mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	at the moment. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84529 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2114 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2114 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Constant* classes...
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "LLVMContextImpl.h"
 | 
						|
#include "ConstantFold.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/System/Mutex.h"
 | 
						|
#include "llvm/System/RWMutex.h"
 | 
						|
#include "llvm/System/Threading.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              Constant Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Constructor to create a '0' constant of arbitrary type...
 | 
						|
static const uint64_t zero[2] = {0, 0};
 | 
						|
Constant* Constant::getNullValue(const Type* Ty) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::IntegerTyID:
 | 
						|
    return ConstantInt::get(Ty, 0);
 | 
						|
  case Type::FloatTyID:
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
 | 
						|
  case Type::FP128TyID:
 | 
						|
    return ConstantFP::get(Ty->getContext(),
 | 
						|
                           APFloat(APInt(128, 2, zero), true));
 | 
						|
  case Type::PPC_FP128TyID:
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
 | 
						|
  case Type::PointerTyID:
 | 
						|
    return ConstantPointerNull::get(cast<PointerType>(Ty));
 | 
						|
  case Type::StructTyID:
 | 
						|
  case Type::ArrayTyID:
 | 
						|
  case Type::VectorTyID:
 | 
						|
    return ConstantAggregateZero::get(Ty);
 | 
						|
  default:
 | 
						|
    // Function, Label, or Opaque type?
 | 
						|
    assert(!"Cannot create a null constant of that type!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) {
 | 
						|
  const Type *ScalarTy = Ty->getScalarType();
 | 
						|
 | 
						|
  // Create the base integer constant.
 | 
						|
  Constant *C = ConstantInt::get(Ty->getContext(), V);
 | 
						|
 | 
						|
  // Convert an integer to a pointer, if necessary.
 | 
						|
  if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
 | 
						|
    C = ConstantExpr::getIntToPtr(C, PTy);
 | 
						|
 | 
						|
  // Broadcast a scalar to a vector, if necessary.
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
    C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
Constant* Constant::getAllOnesValue(const Type* Ty) {
 | 
						|
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
 | 
						|
    return ConstantInt::get(Ty->getContext(),
 | 
						|
                            APInt::getAllOnesValue(ITy->getBitWidth()));
 | 
						|
  
 | 
						|
  std::vector<Constant*> Elts;
 | 
						|
  const VectorType* VTy = cast<VectorType>(Ty);
 | 
						|
  Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
 | 
						|
  assert(Elts[0] && "Not a vector integer type!");
 | 
						|
  return cast<ConstantVector>(ConstantVector::get(Elts));
 | 
						|
}
 | 
						|
 | 
						|
void Constant::destroyConstantImpl() {
 | 
						|
  // When a Constant is destroyed, there may be lingering
 | 
						|
  // references to the constant by other constants in the constant pool.  These
 | 
						|
  // constants are implicitly dependent on the module that is being deleted,
 | 
						|
  // but they don't know that.  Because we only find out when the CPV is
 | 
						|
  // deleted, we must now notify all of our users (that should only be
 | 
						|
  // Constants) that they are, in fact, invalid now and should be deleted.
 | 
						|
  //
 | 
						|
  while (!use_empty()) {
 | 
						|
    Value *V = use_back();
 | 
						|
#ifndef NDEBUG      // Only in -g mode...
 | 
						|
    if (!isa<Constant>(V)) {
 | 
						|
      errs() << "While deleting: " << *this
 | 
						|
             << "\n\nUse still stuck around after Def is destroyed: "
 | 
						|
             << *V << "\n\n";
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | 
						|
    Constant *CV = cast<Constant>(V);
 | 
						|
    CV->destroyConstant();
 | 
						|
 | 
						|
    // The constant should remove itself from our use list...
 | 
						|
    assert((use_empty() || use_back() != V) && "Constant not removed!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Value has no outstanding references it is safe to delete it now...
 | 
						|
  delete this;
 | 
						|
}
 | 
						|
 | 
						|
/// canTrap - Return true if evaluation of this constant could trap.  This is
 | 
						|
/// true for things like constant expressions that could divide by zero.
 | 
						|
bool Constant::canTrap() const {
 | 
						|
  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
 | 
						|
  // The only thing that could possibly trap are constant exprs.
 | 
						|
  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
 | 
						|
  if (!CE) return false;
 | 
						|
  
 | 
						|
  // ConstantExpr traps if any operands can trap. 
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (getOperand(i)->canTrap()) 
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Otherwise, only specific operations can trap.
 | 
						|
  switch (CE->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::FDiv:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::FRem:
 | 
						|
    // Div and rem can trap if the RHS is not known to be non-zero.
 | 
						|
    if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getRelocationInfo - This method classifies the entry according to
 | 
						|
/// whether or not it may generate a relocation entry.  This must be
 | 
						|
/// conservative, so if it might codegen to a relocatable entry, it should say
 | 
						|
/// so.  The return values are:
 | 
						|
/// 
 | 
						|
///  NoRelocation: This constant pool entry is guaranteed to never have a
 | 
						|
///     relocation applied to it (because it holds a simple constant like
 | 
						|
///     '4').
 | 
						|
///  LocalRelocation: This entry has relocations, but the entries are
 | 
						|
///     guaranteed to be resolvable by the static linker, so the dynamic
 | 
						|
///     linker will never see them.
 | 
						|
///  GlobalRelocations: This entry may have arbitrary relocations.
 | 
						|
///
 | 
						|
/// FIXME: This really should not be in VMCore.
 | 
						|
Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
 | 
						|
    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
 | 
						|
      return LocalRelocation;  // Local to this file/library.
 | 
						|
    return GlobalRelocations;    // Global reference.
 | 
						|
  }
 | 
						|
  
 | 
						|
  PossibleRelocationsTy Result = NoRelocation;
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    Result = std::max(Result, getOperand(i)->getRelocationInfo());
 | 
						|
  
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getVectorElements - This method, which is only valid on constant of vector
 | 
						|
/// type, returns the elements of the vector in the specified smallvector.
 | 
						|
/// This handles breaking down a vector undef into undef elements, etc.  For
 | 
						|
/// constant exprs and other cases we can't handle, we return an empty vector.
 | 
						|
void Constant::getVectorElements(LLVMContext &Context,
 | 
						|
                                 SmallVectorImpl<Constant*> &Elts) const {
 | 
						|
  assert(isa<VectorType>(getType()) && "Not a vector constant!");
 | 
						|
  
 | 
						|
  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
 | 
						|
    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
 | 
						|
      Elts.push_back(CV->getOperand(i));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const VectorType *VT = cast<VectorType>(getType());
 | 
						|
  if (isa<ConstantAggregateZero>(this)) {
 | 
						|
    Elts.assign(VT->getNumElements(), 
 | 
						|
                Constant::getNullValue(VT->getElementType()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isa<UndefValue>(this)) {
 | 
						|
    Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Unknown type, must be constant expr etc.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                ConstantInt
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
 | 
						|
  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
 | 
						|
  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
 | 
						|
  LLVMContextImpl *pImpl = Context.pImpl;
 | 
						|
  if (pImpl->TheTrueVal)
 | 
						|
    return pImpl->TheTrueVal;
 | 
						|
  else
 | 
						|
    return (pImpl->TheTrueVal =
 | 
						|
              ConstantInt::get(IntegerType::get(Context, 1), 1));
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
 | 
						|
  LLVMContextImpl *pImpl = Context.pImpl;
 | 
						|
  if (pImpl->TheFalseVal)
 | 
						|
    return pImpl->TheFalseVal;
 | 
						|
  else
 | 
						|
    return (pImpl->TheFalseVal =
 | 
						|
              ConstantInt::get(IntegerType::get(Context, 1), 0));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
 | 
						|
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
 | 
						|
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
 | 
						|
// compare APInt's of different widths, which would violate an APInt class
 | 
						|
// invariant which generates an assertion.
 | 
						|
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
 | 
						|
  // Get the corresponding integer type for the bit width of the value.
 | 
						|
  const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
 | 
						|
  // get an existing value or the insertion position
 | 
						|
  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
 | 
						|
  ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; 
 | 
						|
  if (!Slot) Slot = new ConstantInt(ITy, V);
 | 
						|
  return Slot;
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
 | 
						|
  Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
 | 
						|
                               V, isSigned);
 | 
						|
 | 
						|
  // For vectors, broadcast the value.
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
    return ConstantVector::get(
 | 
						|
      std::vector<Constant *>(VTy->getNumElements(), C));
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, 
 | 
						|
                              bool isSigned) {
 | 
						|
  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
 | 
						|
  return get(Ty, V, true);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
 | 
						|
  return get(Ty, V, true);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
 | 
						|
  ConstantInt *C = get(Ty->getContext(), V);
 | 
						|
  assert(C->getType() == Ty->getScalarType() &&
 | 
						|
         "ConstantInt type doesn't match the type implied by its value!");
 | 
						|
 | 
						|
  // For vectors, broadcast the value.
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
    return ConstantVector::get(
 | 
						|
      std::vector<Constant *>(VTy->getNumElements(), C));
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
ConstantInt* ConstantInt::get(const IntegerType* Ty, const StringRef& Str,
 | 
						|
                              uint8_t radix) {
 | 
						|
  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                ConstantFP
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
 | 
						|
  if (Ty->isFloatTy())
 | 
						|
    return &APFloat::IEEEsingle;
 | 
						|
  if (Ty->isDoubleTy())
 | 
						|
    return &APFloat::IEEEdouble;
 | 
						|
  if (Ty->isX86_FP80Ty())
 | 
						|
    return &APFloat::x87DoubleExtended;
 | 
						|
  else if (Ty->isFP128Ty())
 | 
						|
    return &APFloat::IEEEquad;
 | 
						|
  
 | 
						|
  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
 | 
						|
  return &APFloat::PPCDoubleDouble;
 | 
						|
}
 | 
						|
 | 
						|
/// get() - This returns a constant fp for the specified value in the
 | 
						|
/// specified type.  This should only be used for simple constant values like
 | 
						|
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
 | 
						|
Constant* ConstantFP::get(const Type* Ty, double V) {
 | 
						|
  LLVMContext &Context = Ty->getContext();
 | 
						|
  
 | 
						|
  APFloat FV(V);
 | 
						|
  bool ignored;
 | 
						|
  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
 | 
						|
             APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
  Constant *C = get(Context, FV);
 | 
						|
 | 
						|
  // For vectors, broadcast the value.
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
    return ConstantVector::get(
 | 
						|
      std::vector<Constant *>(VTy->getNumElements(), C));
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Constant* ConstantFP::get(const Type* Ty, const StringRef& Str) {
 | 
						|
  LLVMContext &Context = Ty->getContext();
 | 
						|
 | 
						|
  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
 | 
						|
  Constant *C = get(Context, FV);
 | 
						|
 | 
						|
  // For vectors, broadcast the value.
 | 
						|
  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
    return ConstantVector::get(
 | 
						|
      std::vector<Constant *>(VTy->getNumElements(), C));
 | 
						|
 | 
						|
  return C; 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
 | 
						|
  LLVMContext &Context = Ty->getContext();
 | 
						|
  APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
 | 
						|
  apf.changeSign();
 | 
						|
  return get(Context, apf);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
 | 
						|
  if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
 | 
						|
    if (PTy->getElementType()->isFloatingPoint()) {
 | 
						|
      std::vector<Constant*> zeros(PTy->getNumElements(),
 | 
						|
                           getNegativeZero(PTy->getElementType()));
 | 
						|
      return ConstantVector::get(PTy, zeros);
 | 
						|
    }
 | 
						|
 | 
						|
  if (Ty->isFloatingPoint()) 
 | 
						|
    return getNegativeZero(Ty);
 | 
						|
 | 
						|
  return Constant::getNullValue(Ty);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ConstantFP accessors.
 | 
						|
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
 | 
						|
  DenseMapAPFloatKeyInfo::KeyTy Key(V);
 | 
						|
  
 | 
						|
  LLVMContextImpl* pImpl = Context.pImpl;
 | 
						|
  
 | 
						|
  ConstantFP *&Slot = pImpl->FPConstants[Key];
 | 
						|
    
 | 
						|
  if (!Slot) {
 | 
						|
    const Type *Ty;
 | 
						|
    if (&V.getSemantics() == &APFloat::IEEEsingle)
 | 
						|
      Ty = Type::getFloatTy(Context);
 | 
						|
    else if (&V.getSemantics() == &APFloat::IEEEdouble)
 | 
						|
      Ty = Type::getDoubleTy(Context);
 | 
						|
    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
 | 
						|
      Ty = Type::getX86_FP80Ty(Context);
 | 
						|
    else if (&V.getSemantics() == &APFloat::IEEEquad)
 | 
						|
      Ty = Type::getFP128Ty(Context);
 | 
						|
    else {
 | 
						|
      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
 | 
						|
             "Unknown FP format");
 | 
						|
      Ty = Type::getPPC_FP128Ty(Context);
 | 
						|
    }
 | 
						|
    Slot = new ConstantFP(Ty, V);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Slot;
 | 
						|
}
 | 
						|
 | 
						|
ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) {
 | 
						|
  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
 | 
						|
  return ConstantFP::get(Ty->getContext(),
 | 
						|
                         APFloat::getInf(Semantics, Negative));
 | 
						|
}
 | 
						|
 | 
						|
ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
 | 
						|
  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
 | 
						|
  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
 | 
						|
         "FP type Mismatch");
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantFP::isNullValue() const {
 | 
						|
  return Val.isZero() && !Val.isNegative();
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantFP::isExactlyValue(const APFloat& V) const {
 | 
						|
  return Val.bitwiseIsEqual(V);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            ConstantXXX Classes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
ConstantArray::ConstantArray(const ArrayType *T,
 | 
						|
                             const std::vector<Constant*> &V)
 | 
						|
  : Constant(T, ConstantArrayVal,
 | 
						|
             OperandTraits<ConstantArray>::op_end(this) - V.size(),
 | 
						|
             V.size()) {
 | 
						|
  assert(V.size() == T->getNumElements() &&
 | 
						|
         "Invalid initializer vector for constant array");
 | 
						|
  Use *OL = OperandList;
 | 
						|
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | 
						|
       I != E; ++I, ++OL) {
 | 
						|
    Constant *C = *I;
 | 
						|
    assert(C->getType() == T->getElementType() &&
 | 
						|
           "Initializer for array element doesn't match array element type!");
 | 
						|
    *OL = C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantArray::get(const ArrayType *Ty, 
 | 
						|
                             const std::vector<Constant*> &V) {
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | 
						|
    assert(V[i]->getType() == Ty->getElementType() &&
 | 
						|
           "Wrong type in array element initializer");
 | 
						|
  }
 | 
						|
  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
 | 
						|
  // If this is an all-zero array, return a ConstantAggregateZero object
 | 
						|
  if (!V.empty()) {
 | 
						|
    Constant *C = V[0];
 | 
						|
    if (!C->isNullValue()) {
 | 
						|
      // Implicitly locked.
 | 
						|
      return pImpl->ArrayConstants.getOrCreate(Ty, V);
 | 
						|
    }
 | 
						|
    for (unsigned i = 1, e = V.size(); i != e; ++i)
 | 
						|
      if (V[i] != C) {
 | 
						|
        // Implicitly locked.
 | 
						|
        return pImpl->ArrayConstants.getOrCreate(Ty, V);
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return ConstantAggregateZero::get(Ty);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
 | 
						|
                             unsigned NumVals) {
 | 
						|
  // FIXME: make this the primary ctor method.
 | 
						|
  return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantArray::get(const string&) - Return an array that is initialized to
 | 
						|
/// contain the specified string.  If length is zero then a null terminator is 
 | 
						|
/// added to the specified string so that it may be used in a natural way. 
 | 
						|
/// Otherwise, the length parameter specifies how much of the string to use 
 | 
						|
/// and it won't be null terminated.
 | 
						|
///
 | 
						|
Constant* ConstantArray::get(LLVMContext &Context, const StringRef &Str,
 | 
						|
                             bool AddNull) {
 | 
						|
  std::vector<Constant*> ElementVals;
 | 
						|
  for (unsigned i = 0; i < Str.size(); ++i)
 | 
						|
    ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
 | 
						|
 | 
						|
  // Add a null terminator to the string...
 | 
						|
  if (AddNull) {
 | 
						|
    ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
 | 
						|
  }
 | 
						|
 | 
						|
  ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
 | 
						|
  return get(ATy, ElementVals);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
ConstantStruct::ConstantStruct(const StructType *T,
 | 
						|
                               const std::vector<Constant*> &V)
 | 
						|
  : Constant(T, ConstantStructVal,
 | 
						|
             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
 | 
						|
             V.size()) {
 | 
						|
  assert(V.size() == T->getNumElements() &&
 | 
						|
         "Invalid initializer vector for constant structure");
 | 
						|
  Use *OL = OperandList;
 | 
						|
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | 
						|
       I != E; ++I, ++OL) {
 | 
						|
    Constant *C = *I;
 | 
						|
    assert(C->getType() == T->getElementType(I-V.begin()) &&
 | 
						|
           "Initializer for struct element doesn't match struct element type!");
 | 
						|
    *OL = C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// ConstantStruct accessors.
 | 
						|
Constant* ConstantStruct::get(const StructType* T,
 | 
						|
                              const std::vector<Constant*>& V) {
 | 
						|
  LLVMContextImpl* pImpl = T->getContext().pImpl;
 | 
						|
  
 | 
						|
  // Create a ConstantAggregateZero value if all elements are zeros...
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i)
 | 
						|
    if (!V[i]->isNullValue())
 | 
						|
      // Implicitly locked.
 | 
						|
      return pImpl->StructConstants.getOrCreate(T, V);
 | 
						|
 | 
						|
  return ConstantAggregateZero::get(T);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantStruct::get(LLVMContext &Context,
 | 
						|
                              const std::vector<Constant*>& V, bool packed) {
 | 
						|
  std::vector<const Type*> StructEls;
 | 
						|
  StructEls.reserve(V.size());
 | 
						|
  for (unsigned i = 0, e = V.size(); i != e; ++i)
 | 
						|
    StructEls.push_back(V[i]->getType());
 | 
						|
  return get(StructType::get(Context, StructEls, packed), V);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantStruct::get(LLVMContext &Context,
 | 
						|
                              Constant* const *Vals, unsigned NumVals,
 | 
						|
                              bool Packed) {
 | 
						|
  // FIXME: make this the primary ctor method.
 | 
						|
  return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
 | 
						|
}
 | 
						|
 | 
						|
ConstantVector::ConstantVector(const VectorType *T,
 | 
						|
                               const std::vector<Constant*> &V)
 | 
						|
  : Constant(T, ConstantVectorVal,
 | 
						|
             OperandTraits<ConstantVector>::op_end(this) - V.size(),
 | 
						|
             V.size()) {
 | 
						|
  Use *OL = OperandList;
 | 
						|
    for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | 
						|
         I != E; ++I, ++OL) {
 | 
						|
      Constant *C = *I;
 | 
						|
      assert(C->getType() == T->getElementType() &&
 | 
						|
           "Initializer for vector element doesn't match vector element type!");
 | 
						|
    *OL = C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// ConstantVector accessors.
 | 
						|
Constant* ConstantVector::get(const VectorType* T,
 | 
						|
                              const std::vector<Constant*>& V) {
 | 
						|
   assert(!V.empty() && "Vectors can't be empty");
 | 
						|
   LLVMContext &Context = T->getContext();
 | 
						|
   LLVMContextImpl *pImpl = Context.pImpl;
 | 
						|
   
 | 
						|
  // If this is an all-undef or alll-zero vector, return a
 | 
						|
  // ConstantAggregateZero or UndefValue.
 | 
						|
  Constant *C = V[0];
 | 
						|
  bool isZero = C->isNullValue();
 | 
						|
  bool isUndef = isa<UndefValue>(C);
 | 
						|
 | 
						|
  if (isZero || isUndef) {
 | 
						|
    for (unsigned i = 1, e = V.size(); i != e; ++i)
 | 
						|
      if (V[i] != C) {
 | 
						|
        isZero = isUndef = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isZero)
 | 
						|
    return ConstantAggregateZero::get(T);
 | 
						|
  if (isUndef)
 | 
						|
    return UndefValue::get(T);
 | 
						|
    
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->VectorConstants.getOrCreate(T, V);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantVector::get(const std::vector<Constant*>& V) {
 | 
						|
  assert(!V.empty() && "Cannot infer type if V is empty");
 | 
						|
  return get(VectorType::get(V.front()->getType(),V.size()), V);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
 | 
						|
  // FIXME: make this the primary ctor method.
 | 
						|
  return get(std::vector<Constant*>(Vals, Vals+NumVals));
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
 | 
						|
  return getTy(C1->getType(), Instruction::Add, C1, C2,
 | 
						|
               OverflowingBinaryOperator::NoSignedWrap);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) {
 | 
						|
  return getTy(C1->getType(), Instruction::Sub, C1, C2,
 | 
						|
               OverflowingBinaryOperator::NoSignedWrap);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
 | 
						|
  return getTy(C1->getType(), Instruction::SDiv, C1, C2,
 | 
						|
               SDivOperator::IsExact);
 | 
						|
}
 | 
						|
 | 
						|
// Utility function for determining if a ConstantExpr is a CastOp or not. This
 | 
						|
// can't be inline because we don't want to #include Instruction.h into
 | 
						|
// Constant.h
 | 
						|
bool ConstantExpr::isCast() const {
 | 
						|
  return Instruction::isCast(getOpcode());
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantExpr::isCompare() const {
 | 
						|
  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
 | 
						|
  if (getOpcode() != Instruction::GetElementPtr) return false;
 | 
						|
 | 
						|
  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
 | 
						|
  User::const_op_iterator OI = next(this->op_begin());
 | 
						|
 | 
						|
  // Skip the first index, as it has no static limit.
 | 
						|
  ++GEPI;
 | 
						|
  ++OI;
 | 
						|
 | 
						|
  // The remaining indices must be compile-time known integers within the
 | 
						|
  // bounds of the corresponding notional static array types.
 | 
						|
  for (; GEPI != E; ++GEPI, ++OI) {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
 | 
						|
    if (!CI) return false;
 | 
						|
    if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
 | 
						|
      if (CI->getValue().getActiveBits() > 64 ||
 | 
						|
          CI->getZExtValue() >= ATy->getNumElements())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // All the indices checked out.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantExpr::hasIndices() const {
 | 
						|
  return getOpcode() == Instruction::ExtractValue ||
 | 
						|
         getOpcode() == Instruction::InsertValue;
 | 
						|
}
 | 
						|
 | 
						|
const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
 | 
						|
  if (const ExtractValueConstantExpr *EVCE =
 | 
						|
        dyn_cast<ExtractValueConstantExpr>(this))
 | 
						|
    return EVCE->Indices;
 | 
						|
 | 
						|
  return cast<InsertValueConstantExpr>(this)->Indices;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ConstantExpr::getPredicate() const {
 | 
						|
  assert(getOpcode() == Instruction::FCmp || 
 | 
						|
         getOpcode() == Instruction::ICmp);
 | 
						|
  return ((const CompareConstantExpr*)this)->predicate;
 | 
						|
}
 | 
						|
 | 
						|
/// getWithOperandReplaced - Return a constant expression identical to this
 | 
						|
/// one, but with the specified operand set to the specified value.
 | 
						|
Constant *
 | 
						|
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
 | 
						|
  assert(OpNo < getNumOperands() && "Operand num is out of range!");
 | 
						|
  assert(Op->getType() == getOperand(OpNo)->getType() &&
 | 
						|
         "Replacing operand with value of different type!");
 | 
						|
  if (getOperand(OpNo) == Op)
 | 
						|
    return const_cast<ConstantExpr*>(this);
 | 
						|
  
 | 
						|
  Constant *Op0, *Op1, *Op2;
 | 
						|
  switch (getOpcode()) {
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return ConstantExpr::getCast(getOpcode(), Op, getType());
 | 
						|
  case Instruction::Select:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    Op2 = (OpNo == 2) ? Op : getOperand(2);
 | 
						|
    return ConstantExpr::getSelect(Op0, Op1, Op2);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    Op2 = (OpNo == 2) ? Op : getOperand(2);
 | 
						|
    return ConstantExpr::getInsertElement(Op0, Op1, Op2);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    return ConstantExpr::getExtractElement(Op0, Op1);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    Op2 = (OpNo == 2) ? Op : getOperand(2);
 | 
						|
    return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    SmallVector<Constant*, 8> Ops;
 | 
						|
    Ops.resize(getNumOperands()-1);
 | 
						|
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
 | 
						|
      Ops[i-1] = getOperand(i);
 | 
						|
    if (OpNo == 0)
 | 
						|
      return cast<GEPOperator>(this)->isInBounds() ?
 | 
						|
        ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
 | 
						|
        ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
 | 
						|
    Ops[OpNo-1] = Op;
 | 
						|
    return cast<GEPOperator>(this)->isInBounds() ?
 | 
						|
      ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0], Ops.size()) :
 | 
						|
      ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    assert(getNumOperands() == 2 && "Must be binary operator?");
 | 
						|
    Op0 = (OpNo == 0) ? Op : getOperand(0);
 | 
						|
    Op1 = (OpNo == 1) ? Op : getOperand(1);
 | 
						|
    return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassData);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getWithOperands - This returns the current constant expression with the
 | 
						|
/// operands replaced with the specified values.  The specified operands must
 | 
						|
/// match count and type with the existing ones.
 | 
						|
Constant *ConstantExpr::
 | 
						|
getWithOperands(Constant* const *Ops, unsigned NumOps) const {
 | 
						|
  assert(NumOps == getNumOperands() && "Operand count mismatch!");
 | 
						|
  bool AnyChange = false;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    assert(Ops[i]->getType() == getOperand(i)->getType() &&
 | 
						|
           "Operand type mismatch!");
 | 
						|
    AnyChange |= Ops[i] != getOperand(i);
 | 
						|
  }
 | 
						|
  if (!AnyChange)  // No operands changed, return self.
 | 
						|
    return const_cast<ConstantExpr*>(this);
 | 
						|
 | 
						|
  switch (getOpcode()) {
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
 | 
						|
  case Instruction::Select:
 | 
						|
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return cast<GEPOperator>(this)->isInBounds() ?
 | 
						|
      ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
 | 
						|
      ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp:
 | 
						|
    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
 | 
						|
  default:
 | 
						|
    assert(getNumOperands() == 2 && "Must be binary operator?");
 | 
						|
    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassData);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      isValueValidForType implementations
 | 
						|
 | 
						|
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
 | 
						|
  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | 
						|
  if (Ty == Type::getInt1Ty(Ty->getContext()))
 | 
						|
    return Val == 0 || Val == 1;
 | 
						|
  if (NumBits >= 64)
 | 
						|
    return true; // always true, has to fit in largest type
 | 
						|
  uint64_t Max = (1ll << NumBits) - 1;
 | 
						|
  return Val <= Max;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
 | 
						|
  unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | 
						|
  if (Ty == Type::getInt1Ty(Ty->getContext()))
 | 
						|
    return Val == 0 || Val == 1 || Val == -1;
 | 
						|
  if (NumBits >= 64)
 | 
						|
    return true; // always true, has to fit in largest type
 | 
						|
  int64_t Min = -(1ll << (NumBits-1));
 | 
						|
  int64_t Max = (1ll << (NumBits-1)) - 1;
 | 
						|
  return (Val >= Min && Val <= Max);
 | 
						|
}
 | 
						|
 | 
						|
bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
 | 
						|
  // convert modifies in place, so make a copy.
 | 
						|
  APFloat Val2 = APFloat(Val);
 | 
						|
  bool losesInfo;
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  default:
 | 
						|
    return false;         // These can't be represented as floating point!
 | 
						|
 | 
						|
  // FIXME rounding mode needs to be more flexible
 | 
						|
  case Type::FloatTyID: {
 | 
						|
    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
 | 
						|
      return true;
 | 
						|
    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
 | 
						|
    return !losesInfo;
 | 
						|
  }
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
 | 
						|
        &Val2.getSemantics() == &APFloat::IEEEdouble)
 | 
						|
      return true;
 | 
						|
    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
 | 
						|
    return !losesInfo;
 | 
						|
  }
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | 
						|
           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
 | 
						|
  case Type::FP128TyID:
 | 
						|
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEquad;
 | 
						|
  case Type::PPC_FP128TyID:
 | 
						|
    return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | 
						|
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | 
						|
           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Factory Function Implementation
 | 
						|
 | 
						|
ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
 | 
						|
  assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
 | 
						|
         "Cannot create an aggregate zero of non-aggregate type!");
 | 
						|
  
 | 
						|
  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// destroyConstant - Remove the constant from the constant table...
 | 
						|
///
 | 
						|
void ConstantAggregateZero::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  getType()->getContext().pImpl->AggZeroConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
/// destroyConstant - Remove the constant from the constant table...
 | 
						|
///
 | 
						|
void ConstantArray::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  getType()->getContext().pImpl->ArrayConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
/// isString - This method returns true if the array is an array of i8, and 
 | 
						|
/// if the elements of the array are all ConstantInt's.
 | 
						|
bool ConstantArray::isString() const {
 | 
						|
  // Check the element type for i8...
 | 
						|
  if (getType()->getElementType() != Type::getInt8Ty(getContext()))
 | 
						|
    return false;
 | 
						|
  // Check the elements to make sure they are all integers, not constant
 | 
						|
  // expressions.
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    if (!isa<ConstantInt>(getOperand(i)))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isCString - This method returns true if the array is a string (see
 | 
						|
/// isString) and it ends in a null byte \\0 and does not contains any other
 | 
						|
/// null bytes except its terminator.
 | 
						|
bool ConstantArray::isCString() const {
 | 
						|
  // Check the element type for i8...
 | 
						|
  if (getType()->getElementType() != Type::getInt8Ty(getContext()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Last element must be a null.
 | 
						|
  if (!getOperand(getNumOperands()-1)->isNullValue())
 | 
						|
    return false;
 | 
						|
  // Other elements must be non-null integers.
 | 
						|
  for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
 | 
						|
    if (!isa<ConstantInt>(getOperand(i)))
 | 
						|
      return false;
 | 
						|
    if (getOperand(i)->isNullValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getAsString - If the sub-element type of this array is i8
 | 
						|
/// then this method converts the array to an std::string and returns it.
 | 
						|
/// Otherwise, it asserts out.
 | 
						|
///
 | 
						|
std::string ConstantArray::getAsString() const {
 | 
						|
  assert(isString() && "Not a string!");
 | 
						|
  std::string Result;
 | 
						|
  Result.reserve(getNumOperands());
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
    Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---- ConstantStruct::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantStruct::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  getType()->getContext().pImpl->StructConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantVector::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  getType()->getContext().pImpl->VectorConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
/// This function will return true iff every element in this vector constant
 | 
						|
/// is set to all ones.
 | 
						|
/// @returns true iff this constant's emements are all set to all ones.
 | 
						|
/// @brief Determine if the value is all ones.
 | 
						|
bool ConstantVector::isAllOnesValue() const {
 | 
						|
  // Check out first element.
 | 
						|
  const Constant *Elt = getOperand(0);
 | 
						|
  const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
 | 
						|
  if (!CI || !CI->isAllOnesValue()) return false;
 | 
						|
  // Then make sure all remaining elements point to the same value.
 | 
						|
  for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
 | 
						|
    if (getOperand(I) != Elt) return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getSplatValue - If this is a splat constant, where all of the
 | 
						|
/// elements have the same value, return that value. Otherwise return null.
 | 
						|
Constant *ConstantVector::getSplatValue() {
 | 
						|
  // Check out first element.
 | 
						|
  Constant *Elt = getOperand(0);
 | 
						|
  // Then make sure all remaining elements point to the same value.
 | 
						|
  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
 | 
						|
    if (getOperand(I) != Elt) return 0;
 | 
						|
  return Elt;
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantPointerNull::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
 | 
						|
  // Implicitly locked.
 | 
						|
  return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantPointerNull::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  getType()->getContext().pImpl->NullPtrConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---- UndefValue::get() implementation...
 | 
						|
//
 | 
						|
 | 
						|
UndefValue *UndefValue::get(const Type *Ty) {
 | 
						|
  // Implicitly locked.
 | 
						|
  return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table.
 | 
						|
//
 | 
						|
void UndefValue::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  getType()->getContext().pImpl->UndefValueConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
//---- ConstantExpr::get() implementations...
 | 
						|
//
 | 
						|
 | 
						|
/// This is a utility function to handle folding of casts and lookup of the
 | 
						|
/// cast in the ExprConstants map. It is used by the various get* methods below.
 | 
						|
static inline Constant *getFoldedCast(
 | 
						|
  Instruction::CastOps opc, Constant *C, const Type *Ty) {
 | 
						|
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | 
						|
  // Fold a few common cases
 | 
						|
  if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty))
 | 
						|
    return FC;
 | 
						|
 | 
						|
  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> argVec(1, C);
 | 
						|
  ExprMapKeyType Key(opc, argVec);
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(Ty, Key);
 | 
						|
}
 | 
						|
 
 | 
						|
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
 | 
						|
  Instruction::CastOps opc = Instruction::CastOps(oc);
 | 
						|
  assert(Instruction::isCast(opc) && "opcode out of range");
 | 
						|
  assert(C && Ty && "Null arguments to getCast");
 | 
						|
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | 
						|
 | 
						|
  switch (opc) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Invalid cast opcode");
 | 
						|
      break;
 | 
						|
    case Instruction::Trunc:    return getTrunc(C, Ty);
 | 
						|
    case Instruction::ZExt:     return getZExt(C, Ty);
 | 
						|
    case Instruction::SExt:     return getSExt(C, Ty);
 | 
						|
    case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
 | 
						|
    case Instruction::FPExt:    return getFPExtend(C, Ty);
 | 
						|
    case Instruction::UIToFP:   return getUIToFP(C, Ty);
 | 
						|
    case Instruction::SIToFP:   return getSIToFP(C, Ty);
 | 
						|
    case Instruction::FPToUI:   return getFPToUI(C, Ty);
 | 
						|
    case Instruction::FPToSI:   return getFPToSI(C, Ty);
 | 
						|
    case Instruction::PtrToInt: return getPtrToInt(C, Ty);
 | 
						|
    case Instruction::IntToPtr: return getIntToPtr(C, Ty);
 | 
						|
    case Instruction::BitCast:  return getBitCast(C, Ty);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
} 
 | 
						|
 | 
						|
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
 | 
						|
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return getCast(Instruction::BitCast, C, Ty);
 | 
						|
  return getCast(Instruction::ZExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
 | 
						|
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return getCast(Instruction::BitCast, C, Ty);
 | 
						|
  return getCast(Instruction::SExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
 | 
						|
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | 
						|
    return getCast(Instruction::BitCast, C, Ty);
 | 
						|
  return getCast(Instruction::Trunc, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
 | 
						|
  assert(isa<PointerType>(S->getType()) && "Invalid cast");
 | 
						|
  assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
 | 
						|
 | 
						|
  if (Ty->isInteger())
 | 
						|
    return getCast(Instruction::PtrToInt, S, Ty);
 | 
						|
  return getCast(Instruction::BitCast, S, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, 
 | 
						|
                                       bool isSigned) {
 | 
						|
  assert(C->getType()->isIntOrIntVector() &&
 | 
						|
         Ty->isIntOrIntVector() && "Invalid cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
    (SrcBits == DstBits ? Instruction::BitCast :
 | 
						|
     (SrcBits > DstBits ? Instruction::Trunc :
 | 
						|
      (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | 
						|
  return getCast(opcode, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
 | 
						|
         "Invalid cast");
 | 
						|
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | 
						|
  unsigned DstBits = Ty->getScalarSizeInBits();
 | 
						|
  if (SrcBits == DstBits)
 | 
						|
    return C; // Avoid a useless cast
 | 
						|
  Instruction::CastOps opcode =
 | 
						|
     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
 | 
						|
  return getCast(opcode, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer");
 | 
						|
  assert(Ty->isIntOrIntVector() && "Trunc produces only integral");
 | 
						|
  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | 
						|
         "SrcTy must be larger than DestTy for Trunc!");
 | 
						|
 | 
						|
  return getFoldedCast(Instruction::Trunc, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral");
 | 
						|
  assert(Ty->isIntOrIntVector() && "SExt produces only integer");
 | 
						|
  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | 
						|
         "SrcTy must be smaller than DestTy for SExt!");
 | 
						|
 | 
						|
  return getFoldedCast(Instruction::SExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
 | 
						|
  assert(Ty->isIntOrIntVector() && "ZExt produces only integer");
 | 
						|
  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | 
						|
         "SrcTy must be smaller than DestTy for ZExt!");
 | 
						|
 | 
						|
  return getFoldedCast(Instruction::ZExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
 | 
						|
         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | 
						|
         "This is an illegal floating point truncation!");
 | 
						|
  return getFoldedCast(Instruction::FPTrunc, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
 | 
						|
         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | 
						|
         "This is an illegal floating point extension!");
 | 
						|
  return getFoldedCast(Instruction::FPExt, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
 | 
						|
         "This is an illegal uint to floating point cast!");
 | 
						|
  return getFoldedCast(Instruction::UIToFP, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
 | 
						|
         "This is an illegal sint to floating point cast!");
 | 
						|
  return getFoldedCast(Instruction::SIToFP, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
 | 
						|
         "This is an illegal floating point to uint cast!");
 | 
						|
  return getFoldedCast(Instruction::FPToUI, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | 
						|
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | 
						|
#endif
 | 
						|
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | 
						|
  assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
 | 
						|
         "This is an illegal floating point to sint cast!");
 | 
						|
  return getFoldedCast(Instruction::FPToSI, C, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
 | 
						|
  assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
 | 
						|
  assert(DstTy->isInteger() && "PtrToInt destination must be integral");
 | 
						|
  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
 | 
						|
  assert(C->getType()->isInteger() && "IntToPtr source must be integral");
 | 
						|
  assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
 | 
						|
  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
 | 
						|
  // BitCast implies a no-op cast of type only. No bits change.  However, you 
 | 
						|
  // can't cast pointers to anything but pointers.
 | 
						|
#ifndef NDEBUG
 | 
						|
  const Type *SrcTy = C->getType();
 | 
						|
  assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
 | 
						|
         "BitCast cannot cast pointer to non-pointer and vice versa");
 | 
						|
 | 
						|
  // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
 | 
						|
  // or nonptr->ptr). For all the other types, the cast is okay if source and 
 | 
						|
  // destination bit widths are identical.
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
 | 
						|
#endif
 | 
						|
  assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
 | 
						|
  
 | 
						|
  // It is common to ask for a bitcast of a value to its own type, handle this
 | 
						|
  // speedily.
 | 
						|
  if (C->getType() == DstTy) return C;
 | 
						|
  
 | 
						|
  return getFoldedCast(Instruction::BitCast, C, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
 | 
						|
                              Constant *C1, Constant *C2,
 | 
						|
                              unsigned Flags) {
 | 
						|
  // Check the operands for consistency first
 | 
						|
  assert(Opcode >= Instruction::BinaryOpsBegin &&
 | 
						|
         Opcode <  Instruction::BinaryOpsEnd   &&
 | 
						|
         "Invalid opcode in binary constant expression");
 | 
						|
  assert(C1->getType() == C2->getType() &&
 | 
						|
         "Operand types in binary constant expression should match");
 | 
						|
 | 
						|
  if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
 | 
						|
    if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(),
 | 
						|
                                                     Opcode, C1, C2))
 | 
						|
      return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | 
						|
  ExprMapKeyType Key(Opcode, argVec, 0, Flags);
 | 
						|
  
 | 
						|
  LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
 | 
						|
                                     Constant *C1, Constant *C2) {
 | 
						|
  switch (predicate) {
 | 
						|
    default: llvm_unreachable("Invalid CmpInst predicate");
 | 
						|
    case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
 | 
						|
    case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
 | 
						|
    case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
 | 
						|
    case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
 | 
						|
    case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
 | 
						|
    case CmpInst::FCMP_TRUE:
 | 
						|
      return getFCmp(predicate, C1, C2);
 | 
						|
 | 
						|
    case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
 | 
						|
    case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
 | 
						|
    case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
 | 
						|
    case CmpInst::ICMP_SLE:
 | 
						|
      return getICmp(predicate, C1, C2);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
 | 
						|
                            unsigned Flags) {
 | 
						|
  // API compatibility: Adjust integer opcodes to floating-point opcodes.
 | 
						|
  if (C1->getType()->isFPOrFPVector()) {
 | 
						|
    if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
 | 
						|
    else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub;
 | 
						|
    else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create an integer operation on a non-integer type!");
 | 
						|
    break;
 | 
						|
  case Instruction::FAdd:
 | 
						|
  case Instruction::FSub:
 | 
						|
  case Instruction::FMul:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isFPOrFPVector() &&
 | 
						|
           "Tried to create a floating-point operation on a "
 | 
						|
           "non-floating-point type!");
 | 
						|
    break;
 | 
						|
  case Instruction::UDiv: 
 | 
						|
  case Instruction::SDiv: 
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::FDiv:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isFPOrFPVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::URem: 
 | 
						|
  case Instruction::SRem: 
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::FRem:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isFPOrFPVector() &&
 | 
						|
           "Tried to create an arithmetic operation on a non-arithmetic type!");
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create a logical operation on a non-integral type!");
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
    assert(C1->getType()->isIntOrIntVector() &&
 | 
						|
           "Tried to create a shift operation on a non-integer type!");
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  return getTy(C1->getType(), Opcode, C1, C2, Flags);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getSizeOf(const Type* Ty) {
 | 
						|
  // sizeof is implemented as: (i64) gep (Ty*)null, 1
 | 
						|
  // Note that a non-inbounds gep is used, as null isn't within any object.
 | 
						|
  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
 | 
						|
  Constant *GEP = getGetElementPtr(
 | 
						|
                 Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
 | 
						|
  return getCast(Instruction::PtrToInt, GEP, 
 | 
						|
                 Type::getInt64Ty(Ty->getContext()));
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getAlignOf(const Type* Ty) {
 | 
						|
  // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
 | 
						|
  // Note that a non-inbounds gep is used, as null isn't within any object.
 | 
						|
  const Type *AligningTy = StructType::get(Ty->getContext(),
 | 
						|
                                   Type::getInt8Ty(Ty->getContext()), Ty, NULL);
 | 
						|
  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
 | 
						|
  Constant *Zero = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 0);
 | 
						|
  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
 | 
						|
  Constant *Indices[2] = { Zero, One };
 | 
						|
  Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
 | 
						|
  return getCast(Instruction::PtrToInt, GEP,
 | 
						|
                 Type::getInt32Ty(Ty->getContext()));
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
 | 
						|
  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
 | 
						|
  // Note that a non-inbounds gep is used, as null isn't within any object.
 | 
						|
  Constant *GEPIdx[] = {
 | 
						|
    ConstantInt::get(Type::getInt64Ty(STy->getContext()), 0),
 | 
						|
    ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)
 | 
						|
  };
 | 
						|
  Constant *GEP = getGetElementPtr(
 | 
						|
                Constant::getNullValue(PointerType::getUnqual(STy)), GEPIdx, 2);
 | 
						|
  return getCast(Instruction::PtrToInt, GEP,
 | 
						|
                 Type::getInt64Ty(STy->getContext()));
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getCompare(unsigned short pred, 
 | 
						|
                            Constant *C1, Constant *C2) {
 | 
						|
  assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | 
						|
  return getCompareTy(pred, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
 | 
						|
                                    Constant *V1, Constant *V2) {
 | 
						|
  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
 | 
						|
 | 
						|
  if (ReqTy == V1->getType())
 | 
						|
    if (Constant *SC = ConstantFoldSelectInstruction(
 | 
						|
                                                ReqTy->getContext(), C, V1, V2))
 | 
						|
      return SC;        // Fold common cases
 | 
						|
 | 
						|
  std::vector<Constant*> argVec(3, C);
 | 
						|
  argVec[1] = V1;
 | 
						|
  argVec[2] = V2;
 | 
						|
  ExprMapKeyType Key(Instruction::Select, argVec);
 | 
						|
  
 | 
						|
  LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
 | 
						|
                                           Value* const *Idxs,
 | 
						|
                                           unsigned NumIdx) {
 | 
						|
  assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
 | 
						|
                                           Idxs+NumIdx) ==
 | 
						|
         cast<PointerType>(ReqTy)->getElementType() &&
 | 
						|
         "GEP indices invalid!");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldGetElementPtr(
 | 
						|
                              ReqTy->getContext(), C, /*inBounds=*/false,
 | 
						|
                              (Constant**)Idxs, NumIdx))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  assert(isa<PointerType>(C->getType()) &&
 | 
						|
         "Non-pointer type for constant GetElementPtr expression");
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec;
 | 
						|
  ArgVec.reserve(NumIdx+1);
 | 
						|
  ArgVec.push_back(C);
 | 
						|
  for (unsigned i = 0; i != NumIdx; ++i)
 | 
						|
    ArgVec.push_back(cast<Constant>(Idxs[i]));
 | 
						|
  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
 | 
						|
 | 
						|
  LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | 
						|
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
 | 
						|
                                                   Constant *C,
 | 
						|
                                                   Value* const *Idxs,
 | 
						|
                                                   unsigned NumIdx) {
 | 
						|
  assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
 | 
						|
                                           Idxs+NumIdx) ==
 | 
						|
         cast<PointerType>(ReqTy)->getElementType() &&
 | 
						|
         "GEP indices invalid!");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldGetElementPtr(
 | 
						|
                              ReqTy->getContext(), C, /*inBounds=*/true,
 | 
						|
                              (Constant**)Idxs, NumIdx))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  assert(isa<PointerType>(C->getType()) &&
 | 
						|
         "Non-pointer type for constant GetElementPtr expression");
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec;
 | 
						|
  ArgVec.reserve(NumIdx+1);
 | 
						|
  ArgVec.push_back(C);
 | 
						|
  for (unsigned i = 0; i != NumIdx; ++i)
 | 
						|
    ArgVec.push_back(cast<Constant>(Idxs[i]));
 | 
						|
  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
 | 
						|
                           GEPOperator::IsInBounds);
 | 
						|
 | 
						|
  LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | 
						|
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
 | 
						|
                                         unsigned NumIdx) {
 | 
						|
  // Get the result type of the getelementptr!
 | 
						|
  const Type *Ty = 
 | 
						|
    GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
 | 
						|
  assert(Ty && "GEP indices invalid!");
 | 
						|
  unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
 | 
						|
  return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
 | 
						|
                                                 Value* const *Idxs,
 | 
						|
                                                 unsigned NumIdx) {
 | 
						|
  // Get the result type of the getelementptr!
 | 
						|
  const Type *Ty = 
 | 
						|
    GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
 | 
						|
  assert(Ty && "GEP indices invalid!");
 | 
						|
  unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
 | 
						|
  return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
 | 
						|
                                         unsigned NumIdx) {
 | 
						|
  return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
 | 
						|
                                                 Constant* const *Idxs,
 | 
						|
                                                 unsigned NumIdx) {
 | 
						|
  return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *
 | 
						|
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | 
						|
  assert(LHS->getType() == RHS->getType());
 | 
						|
  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
 | 
						|
         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldCompareInstruction(
 | 
						|
                                             LHS->getContext(), pred, LHS, RHS))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec;
 | 
						|
  ArgVec.push_back(LHS);
 | 
						|
  ArgVec.push_back(RHS);
 | 
						|
  // Get the key type with both the opcode and predicate
 | 
						|
  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
 | 
						|
 | 
						|
  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
 | 
						|
 | 
						|
  // Implicitly locked.
 | 
						|
  return
 | 
						|
      pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *
 | 
						|
ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | 
						|
  assert(LHS->getType() == RHS->getType());
 | 
						|
  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
 | 
						|
 | 
						|
  if (Constant *FC = ConstantFoldCompareInstruction(
 | 
						|
                                            LHS->getContext(), pred, LHS, RHS))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec;
 | 
						|
  ArgVec.push_back(LHS);
 | 
						|
  ArgVec.push_back(RHS);
 | 
						|
  // Get the key type with both the opcode and predicate
 | 
						|
  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
 | 
						|
  
 | 
						|
  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return
 | 
						|
      pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
 | 
						|
                                            Constant *Idx) {
 | 
						|
  if (Constant *FC = ConstantFoldExtractElementInstruction(
 | 
						|
                                                ReqTy->getContext(), Val, Idx))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec(1, Val);
 | 
						|
  ArgVec.push_back(Idx);
 | 
						|
  const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
 | 
						|
  
 | 
						|
  LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
 | 
						|
  assert(isa<VectorType>(Val->getType()) &&
 | 
						|
         "Tried to create extractelement operation on non-vector type!");
 | 
						|
  assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
 | 
						|
         "Extractelement index must be i32 type!");
 | 
						|
  return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
 | 
						|
                             Val, Idx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
 | 
						|
                                           Constant *Elt, Constant *Idx) {
 | 
						|
  if (Constant *FC = ConstantFoldInsertElementInstruction(
 | 
						|
                                            ReqTy->getContext(), Val, Elt, Idx))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec(1, Val);
 | 
						|
  ArgVec.push_back(Elt);
 | 
						|
  ArgVec.push_back(Idx);
 | 
						|
  const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
 | 
						|
  
 | 
						|
  LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
 | 
						|
                                         Constant *Idx) {
 | 
						|
  assert(isa<VectorType>(Val->getType()) &&
 | 
						|
         "Tried to create insertelement operation on non-vector type!");
 | 
						|
  assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
 | 
						|
         && "Insertelement types must match!");
 | 
						|
  assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
 | 
						|
         "Insertelement index must be i32 type!");
 | 
						|
  return getInsertElementTy(Val->getType(), Val, Elt, Idx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
 | 
						|
                                           Constant *V2, Constant *Mask) {
 | 
						|
  if (Constant *FC = ConstantFoldShuffleVectorInstruction(
 | 
						|
                                            ReqTy->getContext(), V1, V2, Mask))
 | 
						|
    return FC;          // Fold a few common cases...
 | 
						|
  // Look up the constant in the table first to ensure uniqueness
 | 
						|
  std::vector<Constant*> ArgVec(1, V1);
 | 
						|
  ArgVec.push_back(V2);
 | 
						|
  ArgVec.push_back(Mask);
 | 
						|
  const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
 | 
						|
  
 | 
						|
  LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
 | 
						|
  
 | 
						|
  // Implicitly locked.
 | 
						|
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
 | 
						|
                                         Constant *Mask) {
 | 
						|
  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
 | 
						|
         "Invalid shuffle vector constant expr operands!");
 | 
						|
 | 
						|
  unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
 | 
						|
  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
 | 
						|
  const Type *ShufTy = VectorType::get(EltTy, NElts);
 | 
						|
  return getShuffleVectorTy(ShufTy, V1, V2, Mask);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
 | 
						|
                                         Constant *Val,
 | 
						|
                                        const unsigned *Idxs, unsigned NumIdx) {
 | 
						|
  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | 
						|
                                          Idxs+NumIdx) == Val->getType() &&
 | 
						|
         "insertvalue indices invalid!");
 | 
						|
  assert(Agg->getType() == ReqTy &&
 | 
						|
         "insertvalue type invalid!");
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Non-first-class type for constant InsertValue expression");
 | 
						|
  Constant *FC = ConstantFoldInsertValueInstruction(
 | 
						|
                                  ReqTy->getContext(), Agg, Val, Idxs, NumIdx);
 | 
						|
  assert(FC && "InsertValue constant expr couldn't be folded!");
 | 
						|
  return FC;
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
 | 
						|
                                     const unsigned *IdxList, unsigned NumIdx) {
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Tried to create insertelement operation on non-first-class type!");
 | 
						|
 | 
						|
  const Type *ReqTy = Agg->getType();
 | 
						|
#ifndef NDEBUG
 | 
						|
  const Type *ValTy =
 | 
						|
    ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | 
						|
#endif
 | 
						|
  assert(ValTy == Val->getType() && "insertvalue indices invalid!");
 | 
						|
  return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
 | 
						|
                                        const unsigned *Idxs, unsigned NumIdx) {
 | 
						|
  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | 
						|
                                          Idxs+NumIdx) == ReqTy &&
 | 
						|
         "extractvalue indices invalid!");
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Non-first-class type for constant extractvalue expression");
 | 
						|
  Constant *FC = ConstantFoldExtractValueInstruction(
 | 
						|
                                        ReqTy->getContext(), Agg, Idxs, NumIdx);
 | 
						|
  assert(FC && "ExtractValue constant expr couldn't be folded!");
 | 
						|
  return FC;
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantExpr::getExtractValue(Constant *Agg,
 | 
						|
                                     const unsigned *IdxList, unsigned NumIdx) {
 | 
						|
  assert(Agg->getType()->isFirstClassType() &&
 | 
						|
         "Tried to create extractelement operation on non-first-class type!");
 | 
						|
 | 
						|
  const Type *ReqTy =
 | 
						|
    ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | 
						|
  assert(ReqTy && "extractvalue indices invalid!");
 | 
						|
  return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getNeg(Constant* C) {
 | 
						|
  // API compatibility: Adjust integer opcodes to floating-point opcodes.
 | 
						|
  if (C->getType()->isFPOrFPVector())
 | 
						|
    return getFNeg(C);
 | 
						|
  assert(C->getType()->isIntOrIntVector() &&
 | 
						|
         "Cannot NEG a nonintegral value!");
 | 
						|
  return get(Instruction::Sub,
 | 
						|
             ConstantFP::getZeroValueForNegation(C->getType()),
 | 
						|
             C);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getFNeg(Constant* C) {
 | 
						|
  assert(C->getType()->isFPOrFPVector() &&
 | 
						|
         "Cannot FNEG a non-floating-point value!");
 | 
						|
  return get(Instruction::FSub,
 | 
						|
             ConstantFP::getZeroValueForNegation(C->getType()),
 | 
						|
             C);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getNot(Constant* C) {
 | 
						|
  assert(C->getType()->isIntOrIntVector() &&
 | 
						|
         "Cannot NOT a nonintegral value!");
 | 
						|
  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::Add, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::FAdd, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::Sub, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::FSub, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::Mul, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::FMul, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::UDiv, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::SDiv, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::FDiv, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::URem, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::SRem, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::FRem, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::And, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::Or, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::Xor, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::Shl, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::LShr, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
 | 
						|
  return get(Instruction::AShr, C1, C2);
 | 
						|
}
 | 
						|
 | 
						|
// destroyConstant - Remove the constant from the constant table...
 | 
						|
//
 | 
						|
void ConstantExpr::destroyConstant() {
 | 
						|
  // Implicitly locked.
 | 
						|
  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
 | 
						|
  pImpl->ExprConstants.remove(this);
 | 
						|
  destroyConstantImpl();
 | 
						|
}
 | 
						|
 | 
						|
const char *ConstantExpr::getOpcodeName() const {
 | 
						|
  return Instruction::getOpcodeName(getOpcode());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                replaceUsesOfWithOnConstant implementations
 | 
						|
 | 
						|
/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
 | 
						|
/// 'From' to be uses of 'To'.  This must update the uniquing data structures
 | 
						|
/// etc.
 | 
						|
///
 | 
						|
/// Note that we intentionally replace all uses of From with To here.  Consider
 | 
						|
/// a large array that uses 'From' 1000 times.  By handling this case all here,
 | 
						|
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
 | 
						|
/// single invocation handles all 1000 uses.  Handling them one at a time would
 | 
						|
/// work, but would be really slow because it would have to unique each updated
 | 
						|
/// array instance.
 | 
						|
 | 
						|
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                Use *U) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
  Constant *ToC = cast<Constant>(To);
 | 
						|
 | 
						|
  LLVMContext &Context = getType()->getContext();
 | 
						|
  LLVMContextImpl *pImpl = Context.pImpl;
 | 
						|
 | 
						|
  std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
 | 
						|
  Lookup.first.first = getType();
 | 
						|
  Lookup.second = this;
 | 
						|
 | 
						|
  std::vector<Constant*> &Values = Lookup.first.second;
 | 
						|
  Values.reserve(getNumOperands());  // Build replacement array.
 | 
						|
 | 
						|
  // Fill values with the modified operands of the constant array.  Also, 
 | 
						|
  // compute whether this turns into an all-zeros array.
 | 
						|
  bool isAllZeros = false;
 | 
						|
  unsigned NumUpdated = 0;
 | 
						|
  if (!ToC->isNullValue()) {
 | 
						|
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | 
						|
      Constant *Val = cast<Constant>(O->get());
 | 
						|
      if (Val == From) {
 | 
						|
        Val = ToC;
 | 
						|
        ++NumUpdated;
 | 
						|
      }
 | 
						|
      Values.push_back(Val);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    isAllZeros = true;
 | 
						|
    for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
 | 
						|
      Constant *Val = cast<Constant>(O->get());
 | 
						|
      if (Val == From) {
 | 
						|
        Val = ToC;
 | 
						|
        ++NumUpdated;
 | 
						|
      }
 | 
						|
      Values.push_back(Val);
 | 
						|
      if (isAllZeros) isAllZeros = Val->isNullValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *Replacement = 0;
 | 
						|
  if (isAllZeros) {
 | 
						|
    Replacement = ConstantAggregateZero::get(getType());
 | 
						|
  } else {
 | 
						|
    // Check to see if we have this array type already.
 | 
						|
    bool Exists;
 | 
						|
    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
 | 
						|
      pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
 | 
						|
    
 | 
						|
    if (Exists) {
 | 
						|
      Replacement = I->second;
 | 
						|
    } else {
 | 
						|
      // Okay, the new shape doesn't exist in the system yet.  Instead of
 | 
						|
      // creating a new constant array, inserting it, replaceallusesof'ing the
 | 
						|
      // old with the new, then deleting the old... just update the current one
 | 
						|
      // in place!
 | 
						|
      pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
 | 
						|
      
 | 
						|
      // Update to the new value.  Optimize for the case when we have a single
 | 
						|
      // operand that we're changing, but handle bulk updates efficiently.
 | 
						|
      if (NumUpdated == 1) {
 | 
						|
        unsigned OperandToUpdate = U - OperandList;
 | 
						|
        assert(getOperand(OperandToUpdate) == From &&
 | 
						|
               "ReplaceAllUsesWith broken!");
 | 
						|
        setOperand(OperandToUpdate, ToC);
 | 
						|
      } else {
 | 
						|
        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | 
						|
          if (getOperand(i) == From)
 | 
						|
            setOperand(i, ToC);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 
 | 
						|
  // Otherwise, I do need to replace this with an existing value.
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                 Use *U) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
  Constant *ToC = cast<Constant>(To);
 | 
						|
 | 
						|
  unsigned OperandToUpdate = U-OperandList;
 | 
						|
  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
 | 
						|
 | 
						|
  std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
 | 
						|
  Lookup.first.first = getType();
 | 
						|
  Lookup.second = this;
 | 
						|
  std::vector<Constant*> &Values = Lookup.first.second;
 | 
						|
  Values.reserve(getNumOperands());  // Build replacement struct.
 | 
						|
  
 | 
						|
  
 | 
						|
  // Fill values with the modified operands of the constant struct.  Also, 
 | 
						|
  // compute whether this turns into an all-zeros struct.
 | 
						|
  bool isAllZeros = false;
 | 
						|
  if (!ToC->isNullValue()) {
 | 
						|
    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
 | 
						|
      Values.push_back(cast<Constant>(O->get()));
 | 
						|
  } else {
 | 
						|
    isAllZeros = true;
 | 
						|
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | 
						|
      Constant *Val = cast<Constant>(O->get());
 | 
						|
      Values.push_back(Val);
 | 
						|
      if (isAllZeros) isAllZeros = Val->isNullValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Values[OperandToUpdate] = ToC;
 | 
						|
  
 | 
						|
  LLVMContext &Context = getType()->getContext();
 | 
						|
  LLVMContextImpl *pImpl = Context.pImpl;
 | 
						|
  
 | 
						|
  Constant *Replacement = 0;
 | 
						|
  if (isAllZeros) {
 | 
						|
    Replacement = ConstantAggregateZero::get(getType());
 | 
						|
  } else {
 | 
						|
    // Check to see if we have this array type already.
 | 
						|
    bool Exists;
 | 
						|
    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
 | 
						|
      pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
 | 
						|
    
 | 
						|
    if (Exists) {
 | 
						|
      Replacement = I->second;
 | 
						|
    } else {
 | 
						|
      // Okay, the new shape doesn't exist in the system yet.  Instead of
 | 
						|
      // creating a new constant struct, inserting it, replaceallusesof'ing the
 | 
						|
      // old with the new, then deleting the old... just update the current one
 | 
						|
      // in place!
 | 
						|
      pImpl->StructConstants.MoveConstantToNewSlot(this, I);
 | 
						|
      
 | 
						|
      // Update to the new value.
 | 
						|
      setOperand(OperandToUpdate, ToC);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | 
						|
                                                 Use *U) {
 | 
						|
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | 
						|
  
 | 
						|
  std::vector<Constant*> Values;
 | 
						|
  Values.reserve(getNumOperands());  // Build replacement array...
 | 
						|
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | 
						|
    Constant *Val = getOperand(i);
 | 
						|
    if (Val == From) Val = cast<Constant>(To);
 | 
						|
    Values.push_back(Val);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *Replacement = get(getType(), Values);
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 | 
						|
 | 
						|
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | 
						|
                                               Use *U) {
 | 
						|
  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | 
						|
  Constant *To = cast<Constant>(ToV);
 | 
						|
  
 | 
						|
  Constant *Replacement = 0;
 | 
						|
  if (getOpcode() == Instruction::GetElementPtr) {
 | 
						|
    SmallVector<Constant*, 8> Indices;
 | 
						|
    Constant *Pointer = getOperand(0);
 | 
						|
    Indices.reserve(getNumOperands()-1);
 | 
						|
    if (Pointer == From) Pointer = To;
 | 
						|
    
 | 
						|
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | 
						|
      Constant *Val = getOperand(i);
 | 
						|
      if (Val == From) Val = To;
 | 
						|
      Indices.push_back(Val);
 | 
						|
    }
 | 
						|
    Replacement = ConstantExpr::getGetElementPtr(Pointer,
 | 
						|
                                                 &Indices[0], Indices.size());
 | 
						|
  } else if (getOpcode() == Instruction::ExtractValue) {
 | 
						|
    Constant *Agg = getOperand(0);
 | 
						|
    if (Agg == From) Agg = To;
 | 
						|
    
 | 
						|
    const SmallVector<unsigned, 4> &Indices = getIndices();
 | 
						|
    Replacement = ConstantExpr::getExtractValue(Agg,
 | 
						|
                                                &Indices[0], Indices.size());
 | 
						|
  } else if (getOpcode() == Instruction::InsertValue) {
 | 
						|
    Constant *Agg = getOperand(0);
 | 
						|
    Constant *Val = getOperand(1);
 | 
						|
    if (Agg == From) Agg = To;
 | 
						|
    if (Val == From) Val = To;
 | 
						|
    
 | 
						|
    const SmallVector<unsigned, 4> &Indices = getIndices();
 | 
						|
    Replacement = ConstantExpr::getInsertValue(Agg, Val,
 | 
						|
                                               &Indices[0], Indices.size());
 | 
						|
  } else if (isCast()) {
 | 
						|
    assert(getOperand(0) == From && "Cast only has one use!");
 | 
						|
    Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
 | 
						|
  } else if (getOpcode() == Instruction::Select) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    Constant *C3 = getOperand(2);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (C3 == From) C3 = To;
 | 
						|
    Replacement = ConstantExpr::getSelect(C1, C2, C3);
 | 
						|
  } else if (getOpcode() == Instruction::ExtractElement) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    Replacement = ConstantExpr::getExtractElement(C1, C2);
 | 
						|
  } else if (getOpcode() == Instruction::InsertElement) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    Constant *C3 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (C3 == From) C3 = To;
 | 
						|
    Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
 | 
						|
  } else if (getOpcode() == Instruction::ShuffleVector) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    Constant *C3 = getOperand(2);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (C3 == From) C3 = To;
 | 
						|
    Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
 | 
						|
  } else if (isCompare()) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    if (getOpcode() == Instruction::ICmp)
 | 
						|
      Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
 | 
						|
    else {
 | 
						|
      assert(getOpcode() == Instruction::FCmp);
 | 
						|
      Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
 | 
						|
    }
 | 
						|
  } else if (getNumOperands() == 2) {
 | 
						|
    Constant *C1 = getOperand(0);
 | 
						|
    Constant *C2 = getOperand(1);
 | 
						|
    if (C1 == From) C1 = To;
 | 
						|
    if (C2 == From) C2 = To;
 | 
						|
    Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassData);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown ConstantExpr type!");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Replacement != this && "I didn't contain From!");
 | 
						|
  
 | 
						|
  // Everyone using this now uses the replacement.
 | 
						|
  uncheckedReplaceAllUsesWith(Replacement);
 | 
						|
  
 | 
						|
  // Delete the old constant!
 | 
						|
  destroyConstant();
 | 
						|
}
 |