mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
6d1f5d951b
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137719 91177308-0d34-0410-b5e6-96231b3b80d8
6670 lines
241 KiB
C++
6670 lines
241 KiB
C++
//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAG class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "SDNodeOrdering.h"
|
|
#include "SDNodeDbgValue.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalAlias.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetSelectionDAGInfo.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Mutex.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
/// makeVTList - Return an instance of the SDVTList struct initialized with the
|
|
/// specified members.
|
|
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
|
|
SDVTList Res = {VTs, NumVTs};
|
|
return Res;
|
|
}
|
|
|
|
static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unknown FP format");
|
|
case MVT::f32: return &APFloat::IEEEsingle;
|
|
case MVT::f64: return &APFloat::IEEEdouble;
|
|
case MVT::f80: return &APFloat::x87DoubleExtended;
|
|
case MVT::f128: return &APFloat::IEEEquad;
|
|
case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
|
|
}
|
|
}
|
|
|
|
SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantFPSDNode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isExactlyValue - We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
|
|
return getValueAPF().bitwiseIsEqual(V);
|
|
}
|
|
|
|
bool ConstantFPSDNode::isValueValidForType(EVT VT,
|
|
const APFloat& Val) {
|
|
assert(VT.isFloatingPoint() && "Can only convert between FP types");
|
|
|
|
// PPC long double cannot be converted to any other type.
|
|
if (VT == MVT::ppcf128 ||
|
|
&Val.getSemantics() == &APFloat::PPCDoubleDouble)
|
|
return false;
|
|
|
|
// convert modifies in place, so make a copy.
|
|
APFloat Val2 = APFloat(Val);
|
|
bool losesInfo;
|
|
(void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
|
|
&losesInfo);
|
|
return !losesInfo;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ISD Namespace
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isBuildVectorAllOnes - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are ~0 or undef.
|
|
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
|
|
// Look through a bit convert.
|
|
if (N->getOpcode() == ISD::BITCAST)
|
|
N = N->getOperand(0).getNode();
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
|
|
|
|
unsigned i = 0, e = N->getNumOperands();
|
|
|
|
// Skip over all of the undef values.
|
|
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
|
|
++i;
|
|
|
|
// Do not accept an all-undef vector.
|
|
if (i == e) return false;
|
|
|
|
// Do not accept build_vectors that aren't all constants or which have non-~0
|
|
// elements.
|
|
SDValue NotZero = N->getOperand(i);
|
|
if (isa<ConstantSDNode>(NotZero)) {
|
|
if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
|
|
return false;
|
|
} else if (isa<ConstantFPSDNode>(NotZero)) {
|
|
if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
|
|
bitcastToAPInt().isAllOnesValue())
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
// Okay, we have at least one ~0 value, check to see if the rest match or are
|
|
// undefs.
|
|
for (++i; i != e; ++i)
|
|
if (N->getOperand(i) != NotZero &&
|
|
N->getOperand(i).getOpcode() != ISD::UNDEF)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isBuildVectorAllZeros - Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are 0 or undef.
|
|
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
|
|
// Look through a bit convert.
|
|
if (N->getOpcode() == ISD::BITCAST)
|
|
N = N->getOperand(0).getNode();
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
|
|
|
|
unsigned i = 0, e = N->getNumOperands();
|
|
|
|
// Skip over all of the undef values.
|
|
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
|
|
++i;
|
|
|
|
// Do not accept an all-undef vector.
|
|
if (i == e) return false;
|
|
|
|
// Do not accept build_vectors that aren't all constants or which have non-0
|
|
// elements.
|
|
SDValue Zero = N->getOperand(i);
|
|
if (isa<ConstantSDNode>(Zero)) {
|
|
if (!cast<ConstantSDNode>(Zero)->isNullValue())
|
|
return false;
|
|
} else if (isa<ConstantFPSDNode>(Zero)) {
|
|
if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
// Okay, we have at least one 0 value, check to see if the rest match or are
|
|
// undefs.
|
|
for (++i; i != e; ++i)
|
|
if (N->getOperand(i) != Zero &&
|
|
N->getOperand(i).getOpcode() != ISD::UNDEF)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isScalarToVector - Return true if the specified node is a
|
|
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
|
|
/// element is not an undef.
|
|
bool ISD::isScalarToVector(const SDNode *N) {
|
|
if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
return true;
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
if (N->getOperand(0).getOpcode() == ISD::UNDEF)
|
|
return false;
|
|
unsigned NumElems = N->getNumOperands();
|
|
if (NumElems == 1)
|
|
return false;
|
|
for (unsigned i = 1; i < NumElems; ++i) {
|
|
SDValue V = N->getOperand(i);
|
|
if (V.getOpcode() != ISD::UNDEF)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
|
|
/// when given the operation for (X op Y).
|
|
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
|
|
// To perform this operation, we just need to swap the L and G bits of the
|
|
// operation.
|
|
unsigned OldL = (Operation >> 2) & 1;
|
|
unsigned OldG = (Operation >> 1) & 1;
|
|
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
|
|
(OldL << 1) | // New G bit
|
|
(OldG << 2)); // New L bit.
|
|
}
|
|
|
|
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
|
|
/// 'op' is a valid SetCC operation.
|
|
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
|
|
unsigned Operation = Op;
|
|
if (isInteger)
|
|
Operation ^= 7; // Flip L, G, E bits, but not U.
|
|
else
|
|
Operation ^= 15; // Flip all of the condition bits.
|
|
|
|
if (Operation > ISD::SETTRUE2)
|
|
Operation &= ~8; // Don't let N and U bits get set.
|
|
|
|
return ISD::CondCode(Operation);
|
|
}
|
|
|
|
|
|
/// isSignedOp - For an integer comparison, return 1 if the comparison is a
|
|
/// signed operation and 2 if the result is an unsigned comparison. Return zero
|
|
/// if the operation does not depend on the sign of the input (setne and seteq).
|
|
static int isSignedOp(ISD::CondCode Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Illegal integer setcc operation!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETNE: return 0;
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE: return 1;
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE: return 2;
|
|
}
|
|
}
|
|
|
|
/// getSetCCOrOperation - Return the result of a logical OR between different
|
|
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
|
|
/// returns SETCC_INVALID if it is not possible to represent the resultant
|
|
/// comparison.
|
|
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
|
|
bool isInteger) {
|
|
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
|
|
// Cannot fold a signed integer setcc with an unsigned integer setcc.
|
|
return ISD::SETCC_INVALID;
|
|
|
|
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
|
|
|
|
// If the N and U bits get set then the resultant comparison DOES suddenly
|
|
// care about orderedness, and is true when ordered.
|
|
if (Op > ISD::SETTRUE2)
|
|
Op &= ~16; // Clear the U bit if the N bit is set.
|
|
|
|
// Canonicalize illegal integer setcc's.
|
|
if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
|
|
Op = ISD::SETNE;
|
|
|
|
return ISD::CondCode(Op);
|
|
}
|
|
|
|
/// getSetCCAndOperation - Return the result of a logical AND between different
|
|
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
|
|
/// function returns zero if it is not possible to represent the resultant
|
|
/// comparison.
|
|
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
|
|
bool isInteger) {
|
|
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
|
|
// Cannot fold a signed setcc with an unsigned setcc.
|
|
return ISD::SETCC_INVALID;
|
|
|
|
// Combine all of the condition bits.
|
|
ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
|
|
|
|
// Canonicalize illegal integer setcc's.
|
|
if (isInteger) {
|
|
switch (Result) {
|
|
default: break;
|
|
case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
|
|
case ISD::SETOEQ: // SETEQ & SETU[LG]E
|
|
case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
|
|
case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
|
|
case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNode Profile Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
|
|
///
|
|
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
|
|
ID.AddInteger(OpC);
|
|
}
|
|
|
|
/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
|
|
/// solely with their pointer.
|
|
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
|
|
ID.AddPointer(VTList.VTs);
|
|
}
|
|
|
|
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
|
|
///
|
|
static void AddNodeIDOperands(FoldingSetNodeID &ID,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
for (; NumOps; --NumOps, ++Ops) {
|
|
ID.AddPointer(Ops->getNode());
|
|
ID.AddInteger(Ops->getResNo());
|
|
}
|
|
}
|
|
|
|
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
|
|
///
|
|
static void AddNodeIDOperands(FoldingSetNodeID &ID,
|
|
const SDUse *Ops, unsigned NumOps) {
|
|
for (; NumOps; --NumOps, ++Ops) {
|
|
ID.AddPointer(Ops->getNode());
|
|
ID.AddInteger(Ops->getResNo());
|
|
}
|
|
}
|
|
|
|
static void AddNodeIDNode(FoldingSetNodeID &ID,
|
|
unsigned short OpC, SDVTList VTList,
|
|
const SDValue *OpList, unsigned N) {
|
|
AddNodeIDOpcode(ID, OpC);
|
|
AddNodeIDValueTypes(ID, VTList);
|
|
AddNodeIDOperands(ID, OpList, N);
|
|
}
|
|
|
|
/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
|
|
/// the NodeID data.
|
|
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
|
|
switch (N->getOpcode()) {
|
|
case ISD::TargetExternalSymbol:
|
|
case ISD::ExternalSymbol:
|
|
llvm_unreachable("Should only be used on nodes with operands");
|
|
default: break; // Normal nodes don't need extra info.
|
|
case ISD::TargetConstant:
|
|
case ISD::Constant:
|
|
ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
|
|
break;
|
|
case ISD::TargetConstantFP:
|
|
case ISD::ConstantFP: {
|
|
ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
|
|
break;
|
|
}
|
|
case ISD::TargetGlobalAddress:
|
|
case ISD::GlobalAddress:
|
|
case ISD::TargetGlobalTLSAddress:
|
|
case ISD::GlobalTLSAddress: {
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
|
|
ID.AddPointer(GA->getGlobal());
|
|
ID.AddInteger(GA->getOffset());
|
|
ID.AddInteger(GA->getTargetFlags());
|
|
break;
|
|
}
|
|
case ISD::BasicBlock:
|
|
ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
|
|
break;
|
|
case ISD::Register:
|
|
ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
|
|
break;
|
|
|
|
case ISD::SRCVALUE:
|
|
ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
|
|
break;
|
|
case ISD::FrameIndex:
|
|
case ISD::TargetFrameIndex:
|
|
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
|
|
break;
|
|
case ISD::JumpTable:
|
|
case ISD::TargetJumpTable:
|
|
ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
|
|
ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
|
|
break;
|
|
case ISD::ConstantPool:
|
|
case ISD::TargetConstantPool: {
|
|
const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
|
|
ID.AddInteger(CP->getAlignment());
|
|
ID.AddInteger(CP->getOffset());
|
|
if (CP->isMachineConstantPoolEntry())
|
|
CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
|
|
else
|
|
ID.AddPointer(CP->getConstVal());
|
|
ID.AddInteger(CP->getTargetFlags());
|
|
break;
|
|
}
|
|
case ISD::LOAD: {
|
|
const LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ID.AddInteger(LD->getMemoryVT().getRawBits());
|
|
ID.AddInteger(LD->getRawSubclassData());
|
|
break;
|
|
}
|
|
case ISD::STORE: {
|
|
const StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
ID.AddInteger(ST->getMemoryVT().getRawBits());
|
|
ID.AddInteger(ST->getRawSubclassData());
|
|
break;
|
|
}
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX: {
|
|
const AtomicSDNode *AT = cast<AtomicSDNode>(N);
|
|
ID.AddInteger(AT->getMemoryVT().getRawBits());
|
|
ID.AddInteger(AT->getRawSubclassData());
|
|
break;
|
|
}
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
|
|
for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
|
|
i != e; ++i)
|
|
ID.AddInteger(SVN->getMaskElt(i));
|
|
break;
|
|
}
|
|
case ISD::TargetBlockAddress:
|
|
case ISD::BlockAddress: {
|
|
ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
|
|
ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
|
|
break;
|
|
}
|
|
} // end switch (N->getOpcode())
|
|
}
|
|
|
|
/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
|
|
/// data.
|
|
static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
|
|
AddNodeIDOpcode(ID, N->getOpcode());
|
|
// Add the return value info.
|
|
AddNodeIDValueTypes(ID, N->getVTList());
|
|
// Add the operand info.
|
|
AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
|
|
|
|
// Handle SDNode leafs with special info.
|
|
AddNodeIDCustom(ID, N);
|
|
}
|
|
|
|
/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
|
|
/// the CSE map that carries volatility, temporalness, indexing mode, and
|
|
/// extension/truncation information.
|
|
///
|
|
static inline unsigned
|
|
encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
|
|
bool isNonTemporal) {
|
|
assert((ConvType & 3) == ConvType &&
|
|
"ConvType may not require more than 2 bits!");
|
|
assert((AM & 7) == AM &&
|
|
"AM may not require more than 3 bits!");
|
|
return ConvType |
|
|
(AM << 2) |
|
|
(isVolatile << 5) |
|
|
(isNonTemporal << 6);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectionDAG Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// doNotCSE - Return true if CSE should not be performed for this node.
|
|
static bool doNotCSE(SDNode *N) {
|
|
if (N->getValueType(0) == MVT::Glue)
|
|
return true; // Never CSE anything that produces a flag.
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::HANDLENODE:
|
|
case ISD::EH_LABEL:
|
|
return true; // Never CSE these nodes.
|
|
}
|
|
|
|
// Check that remaining values produced are not flags.
|
|
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
|
|
if (N->getValueType(i) == MVT::Glue)
|
|
return true; // Never CSE anything that produces a flag.
|
|
|
|
return false;
|
|
}
|
|
|
|
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
|
|
/// SelectionDAG.
|
|
void SelectionDAG::RemoveDeadNodes() {
|
|
// Create a dummy node (which is not added to allnodes), that adds a reference
|
|
// to the root node, preventing it from being deleted.
|
|
HandleSDNode Dummy(getRoot());
|
|
|
|
SmallVector<SDNode*, 128> DeadNodes;
|
|
|
|
// Add all obviously-dead nodes to the DeadNodes worklist.
|
|
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
|
|
if (I->use_empty())
|
|
DeadNodes.push_back(I);
|
|
|
|
RemoveDeadNodes(DeadNodes);
|
|
|
|
// If the root changed (e.g. it was a dead load, update the root).
|
|
setRoot(Dummy.getValue());
|
|
}
|
|
|
|
/// RemoveDeadNodes - This method deletes the unreachable nodes in the
|
|
/// given list, and any nodes that become unreachable as a result.
|
|
void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
|
|
DAGUpdateListener *UpdateListener) {
|
|
|
|
// Process the worklist, deleting the nodes and adding their uses to the
|
|
// worklist.
|
|
while (!DeadNodes.empty()) {
|
|
SDNode *N = DeadNodes.pop_back_val();
|
|
|
|
if (UpdateListener)
|
|
UpdateListener->NodeDeleted(N, 0);
|
|
|
|
// Take the node out of the appropriate CSE map.
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Next, brutally remove the operand list. This is safe to do, as there are
|
|
// no cycles in the graph.
|
|
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
|
|
SDUse &Use = *I++;
|
|
SDNode *Operand = Use.getNode();
|
|
Use.set(SDValue());
|
|
|
|
// Now that we removed this operand, see if there are no uses of it left.
|
|
if (Operand->use_empty())
|
|
DeadNodes.push_back(Operand);
|
|
}
|
|
|
|
DeallocateNode(N);
|
|
}
|
|
}
|
|
|
|
void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
|
|
SmallVector<SDNode*, 16> DeadNodes(1, N);
|
|
RemoveDeadNodes(DeadNodes, UpdateListener);
|
|
}
|
|
|
|
void SelectionDAG::DeleteNode(SDNode *N) {
|
|
// First take this out of the appropriate CSE map.
|
|
RemoveNodeFromCSEMaps(N);
|
|
|
|
// Finally, remove uses due to operands of this node, remove from the
|
|
// AllNodes list, and delete the node.
|
|
DeleteNodeNotInCSEMaps(N);
|
|
}
|
|
|
|
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
|
|
assert(N != AllNodes.begin() && "Cannot delete the entry node!");
|
|
assert(N->use_empty() && "Cannot delete a node that is not dead!");
|
|
|
|
// Drop all of the operands and decrement used node's use counts.
|
|
N->DropOperands();
|
|
|
|
DeallocateNode(N);
|
|
}
|
|
|
|
void SelectionDAG::DeallocateNode(SDNode *N) {
|
|
if (N->OperandsNeedDelete)
|
|
delete[] N->OperandList;
|
|
|
|
// Set the opcode to DELETED_NODE to help catch bugs when node
|
|
// memory is reallocated.
|
|
N->NodeType = ISD::DELETED_NODE;
|
|
|
|
NodeAllocator.Deallocate(AllNodes.remove(N));
|
|
|
|
// Remove the ordering of this node.
|
|
Ordering->remove(N);
|
|
|
|
// If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
|
|
ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
|
|
for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
|
|
DbgVals[i]->setIsInvalidated();
|
|
}
|
|
|
|
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
|
|
/// correspond to it. This is useful when we're about to delete or repurpose
|
|
/// the node. We don't want future request for structurally identical nodes
|
|
/// to return N anymore.
|
|
bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
|
|
bool Erased = false;
|
|
switch (N->getOpcode()) {
|
|
case ISD::HANDLENODE: return false; // noop.
|
|
case ISD::CONDCODE:
|
|
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
|
|
"Cond code doesn't exist!");
|
|
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
|
|
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
|
|
break;
|
|
case ISD::ExternalSymbol:
|
|
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
|
|
break;
|
|
case ISD::TargetExternalSymbol: {
|
|
ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
|
|
Erased = TargetExternalSymbols.erase(
|
|
std::pair<std::string,unsigned char>(ESN->getSymbol(),
|
|
ESN->getTargetFlags()));
|
|
break;
|
|
}
|
|
case ISD::VALUETYPE: {
|
|
EVT VT = cast<VTSDNode>(N)->getVT();
|
|
if (VT.isExtended()) {
|
|
Erased = ExtendedValueTypeNodes.erase(VT);
|
|
} else {
|
|
Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
|
|
ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
// Remove it from the CSE Map.
|
|
assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
|
|
assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
|
|
Erased = CSEMap.RemoveNode(N);
|
|
break;
|
|
}
|
|
#ifndef NDEBUG
|
|
// Verify that the node was actually in one of the CSE maps, unless it has a
|
|
// flag result (which cannot be CSE'd) or is one of the special cases that are
|
|
// not subject to CSE.
|
|
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
|
|
!N->isMachineOpcode() && !doNotCSE(N)) {
|
|
N->dump(this);
|
|
dbgs() << "\n";
|
|
llvm_unreachable("Node is not in map!");
|
|
}
|
|
#endif
|
|
return Erased;
|
|
}
|
|
|
|
/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
|
|
/// maps and modified in place. Add it back to the CSE maps, unless an identical
|
|
/// node already exists, in which case transfer all its users to the existing
|
|
/// node. This transfer can potentially trigger recursive merging.
|
|
///
|
|
void
|
|
SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
|
|
DAGUpdateListener *UpdateListener) {
|
|
// For node types that aren't CSE'd, just act as if no identical node
|
|
// already exists.
|
|
if (!doNotCSE(N)) {
|
|
SDNode *Existing = CSEMap.GetOrInsertNode(N);
|
|
if (Existing != N) {
|
|
// If there was already an existing matching node, use ReplaceAllUsesWith
|
|
// to replace the dead one with the existing one. This can cause
|
|
// recursive merging of other unrelated nodes down the line.
|
|
ReplaceAllUsesWith(N, Existing, UpdateListener);
|
|
|
|
// N is now dead. Inform the listener if it exists and delete it.
|
|
if (UpdateListener)
|
|
UpdateListener->NodeDeleted(N, Existing);
|
|
DeleteNodeNotInCSEMaps(N);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If the node doesn't already exist, we updated it. Inform a listener if
|
|
// it exists.
|
|
if (UpdateListener)
|
|
UpdateListener->NodeUpdated(N);
|
|
}
|
|
|
|
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
|
|
/// were replaced with those specified. If this node is never memoized,
|
|
/// return null, otherwise return a pointer to the slot it would take. If a
|
|
/// node already exists with these operands, the slot will be non-null.
|
|
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
|
|
void *&InsertPos) {
|
|
if (doNotCSE(N))
|
|
return 0;
|
|
|
|
SDValue Ops[] = { Op };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
|
|
AddNodeIDCustom(ID, N);
|
|
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
|
|
return Node;
|
|
}
|
|
|
|
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
|
|
/// were replaced with those specified. If this node is never memoized,
|
|
/// return null, otherwise return a pointer to the slot it would take. If a
|
|
/// node already exists with these operands, the slot will be non-null.
|
|
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
|
|
SDValue Op1, SDValue Op2,
|
|
void *&InsertPos) {
|
|
if (doNotCSE(N))
|
|
return 0;
|
|
|
|
SDValue Ops[] = { Op1, Op2 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
|
|
AddNodeIDCustom(ID, N);
|
|
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
|
|
return Node;
|
|
}
|
|
|
|
|
|
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
|
|
/// were replaced with those specified. If this node is never memoized,
|
|
/// return null, otherwise return a pointer to the slot it would take. If a
|
|
/// node already exists with these operands, the slot will be non-null.
|
|
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
|
|
const SDValue *Ops,unsigned NumOps,
|
|
void *&InsertPos) {
|
|
if (doNotCSE(N))
|
|
return 0;
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
|
|
AddNodeIDCustom(ID, N);
|
|
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
|
|
return Node;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
|
|
static void VerifyNodeCommon(SDNode *N) {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::BUILD_PAIR: {
|
|
EVT VT = N->getValueType(0);
|
|
assert(N->getNumValues() == 1 && "Too many results!");
|
|
assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
|
|
"Wrong return type!");
|
|
assert(N->getNumOperands() == 2 && "Wrong number of operands!");
|
|
assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
|
|
"Mismatched operand types!");
|
|
assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
|
|
"Wrong operand type!");
|
|
assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
|
|
"Wrong return type size");
|
|
break;
|
|
}
|
|
case ISD::BUILD_VECTOR: {
|
|
assert(N->getNumValues() == 1 && "Too many results!");
|
|
assert(N->getValueType(0).isVector() && "Wrong return type!");
|
|
assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
|
|
"Wrong number of operands!");
|
|
EVT EltVT = N->getValueType(0).getVectorElementType();
|
|
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
|
|
assert((I->getValueType() == EltVT ||
|
|
(EltVT.isInteger() && I->getValueType().isInteger() &&
|
|
EltVT.bitsLE(I->getValueType()))) &&
|
|
"Wrong operand type!");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
|
|
static void VerifySDNode(SDNode *N) {
|
|
// The SDNode allocators cannot be used to allocate nodes with fields that are
|
|
// not present in an SDNode!
|
|
assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
|
|
assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
|
|
assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
|
|
assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
|
|
assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
|
|
assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
|
|
assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
|
|
assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
|
|
assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
|
|
assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
|
|
assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
|
|
assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
|
|
assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
|
|
assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
|
|
assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
|
|
assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
|
|
assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
|
|
assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
|
|
assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
|
|
|
|
VerifyNodeCommon(N);
|
|
}
|
|
|
|
/// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
|
|
/// invalid.
|
|
static void VerifyMachineNode(SDNode *N) {
|
|
// The MachineNode allocators cannot be used to allocate nodes with fields
|
|
// that are not present in a MachineNode!
|
|
// Currently there are no such nodes.
|
|
|
|
VerifyNodeCommon(N);
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
/// getEVTAlignment - Compute the default alignment value for the
|
|
/// given type.
|
|
///
|
|
unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
|
|
Type *Ty = VT == MVT::iPTR ?
|
|
PointerType::get(Type::getInt8Ty(*getContext()), 0) :
|
|
VT.getTypeForEVT(*getContext());
|
|
|
|
return TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
}
|
|
|
|
// EntryNode could meaningfully have debug info if we can find it...
|
|
SelectionDAG::SelectionDAG(const TargetMachine &tm)
|
|
: TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
|
|
EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
|
|
Root(getEntryNode()), Ordering(0) {
|
|
AllNodes.push_back(&EntryNode);
|
|
Ordering = new SDNodeOrdering();
|
|
DbgInfo = new SDDbgInfo();
|
|
}
|
|
|
|
void SelectionDAG::init(MachineFunction &mf) {
|
|
MF = &mf;
|
|
Context = &mf.getFunction()->getContext();
|
|
}
|
|
|
|
SelectionDAG::~SelectionDAG() {
|
|
allnodes_clear();
|
|
delete Ordering;
|
|
delete DbgInfo;
|
|
}
|
|
|
|
void SelectionDAG::allnodes_clear() {
|
|
assert(&*AllNodes.begin() == &EntryNode);
|
|
AllNodes.remove(AllNodes.begin());
|
|
while (!AllNodes.empty())
|
|
DeallocateNode(AllNodes.begin());
|
|
}
|
|
|
|
void SelectionDAG::clear() {
|
|
allnodes_clear();
|
|
OperandAllocator.Reset();
|
|
CSEMap.clear();
|
|
|
|
ExtendedValueTypeNodes.clear();
|
|
ExternalSymbols.clear();
|
|
TargetExternalSymbols.clear();
|
|
std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
|
|
static_cast<CondCodeSDNode*>(0));
|
|
std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
|
|
static_cast<SDNode*>(0));
|
|
|
|
EntryNode.UseList = 0;
|
|
AllNodes.push_back(&EntryNode);
|
|
Root = getEntryNode();
|
|
Ordering->clear();
|
|
DbgInfo->clear();
|
|
}
|
|
|
|
SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
|
|
return VT.bitsGT(Op.getValueType()) ?
|
|
getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
|
|
getNode(ISD::TRUNCATE, DL, VT, Op);
|
|
}
|
|
|
|
SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
|
|
return VT.bitsGT(Op.getValueType()) ?
|
|
getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
|
|
getNode(ISD::TRUNCATE, DL, VT, Op);
|
|
}
|
|
|
|
SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
|
|
assert(!VT.isVector() &&
|
|
"getZeroExtendInReg should use the vector element type instead of "
|
|
"the vector type!");
|
|
if (Op.getValueType() == VT) return Op;
|
|
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
|
|
APInt Imm = APInt::getLowBitsSet(BitWidth,
|
|
VT.getSizeInBits());
|
|
return getNode(ISD::AND, DL, Op.getValueType(), Op,
|
|
getConstant(Imm, Op.getValueType()));
|
|
}
|
|
|
|
/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
|
|
///
|
|
SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
|
|
EVT EltVT = VT.getScalarType();
|
|
SDValue NegOne =
|
|
getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
|
|
return getNode(ISD::XOR, DL, VT, Val, NegOne);
|
|
}
|
|
|
|
SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
|
|
EVT EltVT = VT.getScalarType();
|
|
assert((EltVT.getSizeInBits() >= 64 ||
|
|
(uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
|
|
"getConstant with a uint64_t value that doesn't fit in the type!");
|
|
return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
|
|
}
|
|
|
|
SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
|
|
return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
|
|
}
|
|
|
|
SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
|
|
assert(VT.isInteger() && "Cannot create FP integer constant!");
|
|
|
|
EVT EltVT = VT.getScalarType();
|
|
assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
|
|
"APInt size does not match type size!");
|
|
|
|
unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
|
|
ID.AddPointer(&Val);
|
|
void *IP = 0;
|
|
SDNode *N = NULL;
|
|
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
|
|
if (!VT.isVector())
|
|
return SDValue(N, 0);
|
|
|
|
if (!N) {
|
|
N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
}
|
|
|
|
SDValue Result(N, 0);
|
|
if (VT.isVector()) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.assign(VT.getVectorNumElements(), Result);
|
|
Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
|
|
return getConstant(Val, TLI.getPointerTy(), isTarget);
|
|
}
|
|
|
|
|
|
SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
|
|
return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
|
|
}
|
|
|
|
SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
|
|
assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
|
|
|
|
EVT EltVT = VT.getScalarType();
|
|
|
|
// Do the map lookup using the actual bit pattern for the floating point
|
|
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
|
|
// we don't have issues with SNANs.
|
|
unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
|
|
ID.AddPointer(&V);
|
|
void *IP = 0;
|
|
SDNode *N = NULL;
|
|
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
|
|
if (!VT.isVector())
|
|
return SDValue(N, 0);
|
|
|
|
if (!N) {
|
|
N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
}
|
|
|
|
SDValue Result(N, 0);
|
|
if (VT.isVector()) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.assign(VT.getVectorNumElements(), Result);
|
|
// FIXME DebugLoc info might be appropriate here
|
|
Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
|
|
EVT EltVT = VT.getScalarType();
|
|
if (EltVT==MVT::f32)
|
|
return getConstantFP(APFloat((float)Val), VT, isTarget);
|
|
else if (EltVT==MVT::f64)
|
|
return getConstantFP(APFloat(Val), VT, isTarget);
|
|
else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
|
|
bool ignored;
|
|
APFloat apf = APFloat(Val);
|
|
apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
return getConstantFP(apf, VT, isTarget);
|
|
} else {
|
|
assert(0 && "Unsupported type in getConstantFP");
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
|
|
EVT VT, int64_t Offset,
|
|
bool isTargetGA,
|
|
unsigned char TargetFlags) {
|
|
assert((TargetFlags == 0 || isTargetGA) &&
|
|
"Cannot set target flags on target-independent globals");
|
|
|
|
// Truncate (with sign-extension) the offset value to the pointer size.
|
|
EVT PTy = TLI.getPointerTy();
|
|
unsigned BitWidth = PTy.getSizeInBits();
|
|
if (BitWidth < 64)
|
|
Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
|
|
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
|
|
if (!GVar) {
|
|
// If GV is an alias then use the aliasee for determining thread-localness.
|
|
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
|
|
GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
|
|
}
|
|
|
|
unsigned Opc;
|
|
if (GVar && GVar->isThreadLocal())
|
|
Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
|
|
else
|
|
Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddPointer(GV);
|
|
ID.AddInteger(Offset);
|
|
ID.AddInteger(TargetFlags);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
|
|
Offset, TargetFlags);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
|
|
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(FI);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
|
|
unsigned char TargetFlags) {
|
|
assert((TargetFlags == 0 || isTarget) &&
|
|
"Cannot set target flags on target-independent jump tables");
|
|
unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(JTI);
|
|
ID.AddInteger(TargetFlags);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
|
|
TargetFlags);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
|
|
unsigned Alignment, int Offset,
|
|
bool isTarget,
|
|
unsigned char TargetFlags) {
|
|
assert((TargetFlags == 0 || isTarget) &&
|
|
"Cannot set target flags on target-independent globals");
|
|
if (Alignment == 0)
|
|
Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
|
|
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(Offset);
|
|
ID.AddPointer(C);
|
|
ID.AddInteger(TargetFlags);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
|
|
Alignment, TargetFlags);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
|
|
SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
|
|
unsigned Alignment, int Offset,
|
|
bool isTarget,
|
|
unsigned char TargetFlags) {
|
|
assert((TargetFlags == 0 || isTarget) &&
|
|
"Cannot set target flags on target-independent globals");
|
|
if (Alignment == 0)
|
|
Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
|
|
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddInteger(Alignment);
|
|
ID.AddInteger(Offset);
|
|
C->AddSelectionDAGCSEId(ID);
|
|
ID.AddInteger(TargetFlags);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
|
|
Alignment, TargetFlags);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
|
|
ID.AddPointer(MBB);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getValueType(EVT VT) {
|
|
if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
|
|
ValueTypeNodes.size())
|
|
ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
|
|
|
|
SDNode *&N = VT.isExtended() ?
|
|
ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
|
|
|
|
if (N) return SDValue(N, 0);
|
|
N = new (NodeAllocator) VTSDNode(VT);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
|
|
SDNode *&N = ExternalSymbols[Sym];
|
|
if (N) return SDValue(N, 0);
|
|
N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
|
|
unsigned char TargetFlags) {
|
|
SDNode *&N =
|
|
TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
|
|
TargetFlags)];
|
|
if (N) return SDValue(N, 0);
|
|
N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
|
|
if ((unsigned)Cond >= CondCodeNodes.size())
|
|
CondCodeNodes.resize(Cond+1);
|
|
|
|
if (CondCodeNodes[Cond] == 0) {
|
|
CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
|
|
CondCodeNodes[Cond] = N;
|
|
AllNodes.push_back(N);
|
|
}
|
|
|
|
return SDValue(CondCodeNodes[Cond], 0);
|
|
}
|
|
|
|
// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
|
|
// the shuffle mask M that point at N1 to point at N2, and indices that point
|
|
// N2 to point at N1.
|
|
static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
|
|
std::swap(N1, N2);
|
|
int NElts = M.size();
|
|
for (int i = 0; i != NElts; ++i) {
|
|
if (M[i] >= NElts)
|
|
M[i] -= NElts;
|
|
else if (M[i] >= 0)
|
|
M[i] += NElts;
|
|
}
|
|
}
|
|
|
|
SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
|
|
SDValue N2, const int *Mask) {
|
|
assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
|
|
assert(VT.isVector() && N1.getValueType().isVector() &&
|
|
"Vector Shuffle VTs must be a vectors");
|
|
assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
|
|
&& "Vector Shuffle VTs must have same element type");
|
|
|
|
// Canonicalize shuffle undef, undef -> undef
|
|
if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
|
|
return getUNDEF(VT);
|
|
|
|
// Validate that all indices in Mask are within the range of the elements
|
|
// input to the shuffle.
|
|
unsigned NElts = VT.getVectorNumElements();
|
|
SmallVector<int, 8> MaskVec;
|
|
for (unsigned i = 0; i != NElts; ++i) {
|
|
assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
|
|
MaskVec.push_back(Mask[i]);
|
|
}
|
|
|
|
// Canonicalize shuffle v, v -> v, undef
|
|
if (N1 == N2) {
|
|
N2 = getUNDEF(VT);
|
|
for (unsigned i = 0; i != NElts; ++i)
|
|
if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
|
|
}
|
|
|
|
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
commuteShuffle(N1, N2, MaskVec);
|
|
|
|
// Canonicalize all index into lhs, -> shuffle lhs, undef
|
|
// Canonicalize all index into rhs, -> shuffle rhs, undef
|
|
bool AllLHS = true, AllRHS = true;
|
|
bool N2Undef = N2.getOpcode() == ISD::UNDEF;
|
|
for (unsigned i = 0; i != NElts; ++i) {
|
|
if (MaskVec[i] >= (int)NElts) {
|
|
if (N2Undef)
|
|
MaskVec[i] = -1;
|
|
else
|
|
AllLHS = false;
|
|
} else if (MaskVec[i] >= 0) {
|
|
AllRHS = false;
|
|
}
|
|
}
|
|
if (AllLHS && AllRHS)
|
|
return getUNDEF(VT);
|
|
if (AllLHS && !N2Undef)
|
|
N2 = getUNDEF(VT);
|
|
if (AllRHS) {
|
|
N1 = getUNDEF(VT);
|
|
commuteShuffle(N1, N2, MaskVec);
|
|
}
|
|
|
|
// If Identity shuffle, or all shuffle in to undef, return that node.
|
|
bool AllUndef = true;
|
|
bool Identity = true;
|
|
for (unsigned i = 0; i != NElts; ++i) {
|
|
if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
|
|
if (MaskVec[i] >= 0) AllUndef = false;
|
|
}
|
|
if (Identity && NElts == N1.getValueType().getVectorNumElements())
|
|
return N1;
|
|
if (AllUndef)
|
|
return getUNDEF(VT);
|
|
|
|
FoldingSetNodeID ID;
|
|
SDValue Ops[2] = { N1, N2 };
|
|
AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
|
|
for (unsigned i = 0; i != NElts; ++i)
|
|
ID.AddInteger(MaskVec[i]);
|
|
|
|
void* IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
// Allocate the mask array for the node out of the BumpPtrAllocator, since
|
|
// SDNode doesn't have access to it. This memory will be "leaked" when
|
|
// the node is deallocated, but recovered when the NodeAllocator is released.
|
|
int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
|
|
memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
|
|
|
|
ShuffleVectorSDNode *N =
|
|
new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
|
|
SDValue Val, SDValue DTy,
|
|
SDValue STy, SDValue Rnd, SDValue Sat,
|
|
ISD::CvtCode Code) {
|
|
// If the src and dest types are the same and the conversion is between
|
|
// integer types of the same sign or two floats, no conversion is necessary.
|
|
if (DTy == STy &&
|
|
(Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
|
|
return Val;
|
|
|
|
FoldingSetNodeID ID;
|
|
SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
|
|
AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
|
|
void* IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
|
|
Code);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
|
|
ID.AddInteger(RegNo);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
|
|
FoldingSetNodeID ID;
|
|
SDValue Ops[] = { Root };
|
|
AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
|
|
ID.AddPointer(Label);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
|
|
SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
|
|
bool isTarget,
|
|
unsigned char TargetFlags) {
|
|
unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
|
|
ID.AddPointer(BA);
|
|
ID.AddInteger(TargetFlags);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getSrcValue(const Value *V) {
|
|
assert((!V || V->getType()->isPointerTy()) &&
|
|
"SrcValue is not a pointer?");
|
|
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
|
|
ID.AddPointer(V);
|
|
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
|
|
SDValue SelectionDAG::getMDNode(const MDNode *MD) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
|
|
ID.AddPointer(MD);
|
|
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
|
|
/// getShiftAmountOperand - Return the specified value casted to
|
|
/// the target's desired shift amount type.
|
|
SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
|
|
EVT OpTy = Op.getValueType();
|
|
MVT ShTy = TLI.getShiftAmountTy(LHSTy);
|
|
if (OpTy == ShTy || OpTy.isVector()) return Op;
|
|
|
|
ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
|
|
return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
|
|
}
|
|
|
|
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
|
|
/// specified value type.
|
|
SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
|
|
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
|
|
unsigned ByteSize = VT.getStoreSize();
|
|
Type *Ty = VT.getTypeForEVT(*getContext());
|
|
unsigned StackAlign =
|
|
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
|
|
|
|
int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
|
|
return getFrameIndex(FrameIdx, TLI.getPointerTy());
|
|
}
|
|
|
|
/// CreateStackTemporary - Create a stack temporary suitable for holding
|
|
/// either of the specified value types.
|
|
SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
|
|
unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
|
|
VT2.getStoreSizeInBits())/8;
|
|
Type *Ty1 = VT1.getTypeForEVT(*getContext());
|
|
Type *Ty2 = VT2.getTypeForEVT(*getContext());
|
|
const TargetData *TD = TLI.getTargetData();
|
|
unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
|
|
TD->getPrefTypeAlignment(Ty2));
|
|
|
|
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
|
|
int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
|
|
return getFrameIndex(FrameIdx, TLI.getPointerTy());
|
|
}
|
|
|
|
SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
|
|
SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
|
|
// These setcc operations always fold.
|
|
switch (Cond) {
|
|
default: break;
|
|
case ISD::SETFALSE:
|
|
case ISD::SETFALSE2: return getConstant(0, VT);
|
|
case ISD::SETTRUE:
|
|
case ISD::SETTRUE2: return getConstant(1, VT);
|
|
|
|
case ISD::SETOEQ:
|
|
case ISD::SETOGT:
|
|
case ISD::SETOGE:
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETONE:
|
|
case ISD::SETO:
|
|
case ISD::SETUO:
|
|
case ISD::SETUEQ:
|
|
case ISD::SETUNE:
|
|
assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
|
|
break;
|
|
}
|
|
|
|
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
|
|
const APInt &C2 = N2C->getAPIntValue();
|
|
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
|
|
const APInt &C1 = N1C->getAPIntValue();
|
|
|
|
switch (Cond) {
|
|
default: llvm_unreachable("Unknown integer setcc!");
|
|
case ISD::SETEQ: return getConstant(C1 == C2, VT);
|
|
case ISD::SETNE: return getConstant(C1 != C2, VT);
|
|
case ISD::SETULT: return getConstant(C1.ult(C2), VT);
|
|
case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
|
|
case ISD::SETULE: return getConstant(C1.ule(C2), VT);
|
|
case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
|
|
case ISD::SETLT: return getConstant(C1.slt(C2), VT);
|
|
case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
|
|
case ISD::SETLE: return getConstant(C1.sle(C2), VT);
|
|
case ISD::SETGE: return getConstant(C1.sge(C2), VT);
|
|
}
|
|
}
|
|
}
|
|
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
|
|
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
|
|
// No compile time operations on this type yet.
|
|
if (N1C->getValueType(0) == MVT::ppcf128)
|
|
return SDValue();
|
|
|
|
APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
|
|
switch (Cond) {
|
|
default: break;
|
|
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
|
|
return getUNDEF(VT);
|
|
// fall through
|
|
case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
|
|
case ISD::SETNE: if (R==APFloat::cmpUnordered)
|
|
return getUNDEF(VT);
|
|
// fall through
|
|
case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
|
|
R==APFloat::cmpLessThan, VT);
|
|
case ISD::SETLT: if (R==APFloat::cmpUnordered)
|
|
return getUNDEF(VT);
|
|
// fall through
|
|
case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
|
|
case ISD::SETGT: if (R==APFloat::cmpUnordered)
|
|
return getUNDEF(VT);
|
|
// fall through
|
|
case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
|
|
case ISD::SETLE: if (R==APFloat::cmpUnordered)
|
|
return getUNDEF(VT);
|
|
// fall through
|
|
case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
|
|
R==APFloat::cmpEqual, VT);
|
|
case ISD::SETGE: if (R==APFloat::cmpUnordered)
|
|
return getUNDEF(VT);
|
|
// fall through
|
|
case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
|
|
R==APFloat::cmpEqual, VT);
|
|
case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
|
|
case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
|
|
case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
|
|
R==APFloat::cmpEqual, VT);
|
|
case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
|
|
case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
|
|
R==APFloat::cmpLessThan, VT);
|
|
case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
|
|
R==APFloat::cmpUnordered, VT);
|
|
case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
|
|
case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
|
|
}
|
|
} else {
|
|
// Ensure that the constant occurs on the RHS.
|
|
return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
|
|
}
|
|
}
|
|
|
|
// Could not fold it.
|
|
return SDValue();
|
|
}
|
|
|
|
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
|
|
/// use this predicate to simplify operations downstream.
|
|
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
|
|
// This predicate is not safe for vector operations.
|
|
if (Op.getValueType().isVector())
|
|
return false;
|
|
|
|
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
|
|
return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
|
|
}
|
|
|
|
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
|
|
/// this predicate to simplify operations downstream. Mask is known to be zero
|
|
/// for bits that V cannot have.
|
|
bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
|
|
unsigned Depth) const {
|
|
APInt KnownZero, KnownOne;
|
|
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
return (KnownZero & Mask) == Mask;
|
|
}
|
|
|
|
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
|
|
/// known to be either zero or one and return them in the KnownZero/KnownOne
|
|
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
|
|
/// processing.
|
|
void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
|
|
APInt &KnownZero, APInt &KnownOne,
|
|
unsigned Depth) const {
|
|
unsigned BitWidth = Mask.getBitWidth();
|
|
assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
|
|
"Mask size mismatches value type size!");
|
|
|
|
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
|
|
if (Depth == 6 || Mask == 0)
|
|
return; // Limit search depth.
|
|
|
|
APInt KnownZero2, KnownOne2;
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::Constant:
|
|
// We know all of the bits for a constant!
|
|
KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
|
|
KnownZero = ~KnownOne & Mask;
|
|
return;
|
|
case ISD::AND:
|
|
// If either the LHS or the RHS are Zero, the result is zero.
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
|
|
KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-1 bits are only known if set in both the LHS & RHS.
|
|
KnownOne &= KnownOne2;
|
|
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
|
KnownZero |= KnownZero2;
|
|
return;
|
|
case ISD::OR:
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
|
|
KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
|
KnownZero &= KnownZero2;
|
|
// Output known-1 are known to be set if set in either the LHS | RHS.
|
|
KnownOne |= KnownOne2;
|
|
return;
|
|
case ISD::XOR: {
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
|
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
|
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
|
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
|
KnownZero = KnownZeroOut;
|
|
return;
|
|
}
|
|
case ISD::MUL: {
|
|
APInt Mask2 = APInt::getAllOnesValue(BitWidth);
|
|
ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If low bits are zero in either operand, output low known-0 bits.
|
|
// Also compute a conserative estimate for high known-0 bits.
|
|
// More trickiness is possible, but this is sufficient for the
|
|
// interesting case of alignment computation.
|
|
KnownOne.clearAllBits();
|
|
unsigned TrailZ = KnownZero.countTrailingOnes() +
|
|
KnownZero2.countTrailingOnes();
|
|
unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
|
|
KnownZero2.countLeadingOnes(),
|
|
BitWidth) - BitWidth;
|
|
|
|
TrailZ = std::min(TrailZ, BitWidth);
|
|
LeadZ = std::min(LeadZ, BitWidth);
|
|
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
|
|
APInt::getHighBitsSet(BitWidth, LeadZ);
|
|
KnownZero &= Mask;
|
|
return;
|
|
}
|
|
case ISD::UDIV: {
|
|
// For the purposes of computing leading zeros we can conservatively
|
|
// treat a udiv as a logical right shift by the power of 2 known to
|
|
// be less than the denominator.
|
|
APInt AllOnes = APInt::getAllOnesValue(BitWidth);
|
|
ComputeMaskedBits(Op.getOperand(0),
|
|
AllOnes, KnownZero2, KnownOne2, Depth+1);
|
|
unsigned LeadZ = KnownZero2.countLeadingOnes();
|
|
|
|
KnownOne2.clearAllBits();
|
|
KnownZero2.clearAllBits();
|
|
ComputeMaskedBits(Op.getOperand(1),
|
|
AllOnes, KnownZero2, KnownOne2, Depth+1);
|
|
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
|
|
if (RHSUnknownLeadingOnes != BitWidth)
|
|
LeadZ = std::min(BitWidth,
|
|
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
|
|
|
|
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
|
|
return;
|
|
}
|
|
case ISD::SELECT:
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
return;
|
|
case ISD::SELECT_CC:
|
|
ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
KnownOne &= KnownOne2;
|
|
KnownZero &= KnownZero2;
|
|
return;
|
|
case ISD::SADDO:
|
|
case ISD::UADDO:
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO:
|
|
case ISD::SMULO:
|
|
case ISD::UMULO:
|
|
if (Op.getResNo() != 1)
|
|
return;
|
|
// The boolean result conforms to getBooleanContents. Fall through.
|
|
case ISD::SETCC:
|
|
// If we know the result of a setcc has the top bits zero, use this info.
|
|
if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
|
|
BitWidth > 1)
|
|
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
|
|
return;
|
|
case ISD::SHL:
|
|
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
unsigned ShAmt = SA->getZExtValue();
|
|
|
|
// If the shift count is an invalid immediate, don't do anything.
|
|
if (ShAmt >= BitWidth)
|
|
return;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero <<= ShAmt;
|
|
KnownOne <<= ShAmt;
|
|
// low bits known zero.
|
|
KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
|
|
}
|
|
return;
|
|
case ISD::SRL:
|
|
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
unsigned ShAmt = SA->getZExtValue();
|
|
|
|
// If the shift count is an invalid immediate, don't do anything.
|
|
if (ShAmt >= BitWidth)
|
|
return;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero = KnownZero.lshr(ShAmt);
|
|
KnownOne = KnownOne.lshr(ShAmt);
|
|
|
|
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
|
|
KnownZero |= HighBits; // High bits known zero.
|
|
}
|
|
return;
|
|
case ISD::SRA:
|
|
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
unsigned ShAmt = SA->getZExtValue();
|
|
|
|
// If the shift count is an invalid immediate, don't do anything.
|
|
if (ShAmt >= BitWidth)
|
|
return;
|
|
|
|
APInt InDemandedMask = (Mask << ShAmt);
|
|
// If any of the demanded bits are produced by the sign extension, we also
|
|
// demand the input sign bit.
|
|
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
|
|
if (HighBits.getBoolValue())
|
|
InDemandedMask |= APInt::getSignBit(BitWidth);
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
|
|
Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero = KnownZero.lshr(ShAmt);
|
|
KnownOne = KnownOne.lshr(ShAmt);
|
|
|
|
// Handle the sign bits.
|
|
APInt SignBit = APInt::getSignBit(BitWidth);
|
|
SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
|
|
|
|
if (KnownZero.intersects(SignBit)) {
|
|
KnownZero |= HighBits; // New bits are known zero.
|
|
} else if (KnownOne.intersects(SignBit)) {
|
|
KnownOne |= HighBits; // New bits are known one.
|
|
}
|
|
}
|
|
return;
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
unsigned EBits = EVT.getScalarType().getSizeInBits();
|
|
|
|
// Sign extension. Compute the demanded bits in the result that are not
|
|
// present in the input.
|
|
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
|
|
|
|
APInt InSignBit = APInt::getSignBit(EBits);
|
|
APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
|
|
|
|
// If the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
InSignBit = InSignBit.zext(BitWidth);
|
|
if (NewBits.getBoolValue())
|
|
InputDemandedBits |= InSignBit;
|
|
|
|
ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
|
|
KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
|
|
// If the sign bit of the input is known set or clear, then we know the
|
|
// top bits of the result.
|
|
if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
|
|
KnownZero |= NewBits;
|
|
KnownOne &= ~NewBits;
|
|
} else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
|
|
KnownOne |= NewBits;
|
|
KnownZero &= ~NewBits;
|
|
} else { // Input sign bit unknown
|
|
KnownZero &= ~NewBits;
|
|
KnownOne &= ~NewBits;
|
|
}
|
|
return;
|
|
}
|
|
case ISD::CTTZ:
|
|
case ISD::CTLZ:
|
|
case ISD::CTPOP: {
|
|
unsigned LowBits = Log2_32(BitWidth)+1;
|
|
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
|
|
KnownOne.clearAllBits();
|
|
return;
|
|
}
|
|
case ISD::LOAD: {
|
|
if (ISD::isZEXTLoad(Op.getNode())) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
EVT VT = LD->getMemoryVT();
|
|
unsigned MemBits = VT.getScalarType().getSizeInBits();
|
|
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
|
|
}
|
|
return;
|
|
}
|
|
case ISD::ZERO_EXTEND: {
|
|
EVT InVT = Op.getOperand(0).getValueType();
|
|
unsigned InBits = InVT.getScalarType().getSizeInBits();
|
|
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
|
|
APInt InMask = Mask.trunc(InBits);
|
|
KnownZero = KnownZero.trunc(InBits);
|
|
KnownOne = KnownOne.trunc(InBits);
|
|
ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
|
|
KnownZero = KnownZero.zext(BitWidth);
|
|
KnownOne = KnownOne.zext(BitWidth);
|
|
KnownZero |= NewBits;
|
|
return;
|
|
}
|
|
case ISD::SIGN_EXTEND: {
|
|
EVT InVT = Op.getOperand(0).getValueType();
|
|
unsigned InBits = InVT.getScalarType().getSizeInBits();
|
|
APInt InSignBit = APInt::getSignBit(InBits);
|
|
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
|
|
APInt InMask = Mask.trunc(InBits);
|
|
|
|
// If any of the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded. Temporarily set this bit in the mask for our callee.
|
|
if (NewBits.getBoolValue())
|
|
InMask |= InSignBit;
|
|
|
|
KnownZero = KnownZero.trunc(InBits);
|
|
KnownOne = KnownOne.trunc(InBits);
|
|
ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
|
|
|
|
// Note if the sign bit is known to be zero or one.
|
|
bool SignBitKnownZero = KnownZero.isNegative();
|
|
bool SignBitKnownOne = KnownOne.isNegative();
|
|
assert(!(SignBitKnownZero && SignBitKnownOne) &&
|
|
"Sign bit can't be known to be both zero and one!");
|
|
|
|
// If the sign bit wasn't actually demanded by our caller, we don't
|
|
// want it set in the KnownZero and KnownOne result values. Reset the
|
|
// mask and reapply it to the result values.
|
|
InMask = Mask.trunc(InBits);
|
|
KnownZero &= InMask;
|
|
KnownOne &= InMask;
|
|
|
|
KnownZero = KnownZero.zext(BitWidth);
|
|
KnownOne = KnownOne.zext(BitWidth);
|
|
|
|
// If the sign bit is known zero or one, the top bits match.
|
|
if (SignBitKnownZero)
|
|
KnownZero |= NewBits;
|
|
else if (SignBitKnownOne)
|
|
KnownOne |= NewBits;
|
|
return;
|
|
}
|
|
case ISD::ANY_EXTEND: {
|
|
EVT InVT = Op.getOperand(0).getValueType();
|
|
unsigned InBits = InVT.getScalarType().getSizeInBits();
|
|
APInt InMask = Mask.trunc(InBits);
|
|
KnownZero = KnownZero.trunc(InBits);
|
|
KnownOne = KnownOne.trunc(InBits);
|
|
ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
|
|
KnownZero = KnownZero.zext(BitWidth);
|
|
KnownOne = KnownOne.zext(BitWidth);
|
|
return;
|
|
}
|
|
case ISD::TRUNCATE: {
|
|
EVT InVT = Op.getOperand(0).getValueType();
|
|
unsigned InBits = InVT.getScalarType().getSizeInBits();
|
|
APInt InMask = Mask.zext(InBits);
|
|
KnownZero = KnownZero.zext(InBits);
|
|
KnownOne = KnownOne.zext(InBits);
|
|
ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
|
|
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
|
KnownZero = KnownZero.trunc(BitWidth);
|
|
KnownOne = KnownOne.trunc(BitWidth);
|
|
break;
|
|
}
|
|
case ISD::AssertZext: {
|
|
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
|
|
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
|
|
KnownOne, Depth+1);
|
|
KnownZero |= (~InMask) & Mask;
|
|
return;
|
|
}
|
|
case ISD::FGETSIGN:
|
|
// All bits are zero except the low bit.
|
|
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
|
|
return;
|
|
|
|
case ISD::SUB: {
|
|
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
|
|
// We know that the top bits of C-X are clear if X contains less bits
|
|
// than C (i.e. no wrap-around can happen). For example, 20-X is
|
|
// positive if we can prove that X is >= 0 and < 16.
|
|
if (CLHS->getAPIntValue().isNonNegative()) {
|
|
unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
|
|
// NLZ can't be BitWidth with no sign bit
|
|
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
|
|
ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
|
|
Depth+1);
|
|
|
|
// If all of the MaskV bits are known to be zero, then we know the
|
|
// output top bits are zero, because we now know that the output is
|
|
// from [0-C].
|
|
if ((KnownZero2 & MaskV) == MaskV) {
|
|
unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
|
|
// Top bits known zero.
|
|
KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// fall through
|
|
case ISD::ADD:
|
|
case ISD::ADDE: {
|
|
// Output known-0 bits are known if clear or set in both the low clear bits
|
|
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
|
|
// low 3 bits clear.
|
|
APInt Mask2 = APInt::getLowBitsSet(BitWidth,
|
|
BitWidth - Mask.countLeadingZeros());
|
|
ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
|
|
|
|
ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
|
|
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
|
KnownZeroOut = std::min(KnownZeroOut,
|
|
KnownZero2.countTrailingOnes());
|
|
|
|
if (Op.getOpcode() == ISD::ADD) {
|
|
KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
|
|
return;
|
|
}
|
|
|
|
// With ADDE, a carry bit may be added in, so we can only use this
|
|
// information if we know (at least) that the low two bits are clear. We
|
|
// then return to the caller that the low bit is unknown but that other bits
|
|
// are known zero.
|
|
if (KnownZeroOut >= 2) // ADDE
|
|
KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
|
|
return;
|
|
}
|
|
case ISD::SREM:
|
|
if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
const APInt &RA = Rem->getAPIntValue().abs();
|
|
if (RA.isPowerOf2()) {
|
|
APInt LowBits = RA - 1;
|
|
APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
|
|
|
|
// The low bits of the first operand are unchanged by the srem.
|
|
KnownZero = KnownZero2 & LowBits;
|
|
KnownOne = KnownOne2 & LowBits;
|
|
|
|
// If the first operand is non-negative or has all low bits zero, then
|
|
// the upper bits are all zero.
|
|
if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
|
|
KnownZero |= ~LowBits;
|
|
|
|
// If the first operand is negative and not all low bits are zero, then
|
|
// the upper bits are all one.
|
|
if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
|
|
KnownOne |= ~LowBits;
|
|
|
|
KnownZero &= Mask;
|
|
KnownOne &= Mask;
|
|
|
|
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
|
|
}
|
|
}
|
|
return;
|
|
case ISD::UREM: {
|
|
if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
const APInt &RA = Rem->getAPIntValue();
|
|
if (RA.isPowerOf2()) {
|
|
APInt LowBits = (RA - 1);
|
|
APInt Mask2 = LowBits & Mask;
|
|
KnownZero |= ~LowBits & Mask;
|
|
ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
|
|
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Since the result is less than or equal to either operand, any leading
|
|
// zero bits in either operand must also exist in the result.
|
|
APInt AllOnes = APInt::getAllOnesValue(BitWidth);
|
|
ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
|
|
Depth+1);
|
|
ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
|
|
Depth+1);
|
|
|
|
uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
|
|
KnownZero2.countLeadingOnes());
|
|
KnownOne.clearAllBits();
|
|
KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
|
|
return;
|
|
}
|
|
case ISD::FrameIndex:
|
|
case ISD::TargetFrameIndex:
|
|
if (unsigned Align = InferPtrAlignment(Op)) {
|
|
// The low bits are known zero if the pointer is aligned.
|
|
KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
|
|
return;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (Op.getOpcode() < ISD::BUILTIN_OP_END)
|
|
break;
|
|
// Fallthrough
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
case ISD::INTRINSIC_VOID:
|
|
// Allow the target to implement this method for its nodes.
|
|
TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
|
|
Depth);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// ComputeNumSignBits - Return the number of times the sign bit of the
|
|
/// register is replicated into the other bits. We know that at least 1 bit
|
|
/// is always equal to the sign bit (itself), but other cases can give us
|
|
/// information. For example, immediately after an "SRA X, 2", we know that
|
|
/// the top 3 bits are all equal to each other, so we return 3.
|
|
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
|
|
EVT VT = Op.getValueType();
|
|
assert(VT.isInteger() && "Invalid VT!");
|
|
unsigned VTBits = VT.getScalarType().getSizeInBits();
|
|
unsigned Tmp, Tmp2;
|
|
unsigned FirstAnswer = 1;
|
|
|
|
if (Depth == 6)
|
|
return 1; // Limit search depth.
|
|
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::AssertSext:
|
|
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
|
|
return VTBits-Tmp+1;
|
|
case ISD::AssertZext:
|
|
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
|
|
return VTBits-Tmp;
|
|
|
|
case ISD::Constant: {
|
|
const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
|
|
return Val.getNumSignBits();
|
|
}
|
|
|
|
case ISD::SIGN_EXTEND:
|
|
Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
|
|
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
|
|
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
// Max of the input and what this extends.
|
|
Tmp =
|
|
cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
|
|
Tmp = VTBits-Tmp+1;
|
|
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
return std::max(Tmp, Tmp2);
|
|
|
|
case ISD::SRA:
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
// SRA X, C -> adds C sign bits.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
Tmp += C->getZExtValue();
|
|
if (Tmp > VTBits) Tmp = VTBits;
|
|
}
|
|
return Tmp;
|
|
case ISD::SHL:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
// shl destroys sign bits.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (C->getZExtValue() >= VTBits || // Bad shift.
|
|
C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
|
|
return Tmp - C->getZExtValue();
|
|
}
|
|
break;
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR: // NOT is handled here.
|
|
// Logical binary ops preserve the number of sign bits at the worst.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp != 1) {
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
FirstAnswer = std::min(Tmp, Tmp2);
|
|
// We computed what we know about the sign bits as our first
|
|
// answer. Now proceed to the generic code that uses
|
|
// ComputeMaskedBits, and pick whichever answer is better.
|
|
}
|
|
break;
|
|
|
|
case ISD::SELECT:
|
|
Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
|
|
return std::min(Tmp, Tmp2);
|
|
|
|
case ISD::SADDO:
|
|
case ISD::UADDO:
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO:
|
|
case ISD::SMULO:
|
|
case ISD::UMULO:
|
|
if (Op.getResNo() != 1)
|
|
break;
|
|
// The boolean result conforms to getBooleanContents. Fall through.
|
|
case ISD::SETCC:
|
|
// If setcc returns 0/-1, all bits are sign bits.
|
|
if (TLI.getBooleanContents() ==
|
|
TargetLowering::ZeroOrNegativeOneBooleanContent)
|
|
return VTBits;
|
|
break;
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
unsigned RotAmt = C->getZExtValue() & (VTBits-1);
|
|
|
|
// Handle rotate right by N like a rotate left by 32-N.
|
|
if (Op.getOpcode() == ISD::ROTR)
|
|
RotAmt = (VTBits-RotAmt) & (VTBits-1);
|
|
|
|
// If we aren't rotating out all of the known-in sign bits, return the
|
|
// number that are left. This handles rotl(sext(x), 1) for example.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp > RotAmt+1) return Tmp-RotAmt;
|
|
}
|
|
break;
|
|
case ISD::ADD:
|
|
// Add can have at most one carry bit. Thus we know that the output
|
|
// is, at worst, one more bit than the inputs.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
|
|
// Special case decrementing a value (ADD X, -1):
|
|
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
if (CRHS->isAllOnesValue()) {
|
|
APInt KnownZero, KnownOne;
|
|
APInt Mask = APInt::getAllOnesValue(VTBits);
|
|
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
|
|
// If the input is known to be 0 or 1, the output is 0/-1, which is all
|
|
// sign bits set.
|
|
if ((KnownZero | APInt(VTBits, 1)) == Mask)
|
|
return VTBits;
|
|
|
|
// If we are subtracting one from a positive number, there is no carry
|
|
// out of the result.
|
|
if (KnownZero.isNegative())
|
|
return Tmp;
|
|
}
|
|
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
if (Tmp2 == 1) return 1;
|
|
return std::min(Tmp, Tmp2)-1;
|
|
break;
|
|
|
|
case ISD::SUB:
|
|
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
|
|
if (Tmp2 == 1) return 1;
|
|
|
|
// Handle NEG.
|
|
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
|
|
if (CLHS->isNullValue()) {
|
|
APInt KnownZero, KnownOne;
|
|
APInt Mask = APInt::getAllOnesValue(VTBits);
|
|
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
|
// If the input is known to be 0 or 1, the output is 0/-1, which is all
|
|
// sign bits set.
|
|
if ((KnownZero | APInt(VTBits, 1)) == Mask)
|
|
return VTBits;
|
|
|
|
// If the input is known to be positive (the sign bit is known clear),
|
|
// the output of the NEG has the same number of sign bits as the input.
|
|
if (KnownZero.isNegative())
|
|
return Tmp2;
|
|
|
|
// Otherwise, we treat this like a SUB.
|
|
}
|
|
|
|
// Sub can have at most one carry bit. Thus we know that the output
|
|
// is, at worst, one more bit than the inputs.
|
|
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
|
if (Tmp == 1) return 1; // Early out.
|
|
return std::min(Tmp, Tmp2)-1;
|
|
break;
|
|
case ISD::TRUNCATE:
|
|
// FIXME: it's tricky to do anything useful for this, but it is an important
|
|
// case for targets like X86.
|
|
break;
|
|
}
|
|
|
|
// Handle LOADX separately here. EXTLOAD case will fallthrough.
|
|
if (Op.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
unsigned ExtType = LD->getExtensionType();
|
|
switch (ExtType) {
|
|
default: break;
|
|
case ISD::SEXTLOAD: // '17' bits known
|
|
Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
|
|
return VTBits-Tmp+1;
|
|
case ISD::ZEXTLOAD: // '16' bits known
|
|
Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
|
|
return VTBits-Tmp;
|
|
}
|
|
}
|
|
|
|
// Allow the target to implement this method for its nodes.
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) {
|
|
unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
|
|
if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
|
|
}
|
|
|
|
// Finally, if we can prove that the top bits of the result are 0's or 1's,
|
|
// use this information.
|
|
APInt KnownZero, KnownOne;
|
|
APInt Mask = APInt::getAllOnesValue(VTBits);
|
|
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
|
|
|
if (KnownZero.isNegative()) { // sign bit is 0
|
|
Mask = KnownZero;
|
|
} else if (KnownOne.isNegative()) { // sign bit is 1;
|
|
Mask = KnownOne;
|
|
} else {
|
|
// Nothing known.
|
|
return FirstAnswer;
|
|
}
|
|
|
|
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
|
|
// the number of identical bits in the top of the input value.
|
|
Mask = ~Mask;
|
|
Mask <<= Mask.getBitWidth()-VTBits;
|
|
// Return # leading zeros. We use 'min' here in case Val was zero before
|
|
// shifting. We don't want to return '64' as for an i32 "0".
|
|
return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
|
|
}
|
|
|
|
/// isBaseWithConstantOffset - Return true if the specified operand is an
|
|
/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
|
|
/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
|
|
/// semantics as an ADD. This handles the equivalence:
|
|
/// X|Cst == X+Cst iff X&Cst = 0.
|
|
bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
|
|
if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
|
|
!isa<ConstantSDNode>(Op.getOperand(1)))
|
|
return false;
|
|
|
|
if (Op.getOpcode() == ISD::OR &&
|
|
!MaskedValueIsZero(Op.getOperand(0),
|
|
cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
|
|
// If we're told that NaNs won't happen, assume they won't.
|
|
if (NoNaNsFPMath)
|
|
return true;
|
|
|
|
// If the value is a constant, we can obviously see if it is a NaN or not.
|
|
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
|
|
return !C->getValueAPF().isNaN();
|
|
|
|
// TODO: Recognize more cases here.
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
|
|
// If the value is a constant, we can obviously see if it is a zero or not.
|
|
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
|
|
return !C->isZero();
|
|
|
|
// TODO: Recognize more cases here.
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ISD::OR:
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
return !C->isNullValue();
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
|
|
// Check the obvious case.
|
|
if (A == B) return true;
|
|
|
|
// For for negative and positive zero.
|
|
if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
|
|
if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
|
|
if (CA->isZero() && CB->isZero()) return true;
|
|
|
|
// Otherwise they may not be equal.
|
|
return false;
|
|
}
|
|
|
|
/// getNode - Gets or creates the specified node.
|
|
///
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
|
|
CSEMap.InsertNode(N, IP);
|
|
|
|
AllNodes.push_back(N);
|
|
#ifndef NDEBUG
|
|
VerifySDNode(N);
|
|
#endif
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
|
|
EVT VT, SDValue Operand) {
|
|
// Constant fold unary operations with an integer constant operand.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
|
|
const APInt &Val = C->getAPIntValue();
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ISD::SIGN_EXTEND:
|
|
return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::TRUNCATE:
|
|
return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::SINT_TO_FP: {
|
|
// No compile time operations on ppcf128.
|
|
if (VT == MVT::ppcf128) break;
|
|
APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
|
|
(void)apf.convertFromAPInt(Val,
|
|
Opcode==ISD::SINT_TO_FP,
|
|
APFloat::rmNearestTiesToEven);
|
|
return getConstantFP(apf, VT);
|
|
}
|
|
case ISD::BITCAST:
|
|
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
|
|
return getConstantFP(Val.bitsToFloat(), VT);
|
|
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
|
|
return getConstantFP(Val.bitsToDouble(), VT);
|
|
break;
|
|
case ISD::BSWAP:
|
|
return getConstant(Val.byteSwap(), VT);
|
|
case ISD::CTPOP:
|
|
return getConstant(Val.countPopulation(), VT);
|
|
case ISD::CTLZ:
|
|
return getConstant(Val.countLeadingZeros(), VT);
|
|
case ISD::CTTZ:
|
|
return getConstant(Val.countTrailingZeros(), VT);
|
|
}
|
|
}
|
|
|
|
// Constant fold unary operations with a floating point constant operand.
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
|
|
APFloat V = C->getValueAPF(); // make copy
|
|
if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
|
|
switch (Opcode) {
|
|
case ISD::FNEG:
|
|
V.changeSign();
|
|
return getConstantFP(V, VT);
|
|
case ISD::FABS:
|
|
V.clearSign();
|
|
return getConstantFP(V, VT);
|
|
case ISD::FP_ROUND:
|
|
case ISD::FP_EXTEND: {
|
|
bool ignored;
|
|
// This can return overflow, underflow, or inexact; we don't care.
|
|
// FIXME need to be more flexible about rounding mode.
|
|
(void)V.convert(*EVTToAPFloatSemantics(VT),
|
|
APFloat::rmNearestTiesToEven, &ignored);
|
|
return getConstantFP(V, VT);
|
|
}
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: {
|
|
integerPart x[2];
|
|
bool ignored;
|
|
assert(integerPartWidth >= 64);
|
|
// FIXME need to be more flexible about rounding mode.
|
|
APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
|
|
Opcode==ISD::FP_TO_SINT,
|
|
APFloat::rmTowardZero, &ignored);
|
|
if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
|
|
break;
|
|
APInt api(VT.getSizeInBits(), x);
|
|
return getConstant(api, VT);
|
|
}
|
|
case ISD::BITCAST:
|
|
if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
|
|
return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
|
|
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
|
|
return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned OpOpcode = Operand.getNode()->getOpcode();
|
|
switch (Opcode) {
|
|
case ISD::TokenFactor:
|
|
case ISD::MERGE_VALUES:
|
|
case ISD::CONCAT_VECTORS:
|
|
return Operand; // Factor, merge or concat of one node? No need.
|
|
case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
|
|
case ISD::FP_EXTEND:
|
|
assert(VT.isFloatingPoint() &&
|
|
Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop conversion.
|
|
assert((!VT.isVector() ||
|
|
VT.getVectorNumElements() ==
|
|
Operand.getValueType().getVectorNumElements()) &&
|
|
"Vector element count mismatch!");
|
|
if (Operand.getOpcode() == ISD::UNDEF)
|
|
return getUNDEF(VT);
|
|
break;
|
|
case ISD::SIGN_EXTEND:
|
|
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
|
|
"Invalid SIGN_EXTEND!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop extension
|
|
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
|
|
"Invalid sext node, dst < src!");
|
|
assert((!VT.isVector() ||
|
|
VT.getVectorNumElements() ==
|
|
Operand.getValueType().getVectorNumElements()) &&
|
|
"Vector element count mismatch!");
|
|
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
|
|
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
|
|
else if (OpOpcode == ISD::UNDEF)
|
|
// sext(undef) = 0, because the top bits will all be the same.
|
|
return getConstant(0, VT);
|
|
break;
|
|
case ISD::ZERO_EXTEND:
|
|
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
|
|
"Invalid ZERO_EXTEND!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop extension
|
|
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
|
|
"Invalid zext node, dst < src!");
|
|
assert((!VT.isVector() ||
|
|
VT.getVectorNumElements() ==
|
|
Operand.getValueType().getVectorNumElements()) &&
|
|
"Vector element count mismatch!");
|
|
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
|
|
return getNode(ISD::ZERO_EXTEND, DL, VT,
|
|
Operand.getNode()->getOperand(0));
|
|
else if (OpOpcode == ISD::UNDEF)
|
|
// zext(undef) = 0, because the top bits will be zero.
|
|
return getConstant(0, VT);
|
|
break;
|
|
case ISD::ANY_EXTEND:
|
|
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
|
|
"Invalid ANY_EXTEND!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop extension
|
|
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
|
|
"Invalid anyext node, dst < src!");
|
|
assert((!VT.isVector() ||
|
|
VT.getVectorNumElements() ==
|
|
Operand.getValueType().getVectorNumElements()) &&
|
|
"Vector element count mismatch!");
|
|
|
|
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
|
|
OpOpcode == ISD::ANY_EXTEND)
|
|
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
|
|
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
|
|
else if (OpOpcode == ISD::UNDEF)
|
|
return getUNDEF(VT);
|
|
|
|
// (ext (trunx x)) -> x
|
|
if (OpOpcode == ISD::TRUNCATE) {
|
|
SDValue OpOp = Operand.getNode()->getOperand(0);
|
|
if (OpOp.getValueType() == VT)
|
|
return OpOp;
|
|
}
|
|
break;
|
|
case ISD::TRUNCATE:
|
|
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
|
|
"Invalid TRUNCATE!");
|
|
if (Operand.getValueType() == VT) return Operand; // noop truncate
|
|
assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
|
|
"Invalid truncate node, src < dst!");
|
|
assert((!VT.isVector() ||
|
|
VT.getVectorNumElements() ==
|
|
Operand.getValueType().getVectorNumElements()) &&
|
|
"Vector element count mismatch!");
|
|
if (OpOpcode == ISD::TRUNCATE)
|
|
return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
|
|
else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
|
|
OpOpcode == ISD::ANY_EXTEND) {
|
|
// If the source is smaller than the dest, we still need an extend.
|
|
if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
|
|
.bitsLT(VT.getScalarType()))
|
|
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
|
|
else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
|
|
return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
|
|
else
|
|
return Operand.getNode()->getOperand(0);
|
|
}
|
|
break;
|
|
case ISD::BITCAST:
|
|
// Basic sanity checking.
|
|
assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
|
|
&& "Cannot BITCAST between types of different sizes!");
|
|
if (VT == Operand.getValueType()) return Operand; // noop conversion.
|
|
if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
|
|
return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
|
|
if (OpOpcode == ISD::UNDEF)
|
|
return getUNDEF(VT);
|
|
break;
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
assert(VT.isVector() && !Operand.getValueType().isVector() &&
|
|
(VT.getVectorElementType() == Operand.getValueType() ||
|
|
(VT.getVectorElementType().isInteger() &&
|
|
Operand.getValueType().isInteger() &&
|
|
VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
|
|
"Illegal SCALAR_TO_VECTOR node!");
|
|
if (OpOpcode == ISD::UNDEF)
|
|
return getUNDEF(VT);
|
|
// scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
|
|
if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
|
|
isa<ConstantSDNode>(Operand.getOperand(1)) &&
|
|
Operand.getConstantOperandVal(1) == 0 &&
|
|
Operand.getOperand(0).getValueType() == VT)
|
|
return Operand.getOperand(0);
|
|
break;
|
|
case ISD::FNEG:
|
|
// -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
|
|
if (UnsafeFPMath && OpOpcode == ISD::FSUB)
|
|
return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
|
|
Operand.getNode()->getOperand(0));
|
|
if (OpOpcode == ISD::FNEG) // --X -> X
|
|
return Operand.getNode()->getOperand(0);
|
|
break;
|
|
case ISD::FABS:
|
|
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
|
|
return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
|
|
break;
|
|
}
|
|
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
if (VT != MVT::Glue) { // Don't CSE flag producing nodes
|
|
FoldingSetNodeID ID;
|
|
SDValue Ops[1] = { Operand };
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
|
|
}
|
|
|
|
AllNodes.push_back(N);
|
|
#ifndef NDEBUG
|
|
VerifySDNode(N);
|
|
#endif
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
|
|
EVT VT,
|
|
ConstantSDNode *Cst1,
|
|
ConstantSDNode *Cst2) {
|
|
const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
|
|
|
|
switch (Opcode) {
|
|
case ISD::ADD: return getConstant(C1 + C2, VT);
|
|
case ISD::SUB: return getConstant(C1 - C2, VT);
|
|
case ISD::MUL: return getConstant(C1 * C2, VT);
|
|
case ISD::UDIV:
|
|
if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
|
|
break;
|
|
case ISD::UREM:
|
|
if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
|
|
break;
|
|
case ISD::SDIV:
|
|
if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
|
|
break;
|
|
case ISD::SREM:
|
|
if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
|
|
break;
|
|
case ISD::AND: return getConstant(C1 & C2, VT);
|
|
case ISD::OR: return getConstant(C1 | C2, VT);
|
|
case ISD::XOR: return getConstant(C1 ^ C2, VT);
|
|
case ISD::SHL: return getConstant(C1 << C2, VT);
|
|
case ISD::SRL: return getConstant(C1.lshr(C2), VT);
|
|
case ISD::SRA: return getConstant(C1.ashr(C2), VT);
|
|
case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
|
|
case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
|
|
default: break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
|
|
SDValue N1, SDValue N2) {
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ISD::TokenFactor:
|
|
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
|
|
N2.getValueType() == MVT::Other && "Invalid token factor!");
|
|
// Fold trivial token factors.
|
|
if (N1.getOpcode() == ISD::EntryToken) return N2;
|
|
if (N2.getOpcode() == ISD::EntryToken) return N1;
|
|
if (N1 == N2) return N1;
|
|
break;
|
|
case ISD::CONCAT_VECTORS:
|
|
// A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
|
|
// one big BUILD_VECTOR.
|
|
if (N1.getOpcode() == ISD::BUILD_VECTOR &&
|
|
N2.getOpcode() == ISD::BUILD_VECTOR) {
|
|
SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
|
|
N1.getNode()->op_end());
|
|
Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
|
|
return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
|
|
}
|
|
break;
|
|
case ISD::AND:
|
|
assert(VT.isInteger() && "This operator does not apply to FP types!");
|
|
assert(N1.getValueType() == N2.getValueType() &&
|
|
N1.getValueType() == VT && "Binary operator types must match!");
|
|
// (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
|
|
// worth handling here.
|
|
if (N2C && N2C->isNullValue())
|
|
return N2;
|
|
if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
|
|
return N1;
|
|
break;
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
assert(VT.isInteger() && "This operator does not apply to FP types!");
|
|
assert(N1.getValueType() == N2.getValueType() &&
|
|
N1.getValueType() == VT && "Binary operator types must match!");
|
|
// (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
|
|
// it's worth handling here.
|
|
if (N2C && N2C->isNullValue())
|
|
return N1;
|
|
break;
|
|
case ISD::UDIV:
|
|
case ISD::UREM:
|
|
case ISD::MULHU:
|
|
case ISD::MULHS:
|
|
case ISD::MUL:
|
|
case ISD::SDIV:
|
|
case ISD::SREM:
|
|
assert(VT.isInteger() && "This operator does not apply to FP types!");
|
|
assert(N1.getValueType() == N2.getValueType() &&
|
|
N1.getValueType() == VT && "Binary operator types must match!");
|
|
break;
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
if (UnsafeFPMath) {
|
|
if (Opcode == ISD::FADD) {
|
|
// 0+x --> x
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
|
|
if (CFP->getValueAPF().isZero())
|
|
return N2;
|
|
// x+0 --> x
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
|
|
if (CFP->getValueAPF().isZero())
|
|
return N1;
|
|
} else if (Opcode == ISD::FSUB) {
|
|
// x-0 --> x
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
|
|
if (CFP->getValueAPF().isZero())
|
|
return N1;
|
|
}
|
|
}
|
|
assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
|
|
assert(N1.getValueType() == N2.getValueType() &&
|
|
N1.getValueType() == VT && "Binary operator types must match!");
|
|
break;
|
|
case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
|
|
assert(N1.getValueType() == VT &&
|
|
N1.getValueType().isFloatingPoint() &&
|
|
N2.getValueType().isFloatingPoint() &&
|
|
"Invalid FCOPYSIGN!");
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
assert(VT == N1.getValueType() &&
|
|
"Shift operators return type must be the same as their first arg");
|
|
assert(VT.isInteger() && N2.getValueType().isInteger() &&
|
|
"Shifts only work on integers");
|
|
// Verify that the shift amount VT is bit enough to hold valid shift
|
|
// amounts. This catches things like trying to shift an i1024 value by an
|
|
// i8, which is easy to fall into in generic code that uses
|
|
// TLI.getShiftAmount().
|
|
assert(N2.getValueType().getSizeInBits() >=
|
|
Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
|
|
"Invalid use of small shift amount with oversized value!");
|
|
|
|
// Always fold shifts of i1 values so the code generator doesn't need to
|
|
// handle them. Since we know the size of the shift has to be less than the
|
|
// size of the value, the shift/rotate count is guaranteed to be zero.
|
|
if (VT == MVT::i1)
|
|
return N1;
|
|
if (N2C && N2C->isNullValue())
|
|
return N1;
|
|
break;
|
|
case ISD::FP_ROUND_INREG: {
|
|
EVT EVT = cast<VTSDNode>(N2)->getVT();
|
|
assert(VT == N1.getValueType() && "Not an inreg round!");
|
|
assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
|
|
"Cannot FP_ROUND_INREG integer types");
|
|
assert(EVT.isVector() == VT.isVector() &&
|
|
"FP_ROUND_INREG type should be vector iff the operand "
|
|
"type is vector!");
|
|
assert((!EVT.isVector() ||
|
|
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
|
|
"Vector element counts must match in FP_ROUND_INREG");
|
|
assert(EVT.bitsLE(VT) && "Not rounding down!");
|
|
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
|
|
break;
|
|
}
|
|
case ISD::FP_ROUND:
|
|
assert(VT.isFloatingPoint() &&
|
|
N1.getValueType().isFloatingPoint() &&
|
|
VT.bitsLE(N1.getValueType()) &&
|
|
isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
|
|
if (N1.getValueType() == VT) return N1; // noop conversion.
|
|
break;
|
|
case ISD::AssertSext:
|
|
case ISD::AssertZext: {
|
|
EVT EVT = cast<VTSDNode>(N2)->getVT();
|
|
assert(VT == N1.getValueType() && "Not an inreg extend!");
|
|
assert(VT.isInteger() && EVT.isInteger() &&
|
|
"Cannot *_EXTEND_INREG FP types");
|
|
assert(!EVT.isVector() &&
|
|
"AssertSExt/AssertZExt type should be the vector element type "
|
|
"rather than the vector type!");
|
|
assert(EVT.bitsLE(VT) && "Not extending!");
|
|
if (VT == EVT) return N1; // noop assertion.
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
EVT EVT = cast<VTSDNode>(N2)->getVT();
|
|
assert(VT == N1.getValueType() && "Not an inreg extend!");
|
|
assert(VT.isInteger() && EVT.isInteger() &&
|
|
"Cannot *_EXTEND_INREG FP types");
|
|
assert(EVT.isVector() == VT.isVector() &&
|
|
"SIGN_EXTEND_INREG type should be vector iff the operand "
|
|
"type is vector!");
|
|
assert((!EVT.isVector() ||
|
|
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
|
|
"Vector element counts must match in SIGN_EXTEND_INREG");
|
|
assert(EVT.bitsLE(VT) && "Not extending!");
|
|
if (EVT == VT) return N1; // Not actually extending
|
|
|
|
if (N1C) {
|
|
APInt Val = N1C->getAPIntValue();
|
|
unsigned FromBits = EVT.getScalarType().getSizeInBits();
|
|
Val <<= Val.getBitWidth()-FromBits;
|
|
Val = Val.ashr(Val.getBitWidth()-FromBits);
|
|
return getConstant(Val, VT);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
// EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
return getUNDEF(VT);
|
|
|
|
// EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
|
|
// expanding copies of large vectors from registers.
|
|
if (N2C &&
|
|
N1.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
N1.getNumOperands() > 0) {
|
|
unsigned Factor =
|
|
N1.getOperand(0).getValueType().getVectorNumElements();
|
|
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
|
|
N1.getOperand(N2C->getZExtValue() / Factor),
|
|
getConstant(N2C->getZExtValue() % Factor,
|
|
N2.getValueType()));
|
|
}
|
|
|
|
// EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
|
|
// expanding large vector constants.
|
|
if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
|
|
SDValue Elt = N1.getOperand(N2C->getZExtValue());
|
|
EVT VEltTy = N1.getValueType().getVectorElementType();
|
|
if (Elt.getValueType() != VEltTy) {
|
|
// If the vector element type is not legal, the BUILD_VECTOR operands
|
|
// are promoted and implicitly truncated. Make that explicit here.
|
|
Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
|
|
}
|
|
if (VT != VEltTy) {
|
|
// If the vector element type is not legal, the EXTRACT_VECTOR_ELT
|
|
// result is implicitly extended.
|
|
Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
|
|
}
|
|
return Elt;
|
|
}
|
|
|
|
// EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
|
|
// operations are lowered to scalars.
|
|
if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
|
|
// If the indices are the same, return the inserted element else
|
|
// if the indices are known different, extract the element from
|
|
// the original vector.
|
|
SDValue N1Op2 = N1.getOperand(2);
|
|
ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
|
|
|
|
if (N1Op2C && N2C) {
|
|
if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
|
|
if (VT == N1.getOperand(1).getValueType())
|
|
return N1.getOperand(1);
|
|
else
|
|
return getSExtOrTrunc(N1.getOperand(1), DL, VT);
|
|
}
|
|
|
|
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
|
|
}
|
|
}
|
|
break;
|
|
case ISD::EXTRACT_ELEMENT:
|
|
assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
|
|
assert(!N1.getValueType().isVector() && !VT.isVector() &&
|
|
(N1.getValueType().isInteger() == VT.isInteger()) &&
|
|
N1.getValueType() != VT &&
|
|
"Wrong types for EXTRACT_ELEMENT!");
|
|
|
|
// EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
|
|
// 64-bit integers into 32-bit parts. Instead of building the extract of
|
|
// the BUILD_PAIR, only to have legalize rip it apart, just do it now.
|
|
if (N1.getOpcode() == ISD::BUILD_PAIR)
|
|
return N1.getOperand(N2C->getZExtValue());
|
|
|
|
// EXTRACT_ELEMENT of a constant int is also very common.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
|
|
unsigned ElementSize = VT.getSizeInBits();
|
|
unsigned Shift = ElementSize * N2C->getZExtValue();
|
|
APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
|
|
return getConstant(ShiftedVal.trunc(ElementSize), VT);
|
|
}
|
|
break;
|
|
case ISD::EXTRACT_SUBVECTOR: {
|
|
SDValue Index = N2;
|
|
if (VT.isSimple() && N1.getValueType().isSimple()) {
|
|
assert(VT.isVector() && N1.getValueType().isVector() &&
|
|
"Extract subvector VTs must be a vectors!");
|
|
assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
|
|
"Extract subvector VTs must have the same element type!");
|
|
assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
|
|
"Extract subvector must be from larger vector to smaller vector!");
|
|
|
|
if (isa<ConstantSDNode>(Index.getNode())) {
|
|
assert((VT.getVectorNumElements() +
|
|
cast<ConstantSDNode>(Index.getNode())->getZExtValue()
|
|
<= N1.getValueType().getVectorNumElements())
|
|
&& "Extract subvector overflow!");
|
|
}
|
|
|
|
// Trivial extraction.
|
|
if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
|
|
return N1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (N1C) {
|
|
if (N2C) {
|
|
SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
|
|
if (SV.getNode()) return SV;
|
|
} else { // Cannonicalize constant to RHS if commutative
|
|
if (isCommutativeBinOp(Opcode)) {
|
|
std::swap(N1C, N2C);
|
|
std::swap(N1, N2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Constant fold FP operations.
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
|
|
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
|
|
if (N1CFP) {
|
|
if (!N2CFP && isCommutativeBinOp(Opcode)) {
|
|
// Cannonicalize constant to RHS if commutative
|
|
std::swap(N1CFP, N2CFP);
|
|
std::swap(N1, N2);
|
|
} else if (N2CFP && VT != MVT::ppcf128) {
|
|
APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
|
|
APFloat::opStatus s;
|
|
switch (Opcode) {
|
|
case ISD::FADD:
|
|
s = V1.add(V2, APFloat::rmNearestTiesToEven);
|
|
if (s != APFloat::opInvalidOp)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FSUB:
|
|
s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FMUL:
|
|
s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FDIV:
|
|
s = V1.divide(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FREM :
|
|
s = V1.mod(V2, APFloat::rmNearestTiesToEven);
|
|
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
|
|
return getConstantFP(V1, VT);
|
|
break;
|
|
case ISD::FCOPYSIGN:
|
|
V1.copySign(V2);
|
|
return getConstantFP(V1, VT);
|
|
default: break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize an UNDEF to the RHS, even over a constant.
|
|
if (N1.getOpcode() == ISD::UNDEF) {
|
|
if (isCommutativeBinOp(Opcode)) {
|
|
std::swap(N1, N2);
|
|
} else {
|
|
switch (Opcode) {
|
|
case ISD::FP_ROUND_INREG:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::SUB:
|
|
case ISD::FSUB:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::SRA:
|
|
return N1; // fold op(undef, arg2) -> undef
|
|
case ISD::UDIV:
|
|
case ISD::SDIV:
|
|
case ISD::UREM:
|
|
case ISD::SREM:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
if (!VT.isVector())
|
|
return getConstant(0, VT); // fold op(undef, arg2) -> 0
|
|
// For vectors, we can't easily build an all zero vector, just return
|
|
// the LHS.
|
|
return N2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fold a bunch of operators when the RHS is undef.
|
|
if (N2.getOpcode() == ISD::UNDEF) {
|
|
switch (Opcode) {
|
|
case ISD::XOR:
|
|
if (N1.getOpcode() == ISD::UNDEF)
|
|
// Handle undef ^ undef -> 0 special case. This is a common
|
|
// idiom (misuse).
|
|
return getConstant(0, VT);
|
|
// fallthrough
|
|
case ISD::ADD:
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUB:
|
|
case ISD::UDIV:
|
|
case ISD::SDIV:
|
|
case ISD::UREM:
|
|
case ISD::SREM:
|
|
return N2; // fold op(arg1, undef) -> undef
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
if (UnsafeFPMath)
|
|
return N2;
|
|
break;
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
if (!VT.isVector())
|
|
return getConstant(0, VT); // fold op(arg1, undef) -> 0
|
|
// For vectors, we can't easily build an all zero vector, just return
|
|
// the LHS.
|
|
return N1;
|
|
case ISD::OR:
|
|
if (!VT.isVector())
|
|
return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
|
|
// For vectors, we can't easily build an all one vector, just return
|
|
// the LHS.
|
|
return N1;
|
|
case ISD::SRA:
|
|
return N1;
|
|
}
|
|
}
|
|
|
|
// Memoize this node if possible.
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
if (VT != MVT::Glue) {
|
|
SDValue Ops[] = { N1, N2 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
|
|
}
|
|
|
|
AllNodes.push_back(N);
|
|
#ifndef NDEBUG
|
|
VerifySDNode(N);
|
|
#endif
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
|
|
SDValue N1, SDValue N2, SDValue N3) {
|
|
// Perform various simplifications.
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
|
|
switch (Opcode) {
|
|
case ISD::CONCAT_VECTORS:
|
|
// A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
|
|
// one big BUILD_VECTOR.
|
|
if (N1.getOpcode() == ISD::BUILD_VECTOR &&
|
|
N2.getOpcode() == ISD::BUILD_VECTOR &&
|
|
N3.getOpcode() == ISD::BUILD_VECTOR) {
|
|
SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
|
|
N1.getNode()->op_end());
|
|
Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
|
|
Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
|
|
return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
|
|
}
|
|
break;
|
|
case ISD::SETCC: {
|
|
// Use FoldSetCC to simplify SETCC's.
|
|
SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
|
|
if (Simp.getNode()) return Simp;
|
|
break;
|
|
}
|
|
case ISD::SELECT:
|
|
if (N1C) {
|
|
if (N1C->getZExtValue())
|
|
return N2; // select true, X, Y -> X
|
|
else
|
|
return N3; // select false, X, Y -> Y
|
|
}
|
|
|
|
if (N2 == N3) return N2; // select C, X, X -> X
|
|
break;
|
|
case ISD::VECTOR_SHUFFLE:
|
|
llvm_unreachable("should use getVectorShuffle constructor!");
|
|
break;
|
|
case ISD::INSERT_SUBVECTOR: {
|
|
SDValue Index = N3;
|
|
if (VT.isSimple() && N1.getValueType().isSimple()
|
|
&& N2.getValueType().isSimple()) {
|
|
assert(VT.isVector() && N1.getValueType().isVector() &&
|
|
N2.getValueType().isVector() &&
|
|
"Insert subvector VTs must be a vectors");
|
|
assert(VT == N1.getValueType() &&
|
|
"Dest and insert subvector source types must match!");
|
|
assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
|
|
"Insert subvector must be from smaller vector to larger vector!");
|
|
if (isa<ConstantSDNode>(Index.getNode())) {
|
|
assert((N2.getValueType().getVectorNumElements() +
|
|
cast<ConstantSDNode>(Index.getNode())->getZExtValue()
|
|
<= VT.getVectorNumElements())
|
|
&& "Insert subvector overflow!");
|
|
}
|
|
|
|
// Trivial insertion.
|
|
if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
|
|
return N2;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BITCAST:
|
|
// Fold bit_convert nodes from a type to themselves.
|
|
if (N1.getValueType() == VT)
|
|
return N1;
|
|
break;
|
|
}
|
|
|
|
// Memoize node if it doesn't produce a flag.
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
if (VT != MVT::Glue) {
|
|
SDValue Ops[] = { N1, N2, N3 };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
|
|
}
|
|
|
|
AllNodes.push_back(N);
|
|
#ifndef NDEBUG
|
|
VerifySDNode(N);
|
|
#endif
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
|
|
SDValue N1, SDValue N2, SDValue N3,
|
|
SDValue N4) {
|
|
SDValue Ops[] = { N1, N2, N3, N4 };
|
|
return getNode(Opcode, DL, VT, Ops, 4);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
|
|
SDValue N1, SDValue N2, SDValue N3,
|
|
SDValue N4, SDValue N5) {
|
|
SDValue Ops[] = { N1, N2, N3, N4, N5 };
|
|
return getNode(Opcode, DL, VT, Ops, 5);
|
|
}
|
|
|
|
/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
|
|
/// the incoming stack arguments to be loaded from the stack.
|
|
SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
|
|
SmallVector<SDValue, 8> ArgChains;
|
|
|
|
// Include the original chain at the beginning of the list. When this is
|
|
// used by target LowerCall hooks, this helps legalize find the
|
|
// CALLSEQ_BEGIN node.
|
|
ArgChains.push_back(Chain);
|
|
|
|
// Add a chain value for each stack argument.
|
|
for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
|
|
UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
|
|
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
|
|
if (FI->getIndex() < 0)
|
|
ArgChains.push_back(SDValue(L, 1));
|
|
|
|
// Build a tokenfactor for all the chains.
|
|
return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
|
|
&ArgChains[0], ArgChains.size());
|
|
}
|
|
|
|
/// SplatByte - Distribute ByteVal over NumBits bits.
|
|
static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
|
|
APInt Val = APInt(NumBits, ByteVal);
|
|
unsigned Shift = 8;
|
|
for (unsigned i = NumBits; i > 8; i >>= 1) {
|
|
Val = (Val << Shift) | Val;
|
|
Shift <<= 1;
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
/// getMemsetValue - Vectorized representation of the memset value
|
|
/// operand.
|
|
static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
assert(Value.getOpcode() != ISD::UNDEF);
|
|
|
|
unsigned NumBits = VT.getScalarType().getSizeInBits();
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
|
|
APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
|
|
if (VT.isInteger())
|
|
return DAG.getConstant(Val, VT);
|
|
return DAG.getConstantFP(APFloat(Val), VT);
|
|
}
|
|
|
|
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
|
|
if (NumBits > 8) {
|
|
// Use a multiplication with 0x010101... to extend the input to the
|
|
// required length.
|
|
APInt Magic = SplatByte(NumBits, 0x01);
|
|
Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
|
|
/// used when a memcpy is turned into a memset when the source is a constant
|
|
/// string ptr.
|
|
static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
|
|
const TargetLowering &TLI,
|
|
std::string &Str, unsigned Offset) {
|
|
// Handle vector with all elements zero.
|
|
if (Str.empty()) {
|
|
if (VT.isInteger())
|
|
return DAG.getConstant(0, VT);
|
|
else if (VT == MVT::f32 || VT == MVT::f64)
|
|
return DAG.getConstantFP(0.0, VT);
|
|
else if (VT.isVector()) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
|
|
EltVT, NumElts)));
|
|
} else
|
|
llvm_unreachable("Expected type!");
|
|
}
|
|
|
|
assert(!VT.isVector() && "Can't handle vector type here!");
|
|
unsigned NumBits = VT.getSizeInBits();
|
|
unsigned MSB = NumBits / 8;
|
|
uint64_t Val = 0;
|
|
if (TLI.isLittleEndian())
|
|
Offset = Offset + MSB - 1;
|
|
for (unsigned i = 0; i != MSB; ++i) {
|
|
Val = (Val << 8) | (unsigned char)Str[Offset];
|
|
Offset += TLI.isLittleEndian() ? -1 : 1;
|
|
}
|
|
return DAG.getConstant(Val, VT);
|
|
}
|
|
|
|
/// getMemBasePlusOffset - Returns base and offset node for the
|
|
///
|
|
static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
|
|
SelectionDAG &DAG) {
|
|
EVT VT = Base.getValueType();
|
|
return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
|
|
VT, Base, DAG.getConstant(Offset, VT));
|
|
}
|
|
|
|
/// isMemSrcFromString - Returns true if memcpy source is a string constant.
|
|
///
|
|
static bool isMemSrcFromString(SDValue Src, std::string &Str) {
|
|
unsigned SrcDelta = 0;
|
|
GlobalAddressSDNode *G = NULL;
|
|
if (Src.getOpcode() == ISD::GlobalAddress)
|
|
G = cast<GlobalAddressSDNode>(Src);
|
|
else if (Src.getOpcode() == ISD::ADD &&
|
|
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
|
|
Src.getOperand(1).getOpcode() == ISD::Constant) {
|
|
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
|
|
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
|
|
}
|
|
if (!G)
|
|
return false;
|
|
|
|
const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
|
|
if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// FindOptimalMemOpLowering - Determines the optimial series memory ops
|
|
/// to replace the memset / memcpy. Return true if the number of memory ops
|
|
/// is below the threshold. It returns the types of the sequence of
|
|
/// memory ops to perform memset / memcpy by reference.
|
|
static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
|
|
unsigned Limit, uint64_t Size,
|
|
unsigned DstAlign, unsigned SrcAlign,
|
|
bool NonScalarIntSafe,
|
|
bool MemcpyStrSrc,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
|
|
"Expecting memcpy / memset source to meet alignment requirement!");
|
|
// If 'SrcAlign' is zero, that means the memory operation does not need to
|
|
// load the value, i.e. memset or memcpy from constant string. Otherwise,
|
|
// it's the inferred alignment of the source. 'DstAlign', on the other hand,
|
|
// is the specified alignment of the memory operation. If it is zero, that
|
|
// means it's possible to change the alignment of the destination.
|
|
// 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
|
|
// not need to be loaded.
|
|
EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
|
|
NonScalarIntSafe, MemcpyStrSrc,
|
|
DAG.getMachineFunction());
|
|
|
|
if (VT == MVT::Other) {
|
|
if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
|
|
TLI.allowsUnalignedMemoryAccesses(VT)) {
|
|
VT = TLI.getPointerTy();
|
|
} else {
|
|
switch (DstAlign & 7) {
|
|
case 0: VT = MVT::i64; break;
|
|
case 4: VT = MVT::i32; break;
|
|
case 2: VT = MVT::i16; break;
|
|
default: VT = MVT::i8; break;
|
|
}
|
|
}
|
|
|
|
MVT LVT = MVT::i64;
|
|
while (!TLI.isTypeLegal(LVT))
|
|
LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
|
|
assert(LVT.isInteger());
|
|
|
|
if (VT.bitsGT(LVT))
|
|
VT = LVT;
|
|
}
|
|
|
|
unsigned NumMemOps = 0;
|
|
while (Size != 0) {
|
|
unsigned VTSize = VT.getSizeInBits() / 8;
|
|
while (VTSize > Size) {
|
|
// For now, only use non-vector load / store's for the left-over pieces.
|
|
if (VT.isVector() || VT.isFloatingPoint()) {
|
|
VT = MVT::i64;
|
|
while (!TLI.isTypeLegal(VT))
|
|
VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
|
|
VTSize = VT.getSizeInBits() / 8;
|
|
} else {
|
|
// This can result in a type that is not legal on the target, e.g.
|
|
// 1 or 2 bytes on PPC.
|
|
VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
|
|
VTSize >>= 1;
|
|
}
|
|
}
|
|
|
|
if (++NumMemOps > Limit)
|
|
return false;
|
|
MemOps.push_back(VT);
|
|
Size -= VTSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Chain, SDValue Dst,
|
|
SDValue Src, uint64_t Size,
|
|
unsigned Align, bool isVol,
|
|
bool AlwaysInline,
|
|
MachinePointerInfo DstPtrInfo,
|
|
MachinePointerInfo SrcPtrInfo) {
|
|
// Turn a memcpy of undef to nop.
|
|
if (Src.getOpcode() == ISD::UNDEF)
|
|
return Chain;
|
|
|
|
// Expand memcpy to a series of load and store ops if the size operand falls
|
|
// below a certain threshold.
|
|
// TODO: In the AlwaysInline case, if the size is big then generate a loop
|
|
// rather than maybe a humongous number of loads and stores.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
std::vector<EVT> MemOps;
|
|
bool DstAlignCanChange = false;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
|
|
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
|
|
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
|
|
DstAlignCanChange = true;
|
|
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
|
|
if (Align > SrcAlign)
|
|
SrcAlign = Align;
|
|
std::string Str;
|
|
bool CopyFromStr = isMemSrcFromString(Src, Str);
|
|
bool isZeroStr = CopyFromStr && Str.empty();
|
|
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
|
|
|
|
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
|
|
(DstAlignCanChange ? 0 : Align),
|
|
(isZeroStr ? 0 : SrcAlign),
|
|
true, CopyFromStr, DAG, TLI))
|
|
return SDValue();
|
|
|
|
if (DstAlignCanChange) {
|
|
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
|
|
unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
if (NewAlign > Align) {
|
|
// Give the stack frame object a larger alignment if needed.
|
|
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
|
|
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
|
|
Align = NewAlign;
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 8> OutChains;
|
|
unsigned NumMemOps = MemOps.size();
|
|
uint64_t SrcOff = 0, DstOff = 0;
|
|
for (unsigned i = 0; i != NumMemOps; ++i) {
|
|
EVT VT = MemOps[i];
|
|
unsigned VTSize = VT.getSizeInBits() / 8;
|
|
SDValue Value, Store;
|
|
|
|
if (CopyFromStr &&
|
|
(isZeroStr || (VT.isInteger() && !VT.isVector()))) {
|
|
// It's unlikely a store of a vector immediate can be done in a single
|
|
// instruction. It would require a load from a constantpool first.
|
|
// We only handle zero vectors here.
|
|
// FIXME: Handle other cases where store of vector immediate is done in
|
|
// a single instruction.
|
|
Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
|
|
Store = DAG.getStore(Chain, dl, Value,
|
|
getMemBasePlusOffset(Dst, DstOff, DAG),
|
|
DstPtrInfo.getWithOffset(DstOff), isVol,
|
|
false, Align);
|
|
} else {
|
|
// The type might not be legal for the target. This should only happen
|
|
// if the type is smaller than a legal type, as on PPC, so the right
|
|
// thing to do is generate a LoadExt/StoreTrunc pair. These simplify
|
|
// to Load/Store if NVT==VT.
|
|
// FIXME does the case above also need this?
|
|
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
|
|
assert(NVT.bitsGE(VT));
|
|
Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
|
|
getMemBasePlusOffset(Src, SrcOff, DAG),
|
|
SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
|
|
MinAlign(SrcAlign, SrcOff));
|
|
Store = DAG.getTruncStore(Chain, dl, Value,
|
|
getMemBasePlusOffset(Dst, DstOff, DAG),
|
|
DstPtrInfo.getWithOffset(DstOff), VT, isVol,
|
|
false, Align);
|
|
}
|
|
OutChains.push_back(Store);
|
|
SrcOff += VTSize;
|
|
DstOff += VTSize;
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
}
|
|
|
|
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Chain, SDValue Dst,
|
|
SDValue Src, uint64_t Size,
|
|
unsigned Align, bool isVol,
|
|
bool AlwaysInline,
|
|
MachinePointerInfo DstPtrInfo,
|
|
MachinePointerInfo SrcPtrInfo) {
|
|
// Turn a memmove of undef to nop.
|
|
if (Src.getOpcode() == ISD::UNDEF)
|
|
return Chain;
|
|
|
|
// Expand memmove to a series of load and store ops if the size operand falls
|
|
// below a certain threshold.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
std::vector<EVT> MemOps;
|
|
bool DstAlignCanChange = false;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
|
|
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
|
|
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
|
|
DstAlignCanChange = true;
|
|
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
|
|
if (Align > SrcAlign)
|
|
SrcAlign = Align;
|
|
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
|
|
|
|
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
|
|
(DstAlignCanChange ? 0 : Align),
|
|
SrcAlign, true, false, DAG, TLI))
|
|
return SDValue();
|
|
|
|
if (DstAlignCanChange) {
|
|
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
|
|
unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
if (NewAlign > Align) {
|
|
// Give the stack frame object a larger alignment if needed.
|
|
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
|
|
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
|
|
Align = NewAlign;
|
|
}
|
|
}
|
|
|
|
uint64_t SrcOff = 0, DstOff = 0;
|
|
SmallVector<SDValue, 8> LoadValues;
|
|
SmallVector<SDValue, 8> LoadChains;
|
|
SmallVector<SDValue, 8> OutChains;
|
|
unsigned NumMemOps = MemOps.size();
|
|
for (unsigned i = 0; i < NumMemOps; i++) {
|
|
EVT VT = MemOps[i];
|
|
unsigned VTSize = VT.getSizeInBits() / 8;
|
|
SDValue Value, Store;
|
|
|
|
Value = DAG.getLoad(VT, dl, Chain,
|
|
getMemBasePlusOffset(Src, SrcOff, DAG),
|
|
SrcPtrInfo.getWithOffset(SrcOff), isVol,
|
|
false, SrcAlign);
|
|
LoadValues.push_back(Value);
|
|
LoadChains.push_back(Value.getValue(1));
|
|
SrcOff += VTSize;
|
|
}
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&LoadChains[0], LoadChains.size());
|
|
OutChains.clear();
|
|
for (unsigned i = 0; i < NumMemOps; i++) {
|
|
EVT VT = MemOps[i];
|
|
unsigned VTSize = VT.getSizeInBits() / 8;
|
|
SDValue Value, Store;
|
|
|
|
Store = DAG.getStore(Chain, dl, LoadValues[i],
|
|
getMemBasePlusOffset(Dst, DstOff, DAG),
|
|
DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
|
|
OutChains.push_back(Store);
|
|
DstOff += VTSize;
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
}
|
|
|
|
static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Chain, SDValue Dst,
|
|
SDValue Src, uint64_t Size,
|
|
unsigned Align, bool isVol,
|
|
MachinePointerInfo DstPtrInfo) {
|
|
// Turn a memset of undef to nop.
|
|
if (Src.getOpcode() == ISD::UNDEF)
|
|
return Chain;
|
|
|
|
// Expand memset to a series of load/store ops if the size operand
|
|
// falls below a certain threshold.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
std::vector<EVT> MemOps;
|
|
bool DstAlignCanChange = false;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
|
|
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
|
|
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
|
|
DstAlignCanChange = true;
|
|
bool NonScalarIntSafe =
|
|
isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
|
|
if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
|
|
Size, (DstAlignCanChange ? 0 : Align), 0,
|
|
NonScalarIntSafe, false, DAG, TLI))
|
|
return SDValue();
|
|
|
|
if (DstAlignCanChange) {
|
|
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
|
|
unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
|
|
if (NewAlign > Align) {
|
|
// Give the stack frame object a larger alignment if needed.
|
|
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
|
|
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
|
|
Align = NewAlign;
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 8> OutChains;
|
|
uint64_t DstOff = 0;
|
|
unsigned NumMemOps = MemOps.size();
|
|
|
|
// Find the largest store and generate the bit pattern for it.
|
|
EVT LargestVT = MemOps[0];
|
|
for (unsigned i = 1; i < NumMemOps; i++)
|
|
if (MemOps[i].bitsGT(LargestVT))
|
|
LargestVT = MemOps[i];
|
|
SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
|
|
|
|
for (unsigned i = 0; i < NumMemOps; i++) {
|
|
EVT VT = MemOps[i];
|
|
|
|
// If this store is smaller than the largest store see whether we can get
|
|
// the smaller value for free with a truncate.
|
|
SDValue Value = MemSetValue;
|
|
if (VT.bitsLT(LargestVT)) {
|
|
if (!LargestVT.isVector() && !VT.isVector() &&
|
|
TLI.isTruncateFree(LargestVT, VT))
|
|
Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
|
|
else
|
|
Value = getMemsetValue(Src, VT, DAG, dl);
|
|
}
|
|
assert(Value.getValueType() == VT && "Value with wrong type.");
|
|
SDValue Store = DAG.getStore(Chain, dl, Value,
|
|
getMemBasePlusOffset(Dst, DstOff, DAG),
|
|
DstPtrInfo.getWithOffset(DstOff),
|
|
isVol, false, Align);
|
|
OutChains.push_back(Store);
|
|
DstOff += VT.getSizeInBits() / 8;
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
}
|
|
|
|
SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
|
|
SDValue Src, SDValue Size,
|
|
unsigned Align, bool isVol, bool AlwaysInline,
|
|
MachinePointerInfo DstPtrInfo,
|
|
MachinePointerInfo SrcPtrInfo) {
|
|
|
|
// Check to see if we should lower the memcpy to loads and stores first.
|
|
// For cases within the target-specified limits, this is the best choice.
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
if (ConstantSize) {
|
|
// Memcpy with size zero? Just return the original chain.
|
|
if (ConstantSize->isNullValue())
|
|
return Chain;
|
|
|
|
SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
|
|
ConstantSize->getZExtValue(),Align,
|
|
isVol, false, DstPtrInfo, SrcPtrInfo);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
// Then check to see if we should lower the memcpy with target-specific
|
|
// code. If the target chooses to do this, this is the next best.
|
|
SDValue Result =
|
|
TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
|
|
isVol, AlwaysInline,
|
|
DstPtrInfo, SrcPtrInfo);
|
|
if (Result.getNode())
|
|
return Result;
|
|
|
|
// If we really need inline code and the target declined to provide it,
|
|
// use a (potentially long) sequence of loads and stores.
|
|
if (AlwaysInline) {
|
|
assert(ConstantSize && "AlwaysInline requires a constant size!");
|
|
return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
|
|
ConstantSize->getZExtValue(), Align, isVol,
|
|
true, DstPtrInfo, SrcPtrInfo);
|
|
}
|
|
|
|
// FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
|
|
// memcpy is not guaranteed to be safe. libc memcpys aren't required to
|
|
// respect volatile, so they may do things like read or write memory
|
|
// beyond the given memory regions. But fixing this isn't easy, and most
|
|
// people don't care.
|
|
|
|
// Emit a library call.
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
|
|
Entry.Node = Dst; Args.push_back(Entry);
|
|
Entry.Node = Src; Args.push_back(Entry);
|
|
Entry.Node = Size; Args.push_back(Entry);
|
|
// FIXME: pass in DebugLoc
|
|
std::pair<SDValue,SDValue> CallResult =
|
|
TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
|
|
false, false, false, false, 0,
|
|
TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
|
|
/*isReturnValueUsed=*/false,
|
|
getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
|
|
TLI.getPointerTy()),
|
|
Args, *this, dl);
|
|
return CallResult.second;
|
|
}
|
|
|
|
SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
|
|
SDValue Src, SDValue Size,
|
|
unsigned Align, bool isVol,
|
|
MachinePointerInfo DstPtrInfo,
|
|
MachinePointerInfo SrcPtrInfo) {
|
|
|
|
// Check to see if we should lower the memmove to loads and stores first.
|
|
// For cases within the target-specified limits, this is the best choice.
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
if (ConstantSize) {
|
|
// Memmove with size zero? Just return the original chain.
|
|
if (ConstantSize->isNullValue())
|
|
return Chain;
|
|
|
|
SDValue Result =
|
|
getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
|
|
ConstantSize->getZExtValue(), Align, isVol,
|
|
false, DstPtrInfo, SrcPtrInfo);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
// Then check to see if we should lower the memmove with target-specific
|
|
// code. If the target chooses to do this, this is the next best.
|
|
SDValue Result =
|
|
TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
|
|
DstPtrInfo, SrcPtrInfo);
|
|
if (Result.getNode())
|
|
return Result;
|
|
|
|
// FIXME: If the memmove is volatile, lowering it to plain libc memmove may
|
|
// not be safe. See memcpy above for more details.
|
|
|
|
// Emit a library call.
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
|
|
Entry.Node = Dst; Args.push_back(Entry);
|
|
Entry.Node = Src; Args.push_back(Entry);
|
|
Entry.Node = Size; Args.push_back(Entry);
|
|
// FIXME: pass in DebugLoc
|
|
std::pair<SDValue,SDValue> CallResult =
|
|
TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
|
|
false, false, false, false, 0,
|
|
TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
|
|
/*isReturnValueUsed=*/false,
|
|
getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
|
|
TLI.getPointerTy()),
|
|
Args, *this, dl);
|
|
return CallResult.second;
|
|
}
|
|
|
|
SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
|
|
SDValue Src, SDValue Size,
|
|
unsigned Align, bool isVol,
|
|
MachinePointerInfo DstPtrInfo) {
|
|
|
|
// Check to see if we should lower the memset to stores first.
|
|
// For cases within the target-specified limits, this is the best choice.
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
if (ConstantSize) {
|
|
// Memset with size zero? Just return the original chain.
|
|
if (ConstantSize->isNullValue())
|
|
return Chain;
|
|
|
|
SDValue Result =
|
|
getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
|
|
Align, isVol, DstPtrInfo);
|
|
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
// Then check to see if we should lower the memset with target-specific
|
|
// code. If the target chooses to do this, this is the next best.
|
|
SDValue Result =
|
|
TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
|
|
DstPtrInfo);
|
|
if (Result.getNode())
|
|
return Result;
|
|
|
|
// Emit a library call.
|
|
Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
Entry.Node = Dst; Entry.Ty = IntPtrTy;
|
|
Args.push_back(Entry);
|
|
// Extend or truncate the argument to be an i32 value for the call.
|
|
if (Src.getValueType().bitsGT(MVT::i32))
|
|
Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
|
|
else
|
|
Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
|
|
Entry.Node = Src;
|
|
Entry.Ty = Type::getInt32Ty(*getContext());
|
|
Entry.isSExt = true;
|
|
Args.push_back(Entry);
|
|
Entry.Node = Size;
|
|
Entry.Ty = IntPtrTy;
|
|
Entry.isSExt = false;
|
|
Args.push_back(Entry);
|
|
// FIXME: pass in DebugLoc
|
|
std::pair<SDValue,SDValue> CallResult =
|
|
TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
|
|
false, false, false, false, 0,
|
|
TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
|
|
/*isReturnValueUsed=*/false,
|
|
getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
|
|
TLI.getPointerTy()),
|
|
Args, *this, dl);
|
|
return CallResult.second;
|
|
}
|
|
|
|
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
|
|
SDValue Chain, SDValue Ptr, SDValue Cmp,
|
|
SDValue Swp, MachinePointerInfo PtrInfo,
|
|
unsigned Alignment,
|
|
AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope) {
|
|
if (Alignment == 0) // Ensure that codegen never sees alignment 0
|
|
Alignment = getEVTAlignment(MemVT);
|
|
|
|
MachineFunction &MF = getMachineFunction();
|
|
unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
|
|
|
|
// For now, atomics are considered to be volatile always.
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
|
|
|
|
return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
|
|
Ordering, SynchScope);
|
|
}
|
|
|
|
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
|
|
SDValue Chain,
|
|
SDValue Ptr, SDValue Cmp,
|
|
SDValue Swp, MachineMemOperand *MMO,
|
|
AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope) {
|
|
assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
|
|
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
|
|
|
|
EVT VT = Cmp.getValueType();
|
|
|
|
SDVTList VTs = getVTList(VT, MVT::Other);
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(MemVT.getRawBits());
|
|
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
|
|
void* IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
|
|
cast<AtomicSDNode>(E)->refineAlignment(MMO);
|
|
return SDValue(E, 0);
|
|
}
|
|
SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
|
|
Ptr, Cmp, Swp, MMO, Ordering,
|
|
SynchScope);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
|
|
SDValue Chain,
|
|
SDValue Ptr, SDValue Val,
|
|
const Value* PtrVal,
|
|
unsigned Alignment,
|
|
AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope) {
|
|
if (Alignment == 0) // Ensure that codegen never sees alignment 0
|
|
Alignment = getEVTAlignment(MemVT);
|
|
|
|
MachineFunction &MF = getMachineFunction();
|
|
unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
|
|
|
|
// For now, atomics are considered to be volatile always.
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
|
|
MemVT.getStoreSize(), Alignment);
|
|
|
|
return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
|
|
Ordering, SynchScope);
|
|
}
|
|
|
|
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
|
|
SDValue Chain,
|
|
SDValue Ptr, SDValue Val,
|
|
MachineMemOperand *MMO,
|
|
AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope) {
|
|
assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
|
|
Opcode == ISD::ATOMIC_LOAD_SUB ||
|
|
Opcode == ISD::ATOMIC_LOAD_AND ||
|
|
Opcode == ISD::ATOMIC_LOAD_OR ||
|
|
Opcode == ISD::ATOMIC_LOAD_XOR ||
|
|
Opcode == ISD::ATOMIC_LOAD_NAND ||
|
|
Opcode == ISD::ATOMIC_LOAD_MIN ||
|
|
Opcode == ISD::ATOMIC_LOAD_MAX ||
|
|
Opcode == ISD::ATOMIC_LOAD_UMIN ||
|
|
Opcode == ISD::ATOMIC_LOAD_UMAX ||
|
|
Opcode == ISD::ATOMIC_SWAP) &&
|
|
"Invalid Atomic Op");
|
|
|
|
EVT VT = Val.getValueType();
|
|
|
|
SDVTList VTs = getVTList(VT, MVT::Other);
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(MemVT.getRawBits());
|
|
SDValue Ops[] = {Chain, Ptr, Val};
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
|
|
void* IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
|
|
cast<AtomicSDNode>(E)->refineAlignment(MMO);
|
|
return SDValue(E, 0);
|
|
}
|
|
SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
|
|
Ptr, Val, MMO,
|
|
Ordering, SynchScope);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
|
|
SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
|
|
DebugLoc dl) {
|
|
if (NumOps == 1)
|
|
return Ops[0];
|
|
|
|
SmallVector<EVT, 4> VTs;
|
|
VTs.reserve(NumOps);
|
|
for (unsigned i = 0; i < NumOps; ++i)
|
|
VTs.push_back(Ops[i].getValueType());
|
|
return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
|
|
Ops, NumOps);
|
|
}
|
|
|
|
SDValue
|
|
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
|
|
const EVT *VTs, unsigned NumVTs,
|
|
const SDValue *Ops, unsigned NumOps,
|
|
EVT MemVT, MachinePointerInfo PtrInfo,
|
|
unsigned Align, bool Vol,
|
|
bool ReadMem, bool WriteMem) {
|
|
return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
|
|
MemVT, PtrInfo, Align, Vol,
|
|
ReadMem, WriteMem);
|
|
}
|
|
|
|
SDValue
|
|
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
|
|
const SDValue *Ops, unsigned NumOps,
|
|
EVT MemVT, MachinePointerInfo PtrInfo,
|
|
unsigned Align, bool Vol,
|
|
bool ReadMem, bool WriteMem) {
|
|
if (Align == 0) // Ensure that codegen never sees alignment 0
|
|
Align = getEVTAlignment(MemVT);
|
|
|
|
MachineFunction &MF = getMachineFunction();
|
|
unsigned Flags = 0;
|
|
if (WriteMem)
|
|
Flags |= MachineMemOperand::MOStore;
|
|
if (ReadMem)
|
|
Flags |= MachineMemOperand::MOLoad;
|
|
if (Vol)
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
|
|
|
|
return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
|
|
}
|
|
|
|
SDValue
|
|
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
|
|
const SDValue *Ops, unsigned NumOps,
|
|
EVT MemVT, MachineMemOperand *MMO) {
|
|
assert((Opcode == ISD::INTRINSIC_VOID ||
|
|
Opcode == ISD::INTRINSIC_W_CHAIN ||
|
|
Opcode == ISD::PREFETCH ||
|
|
(Opcode <= INT_MAX &&
|
|
(int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
|
|
"Opcode is not a memory-accessing opcode!");
|
|
|
|
// Memoize the node unless it returns a flag.
|
|
MemIntrinsicSDNode *N;
|
|
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
|
|
cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
|
|
return SDValue(E, 0);
|
|
}
|
|
|
|
N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
|
|
MemVT, MMO);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
|
|
MemVT, MMO);
|
|
}
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
|
|
/// MachinePointerInfo record from it. This is particularly useful because the
|
|
/// code generator has many cases where it doesn't bother passing in a
|
|
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
|
|
static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
|
|
// If this is FI+Offset, we can model it.
|
|
if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
|
|
return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
|
|
|
|
// If this is (FI+Offset1)+Offset2, we can model it.
|
|
if (Ptr.getOpcode() != ISD::ADD ||
|
|
!isa<ConstantSDNode>(Ptr.getOperand(1)) ||
|
|
!isa<FrameIndexSDNode>(Ptr.getOperand(0)))
|
|
return MachinePointerInfo();
|
|
|
|
int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
|
|
return MachinePointerInfo::getFixedStack(FI, Offset+
|
|
cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
|
|
}
|
|
|
|
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
|
|
/// MachinePointerInfo record from it. This is particularly useful because the
|
|
/// code generator has many cases where it doesn't bother passing in a
|
|
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
|
|
static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
|
|
// If the 'Offset' value isn't a constant, we can't handle this.
|
|
if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
|
|
return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
|
|
if (OffsetOp.getOpcode() == ISD::UNDEF)
|
|
return InferPointerInfo(Ptr);
|
|
return MachinePointerInfo();
|
|
}
|
|
|
|
|
|
SDValue
|
|
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
|
|
EVT VT, DebugLoc dl, SDValue Chain,
|
|
SDValue Ptr, SDValue Offset,
|
|
MachinePointerInfo PtrInfo, EVT MemVT,
|
|
bool isVolatile, bool isNonTemporal,
|
|
unsigned Alignment, const MDNode *TBAAInfo) {
|
|
assert(Chain.getValueType() == MVT::Other &&
|
|
"Invalid chain type");
|
|
if (Alignment == 0) // Ensure that codegen never sees alignment 0
|
|
Alignment = getEVTAlignment(VT);
|
|
|
|
unsigned Flags = MachineMemOperand::MOLoad;
|
|
if (isVolatile)
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
if (isNonTemporal)
|
|
Flags |= MachineMemOperand::MONonTemporal;
|
|
|
|
// If we don't have a PtrInfo, infer the trivial frame index case to simplify
|
|
// clients.
|
|
if (PtrInfo.V == 0)
|
|
PtrInfo = InferPointerInfo(Ptr, Offset);
|
|
|
|
MachineFunction &MF = getMachineFunction();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
|
|
TBAAInfo);
|
|
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
|
|
}
|
|
|
|
SDValue
|
|
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
|
|
EVT VT, DebugLoc dl, SDValue Chain,
|
|
SDValue Ptr, SDValue Offset, EVT MemVT,
|
|
MachineMemOperand *MMO) {
|
|
if (VT == MemVT) {
|
|
ExtType = ISD::NON_EXTLOAD;
|
|
} else if (ExtType == ISD::NON_EXTLOAD) {
|
|
assert(VT == MemVT && "Non-extending load from different memory type!");
|
|
} else {
|
|
// Extending load.
|
|
assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
|
|
"Should only be an extending load, not truncating!");
|
|
assert(VT.isInteger() == MemVT.isInteger() &&
|
|
"Cannot convert from FP to Int or Int -> FP!");
|
|
assert(VT.isVector() == MemVT.isVector() &&
|
|
"Cannot use trunc store to convert to or from a vector!");
|
|
assert((!VT.isVector() ||
|
|
VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
|
|
"Cannot use trunc store to change the number of vector elements!");
|
|
}
|
|
|
|
bool Indexed = AM != ISD::UNINDEXED;
|
|
assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
|
|
"Unindexed load with an offset!");
|
|
|
|
SDVTList VTs = Indexed ?
|
|
getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
|
|
SDValue Ops[] = { Chain, Ptr, Offset };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
|
|
ID.AddInteger(MemVT.getRawBits());
|
|
ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
|
|
MMO->isNonTemporal()));
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
|
|
cast<LoadSDNode>(E)->refineAlignment(MMO);
|
|
return SDValue(E, 0);
|
|
}
|
|
SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
|
|
MemVT, MMO);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
|
|
SDValue Chain, SDValue Ptr,
|
|
MachinePointerInfo PtrInfo,
|
|
bool isVolatile, bool isNonTemporal,
|
|
unsigned Alignment, const MDNode *TBAAInfo) {
|
|
SDValue Undef = getUNDEF(Ptr.getValueType());
|
|
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
|
|
PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
|
|
}
|
|
|
|
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
|
|
SDValue Chain, SDValue Ptr,
|
|
MachinePointerInfo PtrInfo, EVT MemVT,
|
|
bool isVolatile, bool isNonTemporal,
|
|
unsigned Alignment, const MDNode *TBAAInfo) {
|
|
SDValue Undef = getUNDEF(Ptr.getValueType());
|
|
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
|
|
PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
|
|
TBAAInfo);
|
|
}
|
|
|
|
|
|
SDValue
|
|
SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
|
|
SDValue Offset, ISD::MemIndexedMode AM) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
|
|
assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
|
|
"Load is already a indexed load!");
|
|
return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
|
|
LD->getChain(), Base, Offset, LD->getPointerInfo(),
|
|
LD->getMemoryVT(),
|
|
LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
|
|
}
|
|
|
|
SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
|
|
SDValue Ptr, MachinePointerInfo PtrInfo,
|
|
bool isVolatile, bool isNonTemporal,
|
|
unsigned Alignment, const MDNode *TBAAInfo) {
|
|
assert(Chain.getValueType() == MVT::Other &&
|
|
"Invalid chain type");
|
|
if (Alignment == 0) // Ensure that codegen never sees alignment 0
|
|
Alignment = getEVTAlignment(Val.getValueType());
|
|
|
|
unsigned Flags = MachineMemOperand::MOStore;
|
|
if (isVolatile)
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
if (isNonTemporal)
|
|
Flags |= MachineMemOperand::MONonTemporal;
|
|
|
|
if (PtrInfo.V == 0)
|
|
PtrInfo = InferPointerInfo(Ptr);
|
|
|
|
MachineFunction &MF = getMachineFunction();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, Flags,
|
|
Val.getValueType().getStoreSize(), Alignment,
|
|
TBAAInfo);
|
|
|
|
return getStore(Chain, dl, Val, Ptr, MMO);
|
|
}
|
|
|
|
SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
|
|
SDValue Ptr, MachineMemOperand *MMO) {
|
|
assert(Chain.getValueType() == MVT::Other &&
|
|
"Invalid chain type");
|
|
EVT VT = Val.getValueType();
|
|
SDVTList VTs = getVTList(MVT::Other);
|
|
SDValue Undef = getUNDEF(Ptr.getValueType());
|
|
SDValue Ops[] = { Chain, Val, Ptr, Undef };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
|
|
ID.AddInteger(VT.getRawBits());
|
|
ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
|
|
MMO->isNonTemporal()));
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
|
|
cast<StoreSDNode>(E)->refineAlignment(MMO);
|
|
return SDValue(E, 0);
|
|
}
|
|
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
|
|
false, VT, MMO);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
|
|
SDValue Ptr, MachinePointerInfo PtrInfo,
|
|
EVT SVT,bool isVolatile, bool isNonTemporal,
|
|
unsigned Alignment,
|
|
const MDNode *TBAAInfo) {
|
|
assert(Chain.getValueType() == MVT::Other &&
|
|
"Invalid chain type");
|
|
if (Alignment == 0) // Ensure that codegen never sees alignment 0
|
|
Alignment = getEVTAlignment(SVT);
|
|
|
|
unsigned Flags = MachineMemOperand::MOStore;
|
|
if (isVolatile)
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
if (isNonTemporal)
|
|
Flags |= MachineMemOperand::MONonTemporal;
|
|
|
|
if (PtrInfo.V == 0)
|
|
PtrInfo = InferPointerInfo(Ptr);
|
|
|
|
MachineFunction &MF = getMachineFunction();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
|
|
TBAAInfo);
|
|
|
|
return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
|
|
}
|
|
|
|
SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
|
|
SDValue Ptr, EVT SVT,
|
|
MachineMemOperand *MMO) {
|
|
EVT VT = Val.getValueType();
|
|
|
|
assert(Chain.getValueType() == MVT::Other &&
|
|
"Invalid chain type");
|
|
if (VT == SVT)
|
|
return getStore(Chain, dl, Val, Ptr, MMO);
|
|
|
|
assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
|
|
"Should only be a truncating store, not extending!");
|
|
assert(VT.isInteger() == SVT.isInteger() &&
|
|
"Can't do FP-INT conversion!");
|
|
assert(VT.isVector() == SVT.isVector() &&
|
|
"Cannot use trunc store to convert to or from a vector!");
|
|
assert((!VT.isVector() ||
|
|
VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
|
|
"Cannot use trunc store to change the number of vector elements!");
|
|
|
|
SDVTList VTs = getVTList(MVT::Other);
|
|
SDValue Undef = getUNDEF(Ptr.getValueType());
|
|
SDValue Ops[] = { Chain, Val, Ptr, Undef };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
|
|
ID.AddInteger(SVT.getRawBits());
|
|
ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
|
|
MMO->isNonTemporal()));
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
|
|
cast<StoreSDNode>(E)->refineAlignment(MMO);
|
|
return SDValue(E, 0);
|
|
}
|
|
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
|
|
true, SVT, MMO);
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue
|
|
SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
|
|
SDValue Offset, ISD::MemIndexedMode AM) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
|
|
assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
|
|
"Store is already a indexed store!");
|
|
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
|
|
SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
|
|
ID.AddInteger(ST->getMemoryVT().getRawBits());
|
|
ID.AddInteger(ST->getRawSubclassData());
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
|
|
ST->isTruncatingStore(),
|
|
ST->getMemoryVT(),
|
|
ST->getMemOperand());
|
|
CSEMap.InsertNode(N, IP);
|
|
AllNodes.push_back(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
|
|
SDValue Chain, SDValue Ptr,
|
|
SDValue SV,
|
|
unsigned Align) {
|
|
SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
|
|
return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
|
|
const SDUse *Ops, unsigned NumOps) {
|
|
switch (NumOps) {
|
|
case 0: return getNode(Opcode, DL, VT);
|
|
case 1: return getNode(Opcode, DL, VT, Ops[0]);
|
|
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
|
|
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
|
|
default: break;
|
|
}
|
|
|
|
// Copy from an SDUse array into an SDValue array for use with
|
|
// the regular getNode logic.
|
|
SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
|
|
return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
switch (NumOps) {
|
|
case 0: return getNode(Opcode, DL, VT);
|
|
case 1: return getNode(Opcode, DL, VT, Ops[0]);
|
|
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
|
|
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
|
|
default: break;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: break;
|
|
case ISD::SELECT_CC: {
|
|
assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
|
|
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
|
|
"LHS and RHS of condition must have same type!");
|
|
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
|
|
"True and False arms of SelectCC must have same type!");
|
|
assert(Ops[2].getValueType() == VT &&
|
|
"select_cc node must be of same type as true and false value!");
|
|
break;
|
|
}
|
|
case ISD::BR_CC: {
|
|
assert(NumOps == 5 && "BR_CC takes 5 operands!");
|
|
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
|
|
"LHS/RHS of comparison should match types!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Memoize nodes.
|
|
SDNode *N;
|
|
SDVTList VTs = getVTList(VT);
|
|
|
|
if (VT != MVT::Glue) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
|
|
void *IP = 0;
|
|
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
|
|
}
|
|
|
|
AllNodes.push_back(N);
|
|
#ifndef NDEBUG
|
|
VerifySDNode(N);
|
|
#endif
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
|
|
const std::vector<EVT> &ResultTys,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
|
|
Ops, NumOps);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
|
|
const EVT *VTs, unsigned NumVTs,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
if (NumVTs == 1)
|
|
return getNode(Opcode, DL, VTs[0], Ops, NumOps);
|
|
return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
if (VTList.NumVTs == 1)
|
|
return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
|
|
|
|
#if 0
|
|
switch (Opcode) {
|
|
// FIXME: figure out how to safely handle things like
|
|
// int foo(int x) { return 1 << (x & 255); }
|
|
// int bar() { return foo(256); }
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SHL_PARTS:
|
|
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
|
|
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
|
|
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
|
|
else if (N3.getOpcode() == ISD::AND)
|
|
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
|
|
// If the and is only masking out bits that cannot effect the shift,
|
|
// eliminate the and.
|
|
unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
|
|
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
|
|
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// Memoize the node unless it returns a flag.
|
|
SDNode *N;
|
|
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return SDValue(E, 0);
|
|
|
|
if (NumOps == 1) {
|
|
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
|
|
} else if (NumOps == 2) {
|
|
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
|
|
} else if (NumOps == 3) {
|
|
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
|
|
Ops[2]);
|
|
} else {
|
|
N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
|
|
}
|
|
CSEMap.InsertNode(N, IP);
|
|
} else {
|
|
if (NumOps == 1) {
|
|
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
|
|
} else if (NumOps == 2) {
|
|
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
|
|
} else if (NumOps == 3) {
|
|
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
|
|
Ops[2]);
|
|
} else {
|
|
N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
|
|
}
|
|
}
|
|
AllNodes.push_back(N);
|
|
#ifndef NDEBUG
|
|
VerifySDNode(N);
|
|
#endif
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
|
|
return getNode(Opcode, DL, VTList, 0, 0);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
|
|
SDValue N1) {
|
|
SDValue Ops[] = { N1 };
|
|
return getNode(Opcode, DL, VTList, Ops, 1);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
|
|
SDValue N1, SDValue N2) {
|
|
SDValue Ops[] = { N1, N2 };
|
|
return getNode(Opcode, DL, VTList, Ops, 2);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
|
|
SDValue N1, SDValue N2, SDValue N3) {
|
|
SDValue Ops[] = { N1, N2, N3 };
|
|
return getNode(Opcode, DL, VTList, Ops, 3);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
|
|
SDValue N1, SDValue N2, SDValue N3,
|
|
SDValue N4) {
|
|
SDValue Ops[] = { N1, N2, N3, N4 };
|
|
return getNode(Opcode, DL, VTList, Ops, 4);
|
|
}
|
|
|
|
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
|
|
SDValue N1, SDValue N2, SDValue N3,
|
|
SDValue N4, SDValue N5) {
|
|
SDValue Ops[] = { N1, N2, N3, N4, N5 };
|
|
return getNode(Opcode, DL, VTList, Ops, 5);
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(EVT VT) {
|
|
return makeVTList(SDNode::getValueTypeList(VT), 1);
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
|
|
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
|
|
E = VTList.rend(); I != E; ++I)
|
|
if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
|
|
return *I;
|
|
|
|
EVT *Array = Allocator.Allocate<EVT>(2);
|
|
Array[0] = VT1;
|
|
Array[1] = VT2;
|
|
SDVTList Result = makeVTList(Array, 2);
|
|
VTList.push_back(Result);
|
|
return Result;
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
|
|
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
|
|
E = VTList.rend(); I != E; ++I)
|
|
if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
|
|
I->VTs[2] == VT3)
|
|
return *I;
|
|
|
|
EVT *Array = Allocator.Allocate<EVT>(3);
|
|
Array[0] = VT1;
|
|
Array[1] = VT2;
|
|
Array[2] = VT3;
|
|
SDVTList Result = makeVTList(Array, 3);
|
|
VTList.push_back(Result);
|
|
return Result;
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
|
|
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
|
|
E = VTList.rend(); I != E; ++I)
|
|
if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
|
|
I->VTs[2] == VT3 && I->VTs[3] == VT4)
|
|
return *I;
|
|
|
|
EVT *Array = Allocator.Allocate<EVT>(4);
|
|
Array[0] = VT1;
|
|
Array[1] = VT2;
|
|
Array[2] = VT3;
|
|
Array[3] = VT4;
|
|
SDVTList Result = makeVTList(Array, 4);
|
|
VTList.push_back(Result);
|
|
return Result;
|
|
}
|
|
|
|
SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
|
|
switch (NumVTs) {
|
|
case 0: llvm_unreachable("Cannot have nodes without results!");
|
|
case 1: return getVTList(VTs[0]);
|
|
case 2: return getVTList(VTs[0], VTs[1]);
|
|
case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
|
|
case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
|
|
default: break;
|
|
}
|
|
|
|
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
|
|
E = VTList.rend(); I != E; ++I) {
|
|
if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
|
|
continue;
|
|
|
|
bool NoMatch = false;
|
|
for (unsigned i = 2; i != NumVTs; ++i)
|
|
if (VTs[i] != I->VTs[i]) {
|
|
NoMatch = true;
|
|
break;
|
|
}
|
|
if (!NoMatch)
|
|
return *I;
|
|
}
|
|
|
|
EVT *Array = Allocator.Allocate<EVT>(NumVTs);
|
|
std::copy(VTs, VTs+NumVTs, Array);
|
|
SDVTList Result = makeVTList(Array, NumVTs);
|
|
VTList.push_back(Result);
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
|
|
/// specified operands. If the resultant node already exists in the DAG,
|
|
/// this does not modify the specified node, instead it returns the node that
|
|
/// already exists. If the resultant node does not exist in the DAG, the
|
|
/// input node is returned. As a degenerate case, if you specify the same
|
|
/// input operands as the node already has, the input node is returned.
|
|
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
|
|
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
|
|
|
|
// Check to see if there is no change.
|
|
if (Op == N->getOperand(0)) return N;
|
|
|
|
// See if the modified node already exists.
|
|
void *InsertPos = 0;
|
|
if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
|
|
return Existing;
|
|
|
|
// Nope it doesn't. Remove the node from its current place in the maps.
|
|
if (InsertPos)
|
|
if (!RemoveNodeFromCSEMaps(N))
|
|
InsertPos = 0;
|
|
|
|
// Now we update the operands.
|
|
N->OperandList[0].set(Op);
|
|
|
|
// If this gets put into a CSE map, add it.
|
|
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
|
|
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
|
|
|
|
// Check to see if there is no change.
|
|
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
|
|
return N; // No operands changed, just return the input node.
|
|
|
|
// See if the modified node already exists.
|
|
void *InsertPos = 0;
|
|
if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
|
|
return Existing;
|
|
|
|
// Nope it doesn't. Remove the node from its current place in the maps.
|
|
if (InsertPos)
|
|
if (!RemoveNodeFromCSEMaps(N))
|
|
InsertPos = 0;
|
|
|
|
// Now we update the operands.
|
|
if (N->OperandList[0] != Op1)
|
|
N->OperandList[0].set(Op1);
|
|
if (N->OperandList[1] != Op2)
|
|
N->OperandList[1].set(Op2);
|
|
|
|
// If this gets put into a CSE map, add it.
|
|
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
|
|
return N;
|
|
}
|
|
|
|
SDNode *SelectionDAG::
|
|
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
|
|
SDValue Ops[] = { Op1, Op2, Op3 };
|
|
return UpdateNodeOperands(N, Ops, 3);
|
|
}
|
|
|
|
SDNode *SelectionDAG::
|
|
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
|
|
SDValue Op3, SDValue Op4) {
|
|
SDValue Ops[] = { Op1, Op2, Op3, Op4 };
|
|
return UpdateNodeOperands(N, Ops, 4);
|
|
}
|
|
|
|
SDNode *SelectionDAG::
|
|
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
|
|
SDValue Op3, SDValue Op4, SDValue Op5) {
|
|
SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
|
|
return UpdateNodeOperands(N, Ops, 5);
|
|
}
|
|
|
|
SDNode *SelectionDAG::
|
|
UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
|
|
assert(N->getNumOperands() == NumOps &&
|
|
"Update with wrong number of operands");
|
|
|
|
// Check to see if there is no change.
|
|
bool AnyChange = false;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
if (Ops[i] != N->getOperand(i)) {
|
|
AnyChange = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// No operands changed, just return the input node.
|
|
if (!AnyChange) return N;
|
|
|
|
// See if the modified node already exists.
|
|
void *InsertPos = 0;
|
|
if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
|
|
return Existing;
|
|
|
|
// Nope it doesn't. Remove the node from its current place in the maps.
|
|
if (InsertPos)
|
|
if (!RemoveNodeFromCSEMaps(N))
|
|
InsertPos = 0;
|
|
|
|
// Now we update the operands.
|
|
for (unsigned i = 0; i != NumOps; ++i)
|
|
if (N->OperandList[i] != Ops[i])
|
|
N->OperandList[i].set(Ops[i]);
|
|
|
|
// If this gets put into a CSE map, add it.
|
|
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
|
|
return N;
|
|
}
|
|
|
|
/// DropOperands - Release the operands and set this node to have
|
|
/// zero operands.
|
|
void SDNode::DropOperands() {
|
|
// Unlike the code in MorphNodeTo that does this, we don't need to
|
|
// watch for dead nodes here.
|
|
for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
|
|
SDUse &Use = *I++;
|
|
Use.set(SDValue());
|
|
}
|
|
}
|
|
|
|
/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
|
|
/// machine opcode.
|
|
///
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT) {
|
|
SDVTList VTs = getVTList(VT);
|
|
return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT, SDValue Op1) {
|
|
SDVTList VTs = getVTList(VT);
|
|
SDValue Ops[] = { Op1 };
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT, SDValue Op1,
|
|
SDValue Op2) {
|
|
SDVTList VTs = getVTList(VT);
|
|
SDValue Ops[] = { Op1, Op2 };
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT, SDValue Op1,
|
|
SDValue Op2, SDValue Op3) {
|
|
SDVTList VTs = getVTList(VT);
|
|
SDValue Ops[] = { Op1, Op2, Op3 };
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT, const SDValue *Ops,
|
|
unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT);
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2, const SDValue *Ops,
|
|
unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2, EVT VT3,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT1, VT2, VT3);
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2, EVT VT3, EVT VT4,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2,
|
|
SDValue Op1) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
SDValue Ops[] = { Op1 };
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2,
|
|
SDValue Op1, SDValue Op2) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
SDValue Ops[] = { Op1, Op2 };
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2,
|
|
SDValue Op1, SDValue Op2,
|
|
SDValue Op3) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
SDValue Ops[] = { Op1, Op2, Op3 };
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
EVT VT1, EVT VT2, EVT VT3,
|
|
SDValue Op1, SDValue Op2,
|
|
SDValue Op3) {
|
|
SDVTList VTs = getVTList(VT1, VT2, VT3);
|
|
SDValue Ops[] = { Op1, Op2, Op3 };
|
|
return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
|
|
}
|
|
|
|
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
|
|
SDVTList VTs, const SDValue *Ops,
|
|
unsigned NumOps) {
|
|
N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
|
|
// Reset the NodeID to -1.
|
|
N->setNodeId(-1);
|
|
return N;
|
|
}
|
|
|
|
/// MorphNodeTo - This *mutates* the specified node to have the specified
|
|
/// return type, opcode, and operands.
|
|
///
|
|
/// Note that MorphNodeTo returns the resultant node. If there is already a
|
|
/// node of the specified opcode and operands, it returns that node instead of
|
|
/// the current one. Note that the DebugLoc need not be the same.
|
|
///
|
|
/// Using MorphNodeTo is faster than creating a new node and swapping it in
|
|
/// with ReplaceAllUsesWith both because it often avoids allocating a new
|
|
/// node, and because it doesn't require CSE recalculation for any of
|
|
/// the node's users.
|
|
///
|
|
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
|
|
SDVTList VTs, const SDValue *Ops,
|
|
unsigned NumOps) {
|
|
// If an identical node already exists, use it.
|
|
void *IP = 0;
|
|
if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
|
|
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return ON;
|
|
}
|
|
|
|
if (!RemoveNodeFromCSEMaps(N))
|
|
IP = 0;
|
|
|
|
// Start the morphing.
|
|
N->NodeType = Opc;
|
|
N->ValueList = VTs.VTs;
|
|
N->NumValues = VTs.NumVTs;
|
|
|
|
// Clear the operands list, updating used nodes to remove this from their
|
|
// use list. Keep track of any operands that become dead as a result.
|
|
SmallPtrSet<SDNode*, 16> DeadNodeSet;
|
|
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
|
|
SDUse &Use = *I++;
|
|
SDNode *Used = Use.getNode();
|
|
Use.set(SDValue());
|
|
if (Used->use_empty())
|
|
DeadNodeSet.insert(Used);
|
|
}
|
|
|
|
if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
|
|
// Initialize the memory references information.
|
|
MN->setMemRefs(0, 0);
|
|
// If NumOps is larger than the # of operands we can have in a
|
|
// MachineSDNode, reallocate the operand list.
|
|
if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
|
|
if (MN->OperandsNeedDelete)
|
|
delete[] MN->OperandList;
|
|
if (NumOps > array_lengthof(MN->LocalOperands))
|
|
// We're creating a final node that will live unmorphed for the
|
|
// remainder of the current SelectionDAG iteration, so we can allocate
|
|
// the operands directly out of a pool with no recycling metadata.
|
|
MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
|
|
Ops, NumOps);
|
|
else
|
|
MN->InitOperands(MN->LocalOperands, Ops, NumOps);
|
|
MN->OperandsNeedDelete = false;
|
|
} else
|
|
MN->InitOperands(MN->OperandList, Ops, NumOps);
|
|
} else {
|
|
// If NumOps is larger than the # of operands we currently have, reallocate
|
|
// the operand list.
|
|
if (NumOps > N->NumOperands) {
|
|
if (N->OperandsNeedDelete)
|
|
delete[] N->OperandList;
|
|
N->InitOperands(new SDUse[NumOps], Ops, NumOps);
|
|
N->OperandsNeedDelete = true;
|
|
} else
|
|
N->InitOperands(N->OperandList, Ops, NumOps);
|
|
}
|
|
|
|
// Delete any nodes that are still dead after adding the uses for the
|
|
// new operands.
|
|
if (!DeadNodeSet.empty()) {
|
|
SmallVector<SDNode *, 16> DeadNodes;
|
|
for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
|
|
E = DeadNodeSet.end(); I != E; ++I)
|
|
if ((*I)->use_empty())
|
|
DeadNodes.push_back(*I);
|
|
RemoveDeadNodes(DeadNodes);
|
|
}
|
|
|
|
if (IP)
|
|
CSEMap.InsertNode(N, IP); // Memoize the new node.
|
|
return N;
|
|
}
|
|
|
|
|
|
/// getMachineNode - These are used for target selectors to create a new node
|
|
/// with specified return type(s), MachineInstr opcode, and operands.
|
|
///
|
|
/// Note that getMachineNode returns the resultant node. If there is already a
|
|
/// node of the specified opcode and operands, it returns that node instead of
|
|
/// the current one.
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
|
|
SDVTList VTs = getVTList(VT);
|
|
return getMachineNode(Opcode, dl, VTs, 0, 0);
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
|
|
SDVTList VTs = getVTList(VT);
|
|
SDValue Ops[] = { Op1 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
|
|
SDValue Op1, SDValue Op2) {
|
|
SDVTList VTs = getVTList(VT);
|
|
SDValue Ops[] = { Op1, Op2 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
|
|
SDValue Op1, SDValue Op2, SDValue Op3) {
|
|
SDVTList VTs = getVTList(VT);
|
|
SDValue Ops[] = { Op1, Op2, Op3 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT);
|
|
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
return getMachineNode(Opcode, dl, VTs, 0, 0);
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
EVT VT1, EVT VT2, SDValue Op1) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
SDValue Ops[] = { Op1 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
SDValue Ops[] = { Op1, Op2 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
EVT VT1, EVT VT2, SDValue Op1,
|
|
SDValue Op2, SDValue Op3) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
SDValue Ops[] = { Op1, Op2, Op3 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
EVT VT1, EVT VT2,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT1, VT2);
|
|
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
EVT VT1, EVT VT2, EVT VT3,
|
|
SDValue Op1, SDValue Op2) {
|
|
SDVTList VTs = getVTList(VT1, VT2, VT3);
|
|
SDValue Ops[] = { Op1, Op2 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
EVT VT1, EVT VT2, EVT VT3,
|
|
SDValue Op1, SDValue Op2, SDValue Op3) {
|
|
SDVTList VTs = getVTList(VT1, VT2, VT3);
|
|
SDValue Ops[] = { Op1, Op2, Op3 };
|
|
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
EVT VT1, EVT VT2, EVT VT3,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT1, VT2, VT3);
|
|
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
|
|
EVT VT2, EVT VT3, EVT VT4,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
|
|
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
|
|
const std::vector<EVT> &ResultTys,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
|
|
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
|
|
}
|
|
|
|
MachineSDNode *
|
|
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
|
|
MachineSDNode *N;
|
|
void *IP = 0;
|
|
|
|
if (DoCSE) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
|
|
IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return cast<MachineSDNode>(E);
|
|
}
|
|
|
|
// Allocate a new MachineSDNode.
|
|
N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
|
|
|
|
// Initialize the operands list.
|
|
if (NumOps > array_lengthof(N->LocalOperands))
|
|
// We're creating a final node that will live unmorphed for the
|
|
// remainder of the current SelectionDAG iteration, so we can allocate
|
|
// the operands directly out of a pool with no recycling metadata.
|
|
N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
|
|
Ops, NumOps);
|
|
else
|
|
N->InitOperands(N->LocalOperands, Ops, NumOps);
|
|
N->OperandsNeedDelete = false;
|
|
|
|
if (DoCSE)
|
|
CSEMap.InsertNode(N, IP);
|
|
|
|
AllNodes.push_back(N);
|
|
#ifndef NDEBUG
|
|
VerifyMachineNode(N);
|
|
#endif
|
|
return N;
|
|
}
|
|
|
|
/// getTargetExtractSubreg - A convenience function for creating
|
|
/// TargetOpcode::EXTRACT_SUBREG nodes.
|
|
SDValue
|
|
SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
|
|
SDValue Operand) {
|
|
SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
|
|
SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
|
|
VT, Operand, SRIdxVal);
|
|
return SDValue(Subreg, 0);
|
|
}
|
|
|
|
/// getTargetInsertSubreg - A convenience function for creating
|
|
/// TargetOpcode::INSERT_SUBREG nodes.
|
|
SDValue
|
|
SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
|
|
SDValue Operand, SDValue Subreg) {
|
|
SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
|
|
SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
|
|
VT, Operand, Subreg, SRIdxVal);
|
|
return SDValue(Result, 0);
|
|
}
|
|
|
|
/// getNodeIfExists - Get the specified node if it's already available, or
|
|
/// else return NULL.
|
|
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
|
|
const SDValue *Ops, unsigned NumOps) {
|
|
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
|
|
FoldingSetNodeID ID;
|
|
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
|
|
void *IP = 0;
|
|
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
|
|
return E;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// getDbgValue - Creates a SDDbgValue node.
|
|
///
|
|
SDDbgValue *
|
|
SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
|
|
DebugLoc DL, unsigned O) {
|
|
return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
|
|
}
|
|
|
|
SDDbgValue *
|
|
SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
|
|
DebugLoc DL, unsigned O) {
|
|
return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
|
|
}
|
|
|
|
SDDbgValue *
|
|
SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
|
|
DebugLoc DL, unsigned O) {
|
|
return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
|
|
/// pointed to by a use iterator is deleted, increment the use iterator
|
|
/// so that it doesn't dangle.
|
|
///
|
|
/// This class also manages a "downlink" DAGUpdateListener, to forward
|
|
/// messages to ReplaceAllUsesWith's callers.
|
|
///
|
|
class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
|
|
SelectionDAG::DAGUpdateListener *DownLink;
|
|
SDNode::use_iterator &UI;
|
|
SDNode::use_iterator &UE;
|
|
|
|
virtual void NodeDeleted(SDNode *N, SDNode *E) {
|
|
// Increment the iterator as needed.
|
|
while (UI != UE && N == *UI)
|
|
++UI;
|
|
|
|
// Then forward the message.
|
|
if (DownLink) DownLink->NodeDeleted(N, E);
|
|
}
|
|
|
|
virtual void NodeUpdated(SDNode *N) {
|
|
// Just forward the message.
|
|
if (DownLink) DownLink->NodeUpdated(N);
|
|
}
|
|
|
|
public:
|
|
RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
|
|
SDNode::use_iterator &ui,
|
|
SDNode::use_iterator &ue)
|
|
: DownLink(dl), UI(ui), UE(ue) {}
|
|
};
|
|
|
|
}
|
|
|
|
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
|
|
/// This can cause recursive merging of nodes in the DAG.
|
|
///
|
|
/// This version assumes From has a single result value.
|
|
///
|
|
void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
|
|
DAGUpdateListener *UpdateListener) {
|
|
SDNode *From = FromN.getNode();
|
|
assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
|
|
"Cannot replace with this method!");
|
|
assert(From != To.getNode() && "Cannot replace uses of with self");
|
|
|
|
// Iterate over all the existing uses of From. New uses will be added
|
|
// to the beginning of the use list, which we avoid visiting.
|
|
// This specifically avoids visiting uses of From that arise while the
|
|
// replacement is happening, because any such uses would be the result
|
|
// of CSE: If an existing node looks like From after one of its operands
|
|
// is replaced by To, we don't want to replace of all its users with To
|
|
// too. See PR3018 for more info.
|
|
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
|
|
RAUWUpdateListener Listener(UpdateListener, UI, UE);
|
|
while (UI != UE) {
|
|
SDNode *User = *UI;
|
|
|
|
// This node is about to morph, remove its old self from the CSE maps.
|
|
RemoveNodeFromCSEMaps(User);
|
|
|
|
// A user can appear in a use list multiple times, and when this
|
|
// happens the uses are usually next to each other in the list.
|
|
// To help reduce the number of CSE recomputations, process all
|
|
// the uses of this user that we can find this way.
|
|
do {
|
|
SDUse &Use = UI.getUse();
|
|
++UI;
|
|
Use.set(To);
|
|
} while (UI != UE && *UI == User);
|
|
|
|
// Now that we have modified User, add it back to the CSE maps. If it
|
|
// already exists there, recursively merge the results together.
|
|
AddModifiedNodeToCSEMaps(User, &Listener);
|
|
}
|
|
}
|
|
|
|
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
|
|
/// This can cause recursive merging of nodes in the DAG.
|
|
///
|
|
/// This version assumes that for each value of From, there is a
|
|
/// corresponding value in To in the same position with the same type.
|
|
///
|
|
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
|
|
DAGUpdateListener *UpdateListener) {
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
|
|
assert((!From->hasAnyUseOfValue(i) ||
|
|
From->getValueType(i) == To->getValueType(i)) &&
|
|
"Cannot use this version of ReplaceAllUsesWith!");
|
|
#endif
|
|
|
|
// Handle the trivial case.
|
|
if (From == To)
|
|
return;
|
|
|
|
// Iterate over just the existing users of From. See the comments in
|
|
// the ReplaceAllUsesWith above.
|
|
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
|
|
RAUWUpdateListener Listener(UpdateListener, UI, UE);
|
|
while (UI != UE) {
|
|
SDNode *User = *UI;
|
|
|
|
// This node is about to morph, remove its old self from the CSE maps.
|
|
RemoveNodeFromCSEMaps(User);
|
|
|
|
// A user can appear in a use list multiple times, and when this
|
|
// happens the uses are usually next to each other in the list.
|
|
// To help reduce the number of CSE recomputations, process all
|
|
// the uses of this user that we can find this way.
|
|
do {
|
|
SDUse &Use = UI.getUse();
|
|
++UI;
|
|
Use.setNode(To);
|
|
} while (UI != UE && *UI == User);
|
|
|
|
// Now that we have modified User, add it back to the CSE maps. If it
|
|
// already exists there, recursively merge the results together.
|
|
AddModifiedNodeToCSEMaps(User, &Listener);
|
|
}
|
|
}
|
|
|
|
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
|
|
/// This can cause recursive merging of nodes in the DAG.
|
|
///
|
|
/// This version can replace From with any result values. To must match the
|
|
/// number and types of values returned by From.
|
|
void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
|
|
const SDValue *To,
|
|
DAGUpdateListener *UpdateListener) {
|
|
if (From->getNumValues() == 1) // Handle the simple case efficiently.
|
|
return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
|
|
|
|
// Iterate over just the existing users of From. See the comments in
|
|
// the ReplaceAllUsesWith above.
|
|
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
|
|
RAUWUpdateListener Listener(UpdateListener, UI, UE);
|
|
while (UI != UE) {
|
|
SDNode *User = *UI;
|
|
|
|
// This node is about to morph, remove its old self from the CSE maps.
|
|
RemoveNodeFromCSEMaps(User);
|
|
|
|
// A user can appear in a use list multiple times, and when this
|
|
// happens the uses are usually next to each other in the list.
|
|
// To help reduce the number of CSE recomputations, process all
|
|
// the uses of this user that we can find this way.
|
|
do {
|
|
SDUse &Use = UI.getUse();
|
|
const SDValue &ToOp = To[Use.getResNo()];
|
|
++UI;
|
|
Use.set(ToOp);
|
|
} while (UI != UE && *UI == User);
|
|
|
|
// Now that we have modified User, add it back to the CSE maps. If it
|
|
// already exists there, recursively merge the results together.
|
|
AddModifiedNodeToCSEMaps(User, &Listener);
|
|
}
|
|
}
|
|
|
|
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
|
|
/// uses of other values produced by From.getNode() alone. The Deleted
|
|
/// vector is handled the same way as for ReplaceAllUsesWith.
|
|
void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
|
|
DAGUpdateListener *UpdateListener){
|
|
// Handle the really simple, really trivial case efficiently.
|
|
if (From == To) return;
|
|
|
|
// Handle the simple, trivial, case efficiently.
|
|
if (From.getNode()->getNumValues() == 1) {
|
|
ReplaceAllUsesWith(From, To, UpdateListener);
|
|
return;
|
|
}
|
|
|
|
// Iterate over just the existing users of From. See the comments in
|
|
// the ReplaceAllUsesWith above.
|
|
SDNode::use_iterator UI = From.getNode()->use_begin(),
|
|
UE = From.getNode()->use_end();
|
|
RAUWUpdateListener Listener(UpdateListener, UI, UE);
|
|
while (UI != UE) {
|
|
SDNode *User = *UI;
|
|
bool UserRemovedFromCSEMaps = false;
|
|
|
|
// A user can appear in a use list multiple times, and when this
|
|
// happens the uses are usually next to each other in the list.
|
|
// To help reduce the number of CSE recomputations, process all
|
|
// the uses of this user that we can find this way.
|
|
do {
|
|
SDUse &Use = UI.getUse();
|
|
|
|
// Skip uses of different values from the same node.
|
|
if (Use.getResNo() != From.getResNo()) {
|
|
++UI;
|
|
continue;
|
|
}
|
|
|
|
// If this node hasn't been modified yet, it's still in the CSE maps,
|
|
// so remove its old self from the CSE maps.
|
|
if (!UserRemovedFromCSEMaps) {
|
|
RemoveNodeFromCSEMaps(User);
|
|
UserRemovedFromCSEMaps = true;
|
|
}
|
|
|
|
++UI;
|
|
Use.set(To);
|
|
} while (UI != UE && *UI == User);
|
|
|
|
// We are iterating over all uses of the From node, so if a use
|
|
// doesn't use the specific value, no changes are made.
|
|
if (!UserRemovedFromCSEMaps)
|
|
continue;
|
|
|
|
// Now that we have modified User, add it back to the CSE maps. If it
|
|
// already exists there, recursively merge the results together.
|
|
AddModifiedNodeToCSEMaps(User, &Listener);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
|
|
/// to record information about a use.
|
|
struct UseMemo {
|
|
SDNode *User;
|
|
unsigned Index;
|
|
SDUse *Use;
|
|
};
|
|
|
|
/// operator< - Sort Memos by User.
|
|
bool operator<(const UseMemo &L, const UseMemo &R) {
|
|
return (intptr_t)L.User < (intptr_t)R.User;
|
|
}
|
|
}
|
|
|
|
/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
|
|
/// uses of other values produced by From.getNode() alone. The same value
|
|
/// may appear in both the From and To list. The Deleted vector is
|
|
/// handled the same way as for ReplaceAllUsesWith.
|
|
void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
|
|
const SDValue *To,
|
|
unsigned Num,
|
|
DAGUpdateListener *UpdateListener){
|
|
// Handle the simple, trivial case efficiently.
|
|
if (Num == 1)
|
|
return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
|
|
|
|
// Read up all the uses and make records of them. This helps
|
|
// processing new uses that are introduced during the
|
|
// replacement process.
|
|
SmallVector<UseMemo, 4> Uses;
|
|
for (unsigned i = 0; i != Num; ++i) {
|
|
unsigned FromResNo = From[i].getResNo();
|
|
SDNode *FromNode = From[i].getNode();
|
|
for (SDNode::use_iterator UI = FromNode->use_begin(),
|
|
E = FromNode->use_end(); UI != E; ++UI) {
|
|
SDUse &Use = UI.getUse();
|
|
if (Use.getResNo() == FromResNo) {
|
|
UseMemo Memo = { *UI, i, &Use };
|
|
Uses.push_back(Memo);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort the uses, so that all the uses from a given User are together.
|
|
std::sort(Uses.begin(), Uses.end());
|
|
|
|
for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
|
|
UseIndex != UseIndexEnd; ) {
|
|
// We know that this user uses some value of From. If it is the right
|
|
// value, update it.
|
|
SDNode *User = Uses[UseIndex].User;
|
|
|
|
// This node is about to morph, remove its old self from the CSE maps.
|
|
RemoveNodeFromCSEMaps(User);
|
|
|
|
// The Uses array is sorted, so all the uses for a given User
|
|
// are next to each other in the list.
|
|
// To help reduce the number of CSE recomputations, process all
|
|
// the uses of this user that we can find this way.
|
|
do {
|
|
unsigned i = Uses[UseIndex].Index;
|
|
SDUse &Use = *Uses[UseIndex].Use;
|
|
++UseIndex;
|
|
|
|
Use.set(To[i]);
|
|
} while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
|
|
|
|
// Now that we have modified User, add it back to the CSE maps. If it
|
|
// already exists there, recursively merge the results together.
|
|
AddModifiedNodeToCSEMaps(User, UpdateListener);
|
|
}
|
|
}
|
|
|
|
/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
|
|
/// based on their topological order. It returns the maximum id and a vector
|
|
/// of the SDNodes* in assigned order by reference.
|
|
unsigned SelectionDAG::AssignTopologicalOrder() {
|
|
|
|
unsigned DAGSize = 0;
|
|
|
|
// SortedPos tracks the progress of the algorithm. Nodes before it are
|
|
// sorted, nodes after it are unsorted. When the algorithm completes
|
|
// it is at the end of the list.
|
|
allnodes_iterator SortedPos = allnodes_begin();
|
|
|
|
// Visit all the nodes. Move nodes with no operands to the front of
|
|
// the list immediately. Annotate nodes that do have operands with their
|
|
// operand count. Before we do this, the Node Id fields of the nodes
|
|
// may contain arbitrary values. After, the Node Id fields for nodes
|
|
// before SortedPos will contain the topological sort index, and the
|
|
// Node Id fields for nodes At SortedPos and after will contain the
|
|
// count of outstanding operands.
|
|
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
|
|
SDNode *N = I++;
|
|
checkForCycles(N);
|
|
unsigned Degree = N->getNumOperands();
|
|
if (Degree == 0) {
|
|
// A node with no uses, add it to the result array immediately.
|
|
N->setNodeId(DAGSize++);
|
|
allnodes_iterator Q = N;
|
|
if (Q != SortedPos)
|
|
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
|
|
assert(SortedPos != AllNodes.end() && "Overran node list");
|
|
++SortedPos;
|
|
} else {
|
|
// Temporarily use the Node Id as scratch space for the degree count.
|
|
N->setNodeId(Degree);
|
|
}
|
|
}
|
|
|
|
// Visit all the nodes. As we iterate, moves nodes into sorted order,
|
|
// such that by the time the end is reached all nodes will be sorted.
|
|
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
|
|
SDNode *N = I;
|
|
checkForCycles(N);
|
|
// N is in sorted position, so all its uses have one less operand
|
|
// that needs to be sorted.
|
|
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *P = *UI;
|
|
unsigned Degree = P->getNodeId();
|
|
assert(Degree != 0 && "Invalid node degree");
|
|
--Degree;
|
|
if (Degree == 0) {
|
|
// All of P's operands are sorted, so P may sorted now.
|
|
P->setNodeId(DAGSize++);
|
|
if (P != SortedPos)
|
|
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
|
|
assert(SortedPos != AllNodes.end() && "Overran node list");
|
|
++SortedPos;
|
|
} else {
|
|
// Update P's outstanding operand count.
|
|
P->setNodeId(Degree);
|
|
}
|
|
}
|
|
if (I == SortedPos) {
|
|
#ifndef NDEBUG
|
|
SDNode *S = ++I;
|
|
dbgs() << "Overran sorted position:\n";
|
|
S->dumprFull();
|
|
#endif
|
|
llvm_unreachable(0);
|
|
}
|
|
}
|
|
|
|
assert(SortedPos == AllNodes.end() &&
|
|
"Topological sort incomplete!");
|
|
assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
|
|
"First node in topological sort is not the entry token!");
|
|
assert(AllNodes.front().getNodeId() == 0 &&
|
|
"First node in topological sort has non-zero id!");
|
|
assert(AllNodes.front().getNumOperands() == 0 &&
|
|
"First node in topological sort has operands!");
|
|
assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
|
|
"Last node in topologic sort has unexpected id!");
|
|
assert(AllNodes.back().use_empty() &&
|
|
"Last node in topologic sort has users!");
|
|
assert(DAGSize == allnodes_size() && "Node count mismatch!");
|
|
return DAGSize;
|
|
}
|
|
|
|
/// AssignOrdering - Assign an order to the SDNode.
|
|
void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
|
|
assert(SD && "Trying to assign an order to a null node!");
|
|
Ordering->add(SD, Order);
|
|
}
|
|
|
|
/// GetOrdering - Get the order for the SDNode.
|
|
unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
|
|
assert(SD && "Trying to get the order of a null node!");
|
|
return Ordering->getOrder(SD);
|
|
}
|
|
|
|
/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
|
|
/// value is produced by SD.
|
|
void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
|
|
DbgInfo->add(DB, SD, isParameter);
|
|
if (SD)
|
|
SD->setHasDebugValue(true);
|
|
}
|
|
|
|
/// TransferDbgValues - Transfer SDDbgValues.
|
|
void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
|
|
if (From == To || !From.getNode()->getHasDebugValue())
|
|
return;
|
|
SDNode *FromNode = From.getNode();
|
|
SDNode *ToNode = To.getNode();
|
|
ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
|
|
SmallVector<SDDbgValue *, 2> ClonedDVs;
|
|
for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
|
|
I != E; ++I) {
|
|
SDDbgValue *Dbg = *I;
|
|
if (Dbg->getKind() == SDDbgValue::SDNODE) {
|
|
SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
|
|
Dbg->getOffset(), Dbg->getDebugLoc(),
|
|
Dbg->getOrder());
|
|
ClonedDVs.push_back(Clone);
|
|
}
|
|
}
|
|
for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
|
|
E = ClonedDVs.end(); I != E; ++I)
|
|
AddDbgValue(*I, ToNode, false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
HandleSDNode::~HandleSDNode() {
|
|
DropOperands();
|
|
}
|
|
|
|
GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
|
|
const GlobalValue *GA,
|
|
EVT VT, int64_t o, unsigned char TF)
|
|
: SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
|
|
TheGlobal = GA;
|
|
}
|
|
|
|
MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
|
|
MachineMemOperand *mmo)
|
|
: SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
|
|
SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
|
|
MMO->isNonTemporal());
|
|
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
|
|
assert(isNonTemporal() == MMO->isNonTemporal() &&
|
|
"Non-temporal encoding error!");
|
|
assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
|
|
}
|
|
|
|
MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
|
|
const SDValue *Ops, unsigned NumOps, EVT memvt,
|
|
MachineMemOperand *mmo)
|
|
: SDNode(Opc, dl, VTs, Ops, NumOps),
|
|
MemoryVT(memvt), MMO(mmo) {
|
|
SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
|
|
MMO->isNonTemporal());
|
|
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
|
|
assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
|
|
}
|
|
|
|
/// Profile - Gather unique data for the node.
|
|
///
|
|
void SDNode::Profile(FoldingSetNodeID &ID) const {
|
|
AddNodeIDNode(ID, this);
|
|
}
|
|
|
|
namespace {
|
|
struct EVTArray {
|
|
std::vector<EVT> VTs;
|
|
|
|
EVTArray() {
|
|
VTs.reserve(MVT::LAST_VALUETYPE);
|
|
for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
|
|
VTs.push_back(MVT((MVT::SimpleValueType)i));
|
|
}
|
|
};
|
|
}
|
|
|
|
static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
|
|
static ManagedStatic<EVTArray> SimpleVTArray;
|
|
static ManagedStatic<sys::SmartMutex<true> > VTMutex;
|
|
|
|
/// getValueTypeList - Return a pointer to the specified value type.
|
|
///
|
|
const EVT *SDNode::getValueTypeList(EVT VT) {
|
|
if (VT.isExtended()) {
|
|
sys::SmartScopedLock<true> Lock(*VTMutex);
|
|
return &(*EVTs->insert(VT).first);
|
|
} else {
|
|
assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
|
|
"Value type out of range!");
|
|
return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
|
|
}
|
|
}
|
|
|
|
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
|
|
/// indicated value. This method ignores uses of other values defined by this
|
|
/// operation.
|
|
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
|
|
assert(Value < getNumValues() && "Bad value!");
|
|
|
|
// TODO: Only iterate over uses of a given value of the node
|
|
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
|
|
if (UI.getUse().getResNo() == Value) {
|
|
if (NUses == 0)
|
|
return false;
|
|
--NUses;
|
|
}
|
|
}
|
|
|
|
// Found exactly the right number of uses?
|
|
return NUses == 0;
|
|
}
|
|
|
|
|
|
/// hasAnyUseOfValue - Return true if there are any use of the indicated
|
|
/// value. This method ignores uses of other values defined by this operation.
|
|
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
|
|
assert(Value < getNumValues() && "Bad value!");
|
|
|
|
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
|
|
if (UI.getUse().getResNo() == Value)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// isOnlyUserOf - Return true if this node is the only use of N.
|
|
///
|
|
bool SDNode::isOnlyUserOf(SDNode *N) const {
|
|
bool Seen = false;
|
|
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
|
|
SDNode *User = *I;
|
|
if (User == this)
|
|
Seen = true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Seen;
|
|
}
|
|
|
|
/// isOperand - Return true if this node is an operand of N.
|
|
///
|
|
bool SDValue::isOperandOf(SDNode *N) const {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (*this == N->getOperand(i))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool SDNode::isOperandOf(SDNode *N) const {
|
|
for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
|
|
if (this == N->OperandList[i].getNode())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// reachesChainWithoutSideEffects - Return true if this operand (which must
|
|
/// be a chain) reaches the specified operand without crossing any
|
|
/// side-effecting instructions on any chain path. In practice, this looks
|
|
/// through token factors and non-volatile loads. In order to remain efficient,
|
|
/// this only looks a couple of nodes in, it does not do an exhaustive search.
|
|
bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
|
|
unsigned Depth) const {
|
|
if (*this == Dest) return true;
|
|
|
|
// Don't search too deeply, we just want to be able to see through
|
|
// TokenFactor's etc.
|
|
if (Depth == 0) return false;
|
|
|
|
// If this is a token factor, all inputs to the TF happen in parallel. If any
|
|
// of the operands of the TF does not reach dest, then we cannot do the xform.
|
|
if (getOpcode() == ISD::TokenFactor) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Loads don't have side effects, look through them.
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
|
|
if (!Ld->isVolatile())
|
|
return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// hasPredecessor - Return true if N is a predecessor of this node.
|
|
/// N is either an operand of this node, or can be reached by recursively
|
|
/// traversing up the operands.
|
|
/// NOTE: This is an expensive method. Use it carefully.
|
|
bool SDNode::hasPredecessor(const SDNode *N) const {
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 16> Worklist;
|
|
return hasPredecessorHelper(N, Visited, Worklist);
|
|
}
|
|
|
|
bool SDNode::hasPredecessorHelper(const SDNode *N,
|
|
SmallPtrSet<const SDNode *, 32> &Visited,
|
|
SmallVector<const SDNode *, 16> &Worklist) const {
|
|
if (Visited.empty()) {
|
|
Worklist.push_back(this);
|
|
} else {
|
|
// Take a look in the visited set. If we've already encountered this node
|
|
// we needn't search further.
|
|
if (Visited.count(N))
|
|
return true;
|
|
}
|
|
|
|
// Haven't visited N yet. Continue the search.
|
|
while (!Worklist.empty()) {
|
|
const SDNode *M = Worklist.pop_back_val();
|
|
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
|
|
SDNode *Op = M->getOperand(i).getNode();
|
|
if (Visited.insert(Op))
|
|
Worklist.push_back(Op);
|
|
if (Op == N)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
|
|
}
|
|
|
|
std::string SDNode::getOperationName(const SelectionDAG *G) const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
if (getOpcode() < ISD::BUILTIN_OP_END)
|
|
return "<<Unknown DAG Node>>";
|
|
if (isMachineOpcode()) {
|
|
if (G)
|
|
if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
|
|
if (getMachineOpcode() < TII->getNumOpcodes())
|
|
return TII->get(getMachineOpcode()).getName();
|
|
return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
|
|
}
|
|
if (G) {
|
|
const TargetLowering &TLI = G->getTargetLoweringInfo();
|
|
const char *Name = TLI.getTargetNodeName(getOpcode());
|
|
if (Name) return Name;
|
|
return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
|
|
}
|
|
return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
|
|
|
|
#ifndef NDEBUG
|
|
case ISD::DELETED_NODE:
|
|
return "<<Deleted Node!>>";
|
|
#endif
|
|
case ISD::PREFETCH: return "Prefetch";
|
|
case ISD::MEMBARRIER: return "MemBarrier";
|
|
case ISD::ATOMIC_FENCE: return "AtomicFence";
|
|
case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
|
|
case ISD::ATOMIC_SWAP: return "AtomicSwap";
|
|
case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
|
|
case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
|
|
case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
|
|
case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
|
|
case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
|
|
case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
|
|
case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
|
|
case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
|
|
case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
|
|
case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
|
|
case ISD::PCMARKER: return "PCMarker";
|
|
case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
|
|
case ISD::SRCVALUE: return "SrcValue";
|
|
case ISD::MDNODE_SDNODE: return "MDNode";
|
|
case ISD::EntryToken: return "EntryToken";
|
|
case ISD::TokenFactor: return "TokenFactor";
|
|
case ISD::AssertSext: return "AssertSext";
|
|
case ISD::AssertZext: return "AssertZext";
|
|
|
|
case ISD::BasicBlock: return "BasicBlock";
|
|
case ISD::VALUETYPE: return "ValueType";
|
|
case ISD::Register: return "Register";
|
|
|
|
case ISD::Constant: return "Constant";
|
|
case ISD::ConstantFP: return "ConstantFP";
|
|
case ISD::GlobalAddress: return "GlobalAddress";
|
|
case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
|
|
case ISD::FrameIndex: return "FrameIndex";
|
|
case ISD::JumpTable: return "JumpTable";
|
|
case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
|
|
case ISD::RETURNADDR: return "RETURNADDR";
|
|
case ISD::FRAMEADDR: return "FRAMEADDR";
|
|
case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
|
|
case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
|
|
case ISD::LSDAADDR: return "LSDAADDR";
|
|
case ISD::EHSELECTION: return "EHSELECTION";
|
|
case ISD::EH_RETURN: return "EH_RETURN";
|
|
case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
|
|
case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
|
|
case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
|
|
case ISD::ConstantPool: return "ConstantPool";
|
|
case ISD::ExternalSymbol: return "ExternalSymbol";
|
|
case ISD::BlockAddress: return "BlockAddress";
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
|
|
unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
|
|
if (IID < Intrinsic::num_intrinsics)
|
|
return Intrinsic::getName((Intrinsic::ID)IID);
|
|
else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
|
|
return TII->getName(IID);
|
|
llvm_unreachable("Invalid intrinsic ID");
|
|
}
|
|
|
|
case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
|
|
case ISD::TargetConstant: return "TargetConstant";
|
|
case ISD::TargetConstantFP:return "TargetConstantFP";
|
|
case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
|
|
case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
|
|
case ISD::TargetFrameIndex: return "TargetFrameIndex";
|
|
case ISD::TargetJumpTable: return "TargetJumpTable";
|
|
case ISD::TargetConstantPool: return "TargetConstantPool";
|
|
case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
|
|
case ISD::TargetBlockAddress: return "TargetBlockAddress";
|
|
|
|
case ISD::CopyToReg: return "CopyToReg";
|
|
case ISD::CopyFromReg: return "CopyFromReg";
|
|
case ISD::UNDEF: return "undef";
|
|
case ISD::MERGE_VALUES: return "merge_values";
|
|
case ISD::INLINEASM: return "inlineasm";
|
|
case ISD::EH_LABEL: return "eh_label";
|
|
case ISD::HANDLENODE: return "handlenode";
|
|
|
|
// Unary operators
|
|
case ISD::FABS: return "fabs";
|
|
case ISD::FNEG: return "fneg";
|
|
case ISD::FSQRT: return "fsqrt";
|
|
case ISD::FSIN: return "fsin";
|
|
case ISD::FCOS: return "fcos";
|
|
case ISD::FTRUNC: return "ftrunc";
|
|
case ISD::FFLOOR: return "ffloor";
|
|
case ISD::FCEIL: return "fceil";
|
|
case ISD::FRINT: return "frint";
|
|
case ISD::FNEARBYINT: return "fnearbyint";
|
|
case ISD::FEXP: return "fexp";
|
|
case ISD::FEXP2: return "fexp2";
|
|
case ISD::FLOG: return "flog";
|
|
case ISD::FLOG2: return "flog2";
|
|
case ISD::FLOG10: return "flog10";
|
|
|
|
// Binary operators
|
|
case ISD::ADD: return "add";
|
|
case ISD::SUB: return "sub";
|
|
case ISD::MUL: return "mul";
|
|
case ISD::MULHU: return "mulhu";
|
|
case ISD::MULHS: return "mulhs";
|
|
case ISD::SDIV: return "sdiv";
|
|
case ISD::UDIV: return "udiv";
|
|
case ISD::SREM: return "srem";
|
|
case ISD::UREM: return "urem";
|
|
case ISD::SMUL_LOHI: return "smul_lohi";
|
|
case ISD::UMUL_LOHI: return "umul_lohi";
|
|
case ISD::SDIVREM: return "sdivrem";
|
|
case ISD::UDIVREM: return "udivrem";
|
|
case ISD::AND: return "and";
|
|
case ISD::OR: return "or";
|
|
case ISD::XOR: return "xor";
|
|
case ISD::SHL: return "shl";
|
|
case ISD::SRA: return "sra";
|
|
case ISD::SRL: return "srl";
|
|
case ISD::ROTL: return "rotl";
|
|
case ISD::ROTR: return "rotr";
|
|
case ISD::FADD: return "fadd";
|
|
case ISD::FSUB: return "fsub";
|
|
case ISD::FMUL: return "fmul";
|
|
case ISD::FDIV: return "fdiv";
|
|
case ISD::FMA: return "fma";
|
|
case ISD::FREM: return "frem";
|
|
case ISD::FCOPYSIGN: return "fcopysign";
|
|
case ISD::FGETSIGN: return "fgetsign";
|
|
case ISD::FPOW: return "fpow";
|
|
|
|
case ISD::FPOWI: return "fpowi";
|
|
case ISD::SETCC: return "setcc";
|
|
case ISD::VSETCC: return "vsetcc";
|
|
case ISD::SELECT: return "select";
|
|
case ISD::SELECT_CC: return "select_cc";
|
|
case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
|
|
case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
|
|
case ISD::CONCAT_VECTORS: return "concat_vectors";
|
|
case ISD::INSERT_SUBVECTOR: return "insert_subvector";
|
|
case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
|
|
case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
|
|
case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
|
|
case ISD::CARRY_FALSE: return "carry_false";
|
|
case ISD::ADDC: return "addc";
|
|
case ISD::ADDE: return "adde";
|
|
case ISD::SADDO: return "saddo";
|
|
case ISD::UADDO: return "uaddo";
|
|
case ISD::SSUBO: return "ssubo";
|
|
case ISD::USUBO: return "usubo";
|
|
case ISD::SMULO: return "smulo";
|
|
case ISD::UMULO: return "umulo";
|
|
case ISD::SUBC: return "subc";
|
|
case ISD::SUBE: return "sube";
|
|
case ISD::SHL_PARTS: return "shl_parts";
|
|
case ISD::SRA_PARTS: return "sra_parts";
|
|
case ISD::SRL_PARTS: return "srl_parts";
|
|
|
|
// Conversion operators.
|
|
case ISD::SIGN_EXTEND: return "sign_extend";
|
|
case ISD::ZERO_EXTEND: return "zero_extend";
|
|
case ISD::ANY_EXTEND: return "any_extend";
|
|
case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
|
|
case ISD::TRUNCATE: return "truncate";
|
|
case ISD::FP_ROUND: return "fp_round";
|
|
case ISD::FLT_ROUNDS_: return "flt_rounds";
|
|
case ISD::FP_ROUND_INREG: return "fp_round_inreg";
|
|
case ISD::FP_EXTEND: return "fp_extend";
|
|
|
|
case ISD::SINT_TO_FP: return "sint_to_fp";
|
|
case ISD::UINT_TO_FP: return "uint_to_fp";
|
|
case ISD::FP_TO_SINT: return "fp_to_sint";
|
|
case ISD::FP_TO_UINT: return "fp_to_uint";
|
|
case ISD::BITCAST: return "bitcast";
|
|
case ISD::FP16_TO_FP32: return "fp16_to_fp32";
|
|
case ISD::FP32_TO_FP16: return "fp32_to_fp16";
|
|
|
|
case ISD::CONVERT_RNDSAT: {
|
|
switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
|
|
default: llvm_unreachable("Unknown cvt code!");
|
|
case ISD::CVT_FF: return "cvt_ff";
|
|
case ISD::CVT_FS: return "cvt_fs";
|
|
case ISD::CVT_FU: return "cvt_fu";
|
|
case ISD::CVT_SF: return "cvt_sf";
|
|
case ISD::CVT_UF: return "cvt_uf";
|
|
case ISD::CVT_SS: return "cvt_ss";
|
|
case ISD::CVT_SU: return "cvt_su";
|
|
case ISD::CVT_US: return "cvt_us";
|
|
case ISD::CVT_UU: return "cvt_uu";
|
|
}
|
|
}
|
|
|
|
// Control flow instructions
|
|
case ISD::BR: return "br";
|
|
case ISD::BRIND: return "brind";
|
|
case ISD::BR_JT: return "br_jt";
|
|
case ISD::BRCOND: return "brcond";
|
|
case ISD::BR_CC: return "br_cc";
|
|
case ISD::CALLSEQ_START: return "callseq_start";
|
|
case ISD::CALLSEQ_END: return "callseq_end";
|
|
|
|
// Other operators
|
|
case ISD::LOAD: return "load";
|
|
case ISD::STORE: return "store";
|
|
case ISD::VAARG: return "vaarg";
|
|
case ISD::VACOPY: return "vacopy";
|
|
case ISD::VAEND: return "vaend";
|
|
case ISD::VASTART: return "vastart";
|
|
case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
|
|
case ISD::EXTRACT_ELEMENT: return "extract_element";
|
|
case ISD::BUILD_PAIR: return "build_pair";
|
|
case ISD::STACKSAVE: return "stacksave";
|
|
case ISD::STACKRESTORE: return "stackrestore";
|
|
case ISD::TRAP: return "trap";
|
|
|
|
// Bit manipulation
|
|
case ISD::BSWAP: return "bswap";
|
|
case ISD::CTPOP: return "ctpop";
|
|
case ISD::CTTZ: return "cttz";
|
|
case ISD::CTLZ: return "ctlz";
|
|
|
|
// Trampolines
|
|
case ISD::TRAMPOLINE: return "trampoline";
|
|
|
|
case ISD::CONDCODE:
|
|
switch (cast<CondCodeSDNode>(this)->get()) {
|
|
default: llvm_unreachable("Unknown setcc condition!");
|
|
case ISD::SETOEQ: return "setoeq";
|
|
case ISD::SETOGT: return "setogt";
|
|
case ISD::SETOGE: return "setoge";
|
|
case ISD::SETOLT: return "setolt";
|
|
case ISD::SETOLE: return "setole";
|
|
case ISD::SETONE: return "setone";
|
|
|
|
case ISD::SETO: return "seto";
|
|
case ISD::SETUO: return "setuo";
|
|
case ISD::SETUEQ: return "setue";
|
|
case ISD::SETUGT: return "setugt";
|
|
case ISD::SETUGE: return "setuge";
|
|
case ISD::SETULT: return "setult";
|
|
case ISD::SETULE: return "setule";
|
|
case ISD::SETUNE: return "setune";
|
|
|
|
case ISD::SETEQ: return "seteq";
|
|
case ISD::SETGT: return "setgt";
|
|
case ISD::SETGE: return "setge";
|
|
case ISD::SETLT: return "setlt";
|
|
case ISD::SETLE: return "setle";
|
|
case ISD::SETNE: return "setne";
|
|
}
|
|
}
|
|
}
|
|
|
|
const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
|
|
switch (AM) {
|
|
default:
|
|
return "";
|
|
case ISD::PRE_INC:
|
|
return "<pre-inc>";
|
|
case ISD::PRE_DEC:
|
|
return "<pre-dec>";
|
|
case ISD::POST_INC:
|
|
return "<post-inc>";
|
|
case ISD::POST_DEC:
|
|
return "<post-dec>";
|
|
}
|
|
}
|
|
|
|
std::string ISD::ArgFlagsTy::getArgFlagsString() {
|
|
std::string S = "< ";
|
|
|
|
if (isZExt())
|
|
S += "zext ";
|
|
if (isSExt())
|
|
S += "sext ";
|
|
if (isInReg())
|
|
S += "inreg ";
|
|
if (isSRet())
|
|
S += "sret ";
|
|
if (isByVal())
|
|
S += "byval ";
|
|
if (isNest())
|
|
S += "nest ";
|
|
if (getByValAlign())
|
|
S += "byval-align:" + utostr(getByValAlign()) + " ";
|
|
if (getOrigAlign())
|
|
S += "orig-align:" + utostr(getOrigAlign()) + " ";
|
|
if (getByValSize())
|
|
S += "byval-size:" + utostr(getByValSize()) + " ";
|
|
return S + ">";
|
|
}
|
|
|
|
void SDNode::dump() const { dump(0); }
|
|
void SDNode::dump(const SelectionDAG *G) const {
|
|
print(dbgs(), G);
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
|
|
OS << (void*)this << ": ";
|
|
|
|
for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
|
|
if (i) OS << ",";
|
|
if (getValueType(i) == MVT::Other)
|
|
OS << "ch";
|
|
else
|
|
OS << getValueType(i).getEVTString();
|
|
}
|
|
OS << " = " << getOperationName(G);
|
|
}
|
|
|
|
void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
|
|
if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
|
|
if (!MN->memoperands_empty()) {
|
|
OS << "<";
|
|
OS << "Mem:";
|
|
for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
|
|
e = MN->memoperands_end(); i != e; ++i) {
|
|
OS << **i;
|
|
if (llvm::next(i) != e)
|
|
OS << " ";
|
|
}
|
|
OS << ">";
|
|
}
|
|
} else if (const ShuffleVectorSDNode *SVN =
|
|
dyn_cast<ShuffleVectorSDNode>(this)) {
|
|
OS << "<";
|
|
for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (i) OS << ",";
|
|
if (Idx < 0)
|
|
OS << "u";
|
|
else
|
|
OS << Idx;
|
|
}
|
|
OS << ">";
|
|
} else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
|
|
OS << '<' << CSDN->getAPIntValue() << '>';
|
|
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
|
|
if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
|
|
OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
|
|
else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
|
|
OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
|
|
else {
|
|
OS << "<APFloat(";
|
|
CSDN->getValueAPF().bitcastToAPInt().dump();
|
|
OS << ")>";
|
|
}
|
|
} else if (const GlobalAddressSDNode *GADN =
|
|
dyn_cast<GlobalAddressSDNode>(this)) {
|
|
int64_t offset = GADN->getOffset();
|
|
OS << '<';
|
|
WriteAsOperand(OS, GADN->getGlobal());
|
|
OS << '>';
|
|
if (offset > 0)
|
|
OS << " + " << offset;
|
|
else
|
|
OS << " " << offset;
|
|
if (unsigned int TF = GADN->getTargetFlags())
|
|
OS << " [TF=" << TF << ']';
|
|
} else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
|
|
OS << "<" << FIDN->getIndex() << ">";
|
|
} else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
|
|
OS << "<" << JTDN->getIndex() << ">";
|
|
if (unsigned int TF = JTDN->getTargetFlags())
|
|
OS << " [TF=" << TF << ']';
|
|
} else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
|
|
int offset = CP->getOffset();
|
|
if (CP->isMachineConstantPoolEntry())
|
|
OS << "<" << *CP->getMachineCPVal() << ">";
|
|
else
|
|
OS << "<" << *CP->getConstVal() << ">";
|
|
if (offset > 0)
|
|
OS << " + " << offset;
|
|
else
|
|
OS << " " << offset;
|
|
if (unsigned int TF = CP->getTargetFlags())
|
|
OS << " [TF=" << TF << ']';
|
|
} else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
|
|
OS << "<";
|
|
const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
|
|
if (LBB)
|
|
OS << LBB->getName() << " ";
|
|
OS << (const void*)BBDN->getBasicBlock() << ">";
|
|
} else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
|
|
OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
|
|
} else if (const ExternalSymbolSDNode *ES =
|
|
dyn_cast<ExternalSymbolSDNode>(this)) {
|
|
OS << "'" << ES->getSymbol() << "'";
|
|
if (unsigned int TF = ES->getTargetFlags())
|
|
OS << " [TF=" << TF << ']';
|
|
} else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
|
|
if (M->getValue())
|
|
OS << "<" << M->getValue() << ">";
|
|
else
|
|
OS << "<null>";
|
|
} else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
|
|
if (MD->getMD())
|
|
OS << "<" << MD->getMD() << ">";
|
|
else
|
|
OS << "<null>";
|
|
} else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
|
|
OS << ":" << N->getVT().getEVTString();
|
|
}
|
|
else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
|
|
OS << "<" << *LD->getMemOperand();
|
|
|
|
bool doExt = true;
|
|
switch (LD->getExtensionType()) {
|
|
default: doExt = false; break;
|
|
case ISD::EXTLOAD: OS << ", anyext"; break;
|
|
case ISD::SEXTLOAD: OS << ", sext"; break;
|
|
case ISD::ZEXTLOAD: OS << ", zext"; break;
|
|
}
|
|
if (doExt)
|
|
OS << " from " << LD->getMemoryVT().getEVTString();
|
|
|
|
const char *AM = getIndexedModeName(LD->getAddressingMode());
|
|
if (*AM)
|
|
OS << ", " << AM;
|
|
|
|
OS << ">";
|
|
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
|
|
OS << "<" << *ST->getMemOperand();
|
|
|
|
if (ST->isTruncatingStore())
|
|
OS << ", trunc to " << ST->getMemoryVT().getEVTString();
|
|
|
|
const char *AM = getIndexedModeName(ST->getAddressingMode());
|
|
if (*AM)
|
|
OS << ", " << AM;
|
|
|
|
OS << ">";
|
|
} else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
|
|
OS << "<" << *M->getMemOperand() << ">";
|
|
} else if (const BlockAddressSDNode *BA =
|
|
dyn_cast<BlockAddressSDNode>(this)) {
|
|
OS << "<";
|
|
WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
|
|
OS << ", ";
|
|
WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
|
|
OS << ">";
|
|
if (unsigned int TF = BA->getTargetFlags())
|
|
OS << " [TF=" << TF << ']';
|
|
}
|
|
|
|
if (G)
|
|
if (unsigned Order = G->GetOrdering(this))
|
|
OS << " [ORD=" << Order << ']';
|
|
|
|
if (getNodeId() != -1)
|
|
OS << " [ID=" << getNodeId() << ']';
|
|
|
|
DebugLoc dl = getDebugLoc();
|
|
if (G && !dl.isUnknown()) {
|
|
DIScope
|
|
Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
|
|
OS << " dbg:";
|
|
// Omit the directory, since it's usually long and uninteresting.
|
|
if (Scope.Verify())
|
|
OS << Scope.getFilename();
|
|
else
|
|
OS << "<unknown>";
|
|
OS << ':' << dl.getLine();
|
|
if (dl.getCol() != 0)
|
|
OS << ':' << dl.getCol();
|
|
}
|
|
}
|
|
|
|
void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
|
|
print_types(OS, G);
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
if (i) OS << ", "; else OS << " ";
|
|
OS << (void*)getOperand(i).getNode();
|
|
if (unsigned RN = getOperand(i).getResNo())
|
|
OS << ":" << RN;
|
|
}
|
|
print_details(OS, G);
|
|
}
|
|
|
|
static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
|
|
const SelectionDAG *G, unsigned depth,
|
|
unsigned indent)
|
|
{
|
|
if (depth == 0)
|
|
return;
|
|
|
|
OS.indent(indent);
|
|
|
|
N->print(OS, G);
|
|
|
|
if (depth < 1)
|
|
return;
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
// Don't follow chain operands.
|
|
if (N->getOperand(i).getValueType() == MVT::Other)
|
|
continue;
|
|
OS << '\n';
|
|
printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
|
|
}
|
|
}
|
|
|
|
void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
|
|
unsigned depth) const {
|
|
printrWithDepthHelper(OS, this, G, depth, 0);
|
|
}
|
|
|
|
void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
|
|
// Don't print impossibly deep things.
|
|
printrWithDepth(OS, G, 10);
|
|
}
|
|
|
|
void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
|
|
printrWithDepth(dbgs(), G, depth);
|
|
}
|
|
|
|
void SDNode::dumprFull(const SelectionDAG *G) const {
|
|
// Don't print impossibly deep things.
|
|
dumprWithDepth(G, 10);
|
|
}
|
|
|
|
static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (N->getOperand(i).getNode()->hasOneUse())
|
|
DumpNodes(N->getOperand(i).getNode(), indent+2, G);
|
|
else
|
|
dbgs() << "\n" << std::string(indent+2, ' ')
|
|
<< (void*)N->getOperand(i).getNode() << ": <multiple use>";
|
|
|
|
|
|
dbgs() << "\n";
|
|
dbgs().indent(indent);
|
|
N->dump(G);
|
|
}
|
|
|
|
SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
|
|
assert(N->getNumValues() == 1 &&
|
|
"Can't unroll a vector with multiple results!");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NE = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
SmallVector<SDValue, 8> Scalars;
|
|
SmallVector<SDValue, 4> Operands(N->getNumOperands());
|
|
|
|
// If ResNE is 0, fully unroll the vector op.
|
|
if (ResNE == 0)
|
|
ResNE = NE;
|
|
else if (NE > ResNE)
|
|
NE = ResNE;
|
|
|
|
unsigned i;
|
|
for (i= 0; i != NE; ++i) {
|
|
for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
|
|
SDValue Operand = N->getOperand(j);
|
|
EVT OperandVT = Operand.getValueType();
|
|
if (OperandVT.isVector()) {
|
|
// A vector operand; extract a single element.
|
|
EVT OperandEltVT = OperandVT.getVectorElementType();
|
|
Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
|
|
OperandEltVT,
|
|
Operand,
|
|
getConstant(i, TLI.getPointerTy()));
|
|
} else {
|
|
// A scalar operand; just use it as is.
|
|
Operands[j] = Operand;
|
|
}
|
|
}
|
|
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
|
|
&Operands[0], Operands.size()));
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
|
|
getShiftAmountOperand(Operands[0].getValueType(),
|
|
Operands[1])));
|
|
break;
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::FP_ROUND_INREG: {
|
|
EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
|
|
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
|
|
Operands[0],
|
|
getValueType(ExtVT)));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; i < ResNE; ++i)
|
|
Scalars.push_back(getUNDEF(EltVT));
|
|
|
|
return getNode(ISD::BUILD_VECTOR, dl,
|
|
EVT::getVectorVT(*getContext(), EltVT, ResNE),
|
|
&Scalars[0], Scalars.size());
|
|
}
|
|
|
|
|
|
/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
|
|
/// location that is 'Dist' units away from the location that the 'Base' load
|
|
/// is loading from.
|
|
bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
|
|
unsigned Bytes, int Dist) const {
|
|
if (LD->getChain() != Base->getChain())
|
|
return false;
|
|
EVT VT = LD->getValueType(0);
|
|
if (VT.getSizeInBits() / 8 != Bytes)
|
|
return false;
|
|
|
|
SDValue Loc = LD->getOperand(1);
|
|
SDValue BaseLoc = Base->getOperand(1);
|
|
if (Loc.getOpcode() == ISD::FrameIndex) {
|
|
if (BaseLoc.getOpcode() != ISD::FrameIndex)
|
|
return false;
|
|
const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
|
|
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
|
|
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
|
|
int FS = MFI->getObjectSize(FI);
|
|
int BFS = MFI->getObjectSize(BFI);
|
|
if (FS != BFS || FS != (int)Bytes) return false;
|
|
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
|
|
}
|
|
|
|
// Handle X+C
|
|
if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
|
|
cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
|
|
return true;
|
|
|
|
const GlobalValue *GV1 = NULL;
|
|
const GlobalValue *GV2 = NULL;
|
|
int64_t Offset1 = 0;
|
|
int64_t Offset2 = 0;
|
|
bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
|
|
bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
|
|
if (isGA1 && isGA2 && GV1 == GV2)
|
|
return Offset1 == (Offset2 + Dist*Bytes);
|
|
return false;
|
|
}
|
|
|
|
|
|
/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
|
|
/// it cannot be inferred.
|
|
unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
|
|
// If this is a GlobalAddress + cst, return the alignment.
|
|
const GlobalValue *GV;
|
|
int64_t GVOffset = 0;
|
|
if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
|
|
// If GV has specified alignment, then use it. Otherwise, use the preferred
|
|
// alignment.
|
|
unsigned Align = GV->getAlignment();
|
|
if (!Align) {
|
|
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
|
|
if (GVar->hasInitializer()) {
|
|
const TargetData *TD = TLI.getTargetData();
|
|
Align = TD->getPreferredAlignment(GVar);
|
|
}
|
|
}
|
|
}
|
|
return MinAlign(Align, GVOffset);
|
|
}
|
|
|
|
// If this is a direct reference to a stack slot, use information about the
|
|
// stack slot's alignment.
|
|
int FrameIdx = 1 << 31;
|
|
int64_t FrameOffset = 0;
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
|
|
FrameIdx = FI->getIndex();
|
|
} else if (isBaseWithConstantOffset(Ptr) &&
|
|
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
|
|
// Handle FI+Cst
|
|
FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
|
|
FrameOffset = Ptr.getConstantOperandVal(1);
|
|
}
|
|
|
|
if (FrameIdx != (1 << 31)) {
|
|
const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
|
|
unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
|
|
FrameOffset);
|
|
return FIInfoAlign;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void SelectionDAG::dump() const {
|
|
dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
|
|
|
|
for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
|
|
I != E; ++I) {
|
|
const SDNode *N = I;
|
|
if (!N->hasOneUse() && N != getRoot().getNode())
|
|
DumpNodes(N, 2, this);
|
|
}
|
|
|
|
if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
|
|
|
|
dbgs() << "\n\n";
|
|
}
|
|
|
|
void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
|
|
print_types(OS, G);
|
|
print_details(OS, G);
|
|
}
|
|
|
|
typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
|
|
static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
|
|
const SelectionDAG *G, VisitedSDNodeSet &once) {
|
|
if (!once.insert(N)) // If we've been here before, return now.
|
|
return;
|
|
|
|
// Dump the current SDNode, but don't end the line yet.
|
|
OS << std::string(indent, ' ');
|
|
N->printr(OS, G);
|
|
|
|
// Having printed this SDNode, walk the children:
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
const SDNode *child = N->getOperand(i).getNode();
|
|
|
|
if (i) OS << ",";
|
|
OS << " ";
|
|
|
|
if (child->getNumOperands() == 0) {
|
|
// This child has no grandchildren; print it inline right here.
|
|
child->printr(OS, G);
|
|
once.insert(child);
|
|
} else { // Just the address. FIXME: also print the child's opcode.
|
|
OS << (void*)child;
|
|
if (unsigned RN = N->getOperand(i).getResNo())
|
|
OS << ":" << RN;
|
|
}
|
|
}
|
|
|
|
OS << "\n";
|
|
|
|
// Dump children that have grandchildren on their own line(s).
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
const SDNode *child = N->getOperand(i).getNode();
|
|
DumpNodesr(OS, child, indent+2, G, once);
|
|
}
|
|
}
|
|
|
|
void SDNode::dumpr() const {
|
|
VisitedSDNodeSet once;
|
|
DumpNodesr(dbgs(), this, 0, 0, once);
|
|
}
|
|
|
|
void SDNode::dumpr(const SelectionDAG *G) const {
|
|
VisitedSDNodeSet once;
|
|
DumpNodesr(dbgs(), this, 0, G, once);
|
|
}
|
|
|
|
|
|
// getAddressSpace - Return the address space this GlobalAddress belongs to.
|
|
unsigned GlobalAddressSDNode::getAddressSpace() const {
|
|
return getGlobal()->getType()->getAddressSpace();
|
|
}
|
|
|
|
|
|
Type *ConstantPoolSDNode::getType() const {
|
|
if (isMachineConstantPoolEntry())
|
|
return Val.MachineCPVal->getType();
|
|
return Val.ConstVal->getType();
|
|
}
|
|
|
|
bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
|
|
APInt &SplatUndef,
|
|
unsigned &SplatBitSize,
|
|
bool &HasAnyUndefs,
|
|
unsigned MinSplatBits,
|
|
bool isBigEndian) {
|
|
EVT VT = getValueType(0);
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
unsigned sz = VT.getSizeInBits();
|
|
if (MinSplatBits > sz)
|
|
return false;
|
|
|
|
SplatValue = APInt(sz, 0);
|
|
SplatUndef = APInt(sz, 0);
|
|
|
|
// Get the bits. Bits with undefined values (when the corresponding element
|
|
// of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
|
|
// in SplatValue. If any of the values are not constant, give up and return
|
|
// false.
|
|
unsigned int nOps = getNumOperands();
|
|
assert(nOps > 0 && "isConstantSplat has 0-size build vector");
|
|
unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
|
|
|
|
for (unsigned j = 0; j < nOps; ++j) {
|
|
unsigned i = isBigEndian ? nOps-1-j : j;
|
|
SDValue OpVal = getOperand(i);
|
|
unsigned BitPos = j * EltBitSize;
|
|
|
|
if (OpVal.getOpcode() == ISD::UNDEF)
|
|
SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
|
|
else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
|
|
SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
|
|
zextOrTrunc(sz) << BitPos;
|
|
else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
|
|
SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// The build_vector is all constants or undefs. Find the smallest element
|
|
// size that splats the vector.
|
|
|
|
HasAnyUndefs = (SplatUndef != 0);
|
|
while (sz > 8) {
|
|
|
|
unsigned HalfSize = sz / 2;
|
|
APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
|
|
APInt LowValue = SplatValue.trunc(HalfSize);
|
|
APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
|
|
APInt LowUndef = SplatUndef.trunc(HalfSize);
|
|
|
|
// If the two halves do not match (ignoring undef bits), stop here.
|
|
if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
|
|
MinSplatBits > HalfSize)
|
|
break;
|
|
|
|
SplatValue = HighValue | LowValue;
|
|
SplatUndef = HighUndef & LowUndef;
|
|
|
|
sz = HalfSize;
|
|
}
|
|
|
|
SplatBitSize = sz;
|
|
return true;
|
|
}
|
|
|
|
bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
|
|
// Find the first non-undef value in the shuffle mask.
|
|
unsigned i, e;
|
|
for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
|
|
/* search */;
|
|
|
|
assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
|
|
|
|
// Make sure all remaining elements are either undef or the same as the first
|
|
// non-undef value.
|
|
for (int Idx = Mask[i]; i != e; ++i)
|
|
if (Mask[i] >= 0 && Mask[i] != Idx)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
#ifdef XDEBUG
|
|
static void checkForCyclesHelper(const SDNode *N,
|
|
SmallPtrSet<const SDNode*, 32> &Visited,
|
|
SmallPtrSet<const SDNode*, 32> &Checked) {
|
|
// If this node has already been checked, don't check it again.
|
|
if (Checked.count(N))
|
|
return;
|
|
|
|
// If a node has already been visited on this depth-first walk, reject it as
|
|
// a cycle.
|
|
if (!Visited.insert(N)) {
|
|
dbgs() << "Offending node:\n";
|
|
N->dumprFull();
|
|
errs() << "Detected cycle in SelectionDAG\n";
|
|
abort();
|
|
}
|
|
|
|
for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
|
|
|
|
Checked.insert(N);
|
|
Visited.erase(N);
|
|
}
|
|
#endif
|
|
|
|
void llvm::checkForCycles(const llvm::SDNode *N) {
|
|
#ifdef XDEBUG
|
|
assert(N && "Checking nonexistant SDNode");
|
|
SmallPtrSet<const SDNode*, 32> visited;
|
|
SmallPtrSet<const SDNode*, 32> checked;
|
|
checkForCyclesHelper(N, visited, checked);
|
|
#endif
|
|
}
|
|
|
|
void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
|
|
checkForCycles(DAG->getRoot().getNode());
|
|
}
|