports liveness information. It would be good to support it. //===---------------------------------------------------------------------===// The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be revisited. The check is there to work around a misuse of directives in inline assembly. //===---------------------------------------------------------------------===// It would be good to detect collector/target compatibility instead of silently doing the wrong thing. //===---------------------------------------------------------------------===// It would be really nice to be able to write patterns in .td files for copies, which would eliminate a bunch of explicit predicates on them (e.g. no side effects). Once this is in place, it would be even better to have tblgen synthesize the various copy insertion/inspection methods in TargetInstrInfo. //===---------------------------------------------------------------------===// Stack coloring improvements: 1. Do proper LiveStackAnalysis on all stack objects including those which are not spill slots. 2. Reorder objects to fill in gaps between objects. e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4 //===---------------------------------------------------------------------===// The scheduler should be able to sort nearby instructions by their address. For example, in an expanded memset sequence it's not uncommon to see code like this: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) Each of the stores is independent, and the scheduler is currently making an arbitrary decision about the order. //===---------------------------------------------------------------------===// Another opportunitiy in this code is that the $0 could be moved to a register: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) This would save substantial code size, especially for longer sequences like this. It would be easy to have a rule telling isel to avoid matching MOV32mi if the immediate has more than some fixed number of uses. It's more involved to teach the register allocator how to do late folding to recover from excessive register pressure.