mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Fixed set-but-not-used warnings. Reviewer: gribozavr git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173810 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1956 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1956 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
/// This file is a part of MemorySanitizer, a detector of uninitialized
 | 
						|
/// reads.
 | 
						|
///
 | 
						|
/// Status: early prototype.
 | 
						|
///
 | 
						|
/// The algorithm of the tool is similar to Memcheck
 | 
						|
/// (http://goo.gl/QKbem). We associate a few shadow bits with every
 | 
						|
/// byte of the application memory, poison the shadow of the malloc-ed
 | 
						|
/// or alloca-ed memory, load the shadow bits on every memory read,
 | 
						|
/// propagate the shadow bits through some of the arithmetic
 | 
						|
/// instruction (including MOV), store the shadow bits on every memory
 | 
						|
/// write, report a bug on some other instructions (e.g. JMP) if the
 | 
						|
/// associated shadow is poisoned.
 | 
						|
///
 | 
						|
/// But there are differences too. The first and the major one:
 | 
						|
/// compiler instrumentation instead of binary instrumentation. This
 | 
						|
/// gives us much better register allocation, possible compiler
 | 
						|
/// optimizations and a fast start-up. But this brings the major issue
 | 
						|
/// as well: msan needs to see all program events, including system
 | 
						|
/// calls and reads/writes in system libraries, so we either need to
 | 
						|
/// compile *everything* with msan or use a binary translation
 | 
						|
/// component (e.g. DynamoRIO) to instrument pre-built libraries.
 | 
						|
/// Another difference from Memcheck is that we use 8 shadow bits per
 | 
						|
/// byte of application memory and use a direct shadow mapping. This
 | 
						|
/// greatly simplifies the instrumentation code and avoids races on
 | 
						|
/// shadow updates (Memcheck is single-threaded so races are not a
 | 
						|
/// concern there. Memcheck uses 2 shadow bits per byte with a slow
 | 
						|
/// path storage that uses 8 bits per byte).
 | 
						|
///
 | 
						|
/// The default value of shadow is 0, which means "clean" (not poisoned).
 | 
						|
///
 | 
						|
/// Every module initializer should call __msan_init to ensure that the
 | 
						|
/// shadow memory is ready. On error, __msan_warning is called. Since
 | 
						|
/// parameters and return values may be passed via registers, we have a
 | 
						|
/// specialized thread-local shadow for return values
 | 
						|
/// (__msan_retval_tls) and parameters (__msan_param_tls).
 | 
						|
///
 | 
						|
///                           Origin tracking.
 | 
						|
///
 | 
						|
/// MemorySanitizer can track origins (allocation points) of all uninitialized
 | 
						|
/// values. This behavior is controlled with a flag (msan-track-origins) and is
 | 
						|
/// disabled by default.
 | 
						|
///
 | 
						|
/// Origins are 4-byte values created and interpreted by the runtime library.
 | 
						|
/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
 | 
						|
/// of application memory. Propagation of origins is basically a bunch of
 | 
						|
/// "select" instructions that pick the origin of a dirty argument, if an
 | 
						|
/// instruction has one.
 | 
						|
///
 | 
						|
/// Every 4 aligned, consecutive bytes of application memory have one origin
 | 
						|
/// value associated with them. If these bytes contain uninitialized data
 | 
						|
/// coming from 2 different allocations, the last store wins. Because of this,
 | 
						|
/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
 | 
						|
/// practice.
 | 
						|
///
 | 
						|
/// Origins are meaningless for fully initialized values, so MemorySanitizer
 | 
						|
/// avoids storing origin to memory when a fully initialized value is stored.
 | 
						|
/// This way it avoids needless overwritting origin of the 4-byte region on
 | 
						|
/// a short (i.e. 1 byte) clean store, and it is also good for performance.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "msan"
 | 
						|
 | 
						|
#include "llvm/Transforms/Instrumentation.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/ValueMap.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/InstVisitor.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/BlackList.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ModuleUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static const uint64_t kShadowMask32 = 1ULL << 31;
 | 
						|
static const uint64_t kShadowMask64 = 1ULL << 46;
 | 
						|
static const uint64_t kOriginOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kOriginOffset64 = 1ULL << 45;
 | 
						|
static const unsigned kMinOriginAlignment = 4;
 | 
						|
static const unsigned kShadowTLSAlignment = 8;
 | 
						|
 | 
						|
/// \brief Track origins of uninitialized values.
 | 
						|
///
 | 
						|
/// Adds a section to MemorySanitizer report that points to the allocation
 | 
						|
/// (stack or heap) the uninitialized bits came from originally.
 | 
						|
static cl::opt<bool> ClTrackOrigins("msan-track-origins",
 | 
						|
       cl::desc("Track origins (allocation sites) of poisoned memory"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
static cl::opt<bool> ClKeepGoing("msan-keep-going",
 | 
						|
       cl::desc("keep going after reporting a UMR"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
static cl::opt<bool> ClPoisonStack("msan-poison-stack",
 | 
						|
       cl::desc("poison uninitialized stack variables"),
 | 
						|
       cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
 | 
						|
       cl::desc("poison uninitialized stack variables with a call"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
 | 
						|
       cl::desc("poison uninitialized stack variables with the given patter"),
 | 
						|
       cl::Hidden, cl::init(0xff));
 | 
						|
 | 
						|
static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
 | 
						|
       cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
 | 
						|
       cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
 | 
						|
       cl::desc("exact handling of relational integer ICmp"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
 | 
						|
       cl::desc("store origin for clean (fully initialized) values"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
// This flag controls whether we check the shadow of the address
 | 
						|
// operand of load or store. Such bugs are very rare, since load from
 | 
						|
// a garbage address typically results in SEGV, but still happen
 | 
						|
// (e.g. only lower bits of address are garbage, or the access happens
 | 
						|
// early at program startup where malloc-ed memory is more likely to
 | 
						|
// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
 | 
						|
static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
 | 
						|
       cl::desc("report accesses through a pointer which has poisoned shadow"),
 | 
						|
       cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
 | 
						|
       cl::desc("print out instructions with default strict semantics"),
 | 
						|
       cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<std::string>  ClBlacklistFile("msan-blacklist",
 | 
						|
       cl::desc("File containing the list of functions where MemorySanitizer "
 | 
						|
                "should not report bugs"), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// \brief An instrumentation pass implementing detection of uninitialized
 | 
						|
/// reads.
 | 
						|
///
 | 
						|
/// MemorySanitizer: instrument the code in module to find
 | 
						|
/// uninitialized reads.
 | 
						|
class MemorySanitizer : public FunctionPass {
 | 
						|
 public:
 | 
						|
  MemorySanitizer(bool TrackOrigins = false,
 | 
						|
                  StringRef BlacklistFile = StringRef())
 | 
						|
    : FunctionPass(ID),
 | 
						|
      TrackOrigins(TrackOrigins || ClTrackOrigins),
 | 
						|
      TD(0),
 | 
						|
      WarningFn(0),
 | 
						|
      BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
 | 
						|
                                          : BlacklistFile) { }
 | 
						|
  const char *getPassName() const { return "MemorySanitizer"; }
 | 
						|
  bool runOnFunction(Function &F);
 | 
						|
  bool doInitialization(Module &M);
 | 
						|
  static char ID;  // Pass identification, replacement for typeid.
 | 
						|
 | 
						|
 private:
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  /// \brief Track origins (allocation points) of uninitialized values.
 | 
						|
  bool TrackOrigins;
 | 
						|
 | 
						|
  DataLayout *TD;
 | 
						|
  LLVMContext *C;
 | 
						|
  Type *IntptrTy;
 | 
						|
  Type *OriginTy;
 | 
						|
  /// \brief Thread-local shadow storage for function parameters.
 | 
						|
  GlobalVariable *ParamTLS;
 | 
						|
  /// \brief Thread-local origin storage for function parameters.
 | 
						|
  GlobalVariable *ParamOriginTLS;
 | 
						|
  /// \brief Thread-local shadow storage for function return value.
 | 
						|
  GlobalVariable *RetvalTLS;
 | 
						|
  /// \brief Thread-local origin storage for function return value.
 | 
						|
  GlobalVariable *RetvalOriginTLS;
 | 
						|
  /// \brief Thread-local shadow storage for in-register va_arg function
 | 
						|
  /// parameters (x86_64-specific).
 | 
						|
  GlobalVariable *VAArgTLS;
 | 
						|
  /// \brief Thread-local shadow storage for va_arg overflow area
 | 
						|
  /// (x86_64-specific).
 | 
						|
  GlobalVariable *VAArgOverflowSizeTLS;
 | 
						|
  /// \brief Thread-local space used to pass origin value to the UMR reporting
 | 
						|
  /// function.
 | 
						|
  GlobalVariable *OriginTLS;
 | 
						|
 | 
						|
  /// \brief The run-time callback to print a warning.
 | 
						|
  Value *WarningFn;
 | 
						|
  /// \brief Run-time helper that copies origin info for a memory range.
 | 
						|
  Value *MsanCopyOriginFn;
 | 
						|
  /// \brief Run-time helper that generates a new origin value for a stack
 | 
						|
  /// allocation.
 | 
						|
  Value *MsanSetAllocaOriginFn;
 | 
						|
  /// \brief Run-time helper that poisons stack on function entry.
 | 
						|
  Value *MsanPoisonStackFn;
 | 
						|
  /// \brief MSan runtime replacements for memmove, memcpy and memset.
 | 
						|
  Value *MemmoveFn, *MemcpyFn, *MemsetFn;
 | 
						|
 | 
						|
  /// \brief Address mask used in application-to-shadow address calculation.
 | 
						|
  /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
 | 
						|
  uint64_t ShadowMask;
 | 
						|
  /// \brief Offset of the origin shadow from the "normal" shadow.
 | 
						|
  /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
 | 
						|
  uint64_t OriginOffset;
 | 
						|
  /// \brief Branch weights for error reporting.
 | 
						|
  MDNode *ColdCallWeights;
 | 
						|
  /// \brief Branch weights for origin store.
 | 
						|
  MDNode *OriginStoreWeights;
 | 
						|
  /// \bried Path to blacklist file.
 | 
						|
  SmallString<64> BlacklistFile;
 | 
						|
  /// \brief The blacklist.
 | 
						|
  OwningPtr<BlackList> BL;
 | 
						|
  /// \brief An empty volatile inline asm that prevents callback merge.
 | 
						|
  InlineAsm *EmptyAsm;
 | 
						|
 | 
						|
  friend struct MemorySanitizerVisitor;
 | 
						|
  friend struct VarArgAMD64Helper;
 | 
						|
};
 | 
						|
}  // namespace
 | 
						|
 | 
						|
char MemorySanitizer::ID = 0;
 | 
						|
INITIALIZE_PASS(MemorySanitizer, "msan",
 | 
						|
                "MemorySanitizer: detects uninitialized reads.",
 | 
						|
                false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createMemorySanitizerPass(bool TrackOrigins,
 | 
						|
                                              StringRef BlacklistFile) {
 | 
						|
  return new MemorySanitizer(TrackOrigins, BlacklistFile);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a non-const global initialized with the given string.
 | 
						|
///
 | 
						|
/// Creates a writable global for Str so that we can pass it to the
 | 
						|
/// run-time lib. Runtime uses first 4 bytes of the string to store the
 | 
						|
/// frame ID, so the string needs to be mutable.
 | 
						|
static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
 | 
						|
                                                            StringRef Str) {
 | 
						|
  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
 | 
						|
  return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
 | 
						|
                            GlobalValue::PrivateLinkage, StrConst, "");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Insert extern declaration of runtime-provided functions and globals.
 | 
						|
void MemorySanitizer::initializeCallbacks(Module &M) {
 | 
						|
  // Only do this once.
 | 
						|
  if (WarningFn)
 | 
						|
    return;
 | 
						|
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  // Create the callback.
 | 
						|
  // FIXME: this function should have "Cold" calling conv,
 | 
						|
  // which is not yet implemented.
 | 
						|
  StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
 | 
						|
                                        : "__msan_warning_noreturn";
 | 
						|
  WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
 | 
						|
 | 
						|
  MsanCopyOriginFn = M.getOrInsertFunction(
 | 
						|
    "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
 | 
						|
    IRB.getInt8PtrTy(), IntptrTy, NULL);
 | 
						|
  MsanSetAllocaOriginFn = M.getOrInsertFunction(
 | 
						|
    "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
 | 
						|
    IRB.getInt8PtrTy(), NULL);
 | 
						|
  MsanPoisonStackFn = M.getOrInsertFunction(
 | 
						|
    "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
 | 
						|
  MemmoveFn = M.getOrInsertFunction(
 | 
						|
    "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
 | 
						|
    IRB.getInt8PtrTy(), IntptrTy, NULL);
 | 
						|
  MemcpyFn = M.getOrInsertFunction(
 | 
						|
    "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
 | 
						|
    IntptrTy, NULL);
 | 
						|
  MemsetFn = M.getOrInsertFunction(
 | 
						|
    "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
 | 
						|
    IntptrTy, NULL);
 | 
						|
 | 
						|
  // Create globals.
 | 
						|
  RetvalTLS = new GlobalVariable(
 | 
						|
    M, ArrayType::get(IRB.getInt64Ty(), 8), false,
 | 
						|
    GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
 | 
						|
    GlobalVariable::GeneralDynamicTLSModel);
 | 
						|
  RetvalOriginTLS = new GlobalVariable(
 | 
						|
    M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
 | 
						|
    "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
 | 
						|
 | 
						|
  ParamTLS = new GlobalVariable(
 | 
						|
    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
 | 
						|
    GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
 | 
						|
    GlobalVariable::GeneralDynamicTLSModel);
 | 
						|
  ParamOriginTLS = new GlobalVariable(
 | 
						|
    M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
 | 
						|
    0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
 | 
						|
 | 
						|
  VAArgTLS = new GlobalVariable(
 | 
						|
    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
 | 
						|
    GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
 | 
						|
    GlobalVariable::GeneralDynamicTLSModel);
 | 
						|
  VAArgOverflowSizeTLS = new GlobalVariable(
 | 
						|
    M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
 | 
						|
    "__msan_va_arg_overflow_size_tls", 0,
 | 
						|
    GlobalVariable::GeneralDynamicTLSModel);
 | 
						|
  OriginTLS = new GlobalVariable(
 | 
						|
    M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
 | 
						|
    "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);
 | 
						|
 | 
						|
  // We insert an empty inline asm after __msan_report* to avoid callback merge.
 | 
						|
  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
 | 
						|
                            StringRef(""), StringRef(""),
 | 
						|
                            /*hasSideEffects=*/true);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Module-level initialization.
 | 
						|
///
 | 
						|
/// inserts a call to __msan_init to the module's constructor list.
 | 
						|
bool MemorySanitizer::doInitialization(Module &M) {
 | 
						|
  TD = getAnalysisIfAvailable<DataLayout>();
 | 
						|
  if (!TD)
 | 
						|
    return false;
 | 
						|
  BL.reset(new BlackList(BlacklistFile));
 | 
						|
  C = &(M.getContext());
 | 
						|
  unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
 | 
						|
  switch (PtrSize) {
 | 
						|
    case 64:
 | 
						|
      ShadowMask = kShadowMask64;
 | 
						|
      OriginOffset = kOriginOffset64;
 | 
						|
      break;
 | 
						|
    case 32:
 | 
						|
      ShadowMask = kShadowMask32;
 | 
						|
      OriginOffset = kOriginOffset32;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      report_fatal_error("unsupported pointer size");
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  IntptrTy = IRB.getIntPtrTy(TD);
 | 
						|
  OriginTy = IRB.getInt32Ty();
 | 
						|
 | 
						|
  ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
 | 
						|
  OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
 | 
						|
 | 
						|
  // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
 | 
						|
  appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
 | 
						|
                      "__msan_init", IRB.getVoidTy(), NULL)), 0);
 | 
						|
 | 
						|
  new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
 | 
						|
                     IRB.getInt32(TrackOrigins), "__msan_track_origins");
 | 
						|
 | 
						|
  new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
 | 
						|
                     IRB.getInt32(ClKeepGoing), "__msan_keep_going");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// \brief A helper class that handles instrumentation of VarArg
 | 
						|
/// functions on a particular platform.
 | 
						|
///
 | 
						|
/// Implementations are expected to insert the instrumentation
 | 
						|
/// necessary to propagate argument shadow through VarArg function
 | 
						|
/// calls. Visit* methods are called during an InstVisitor pass over
 | 
						|
/// the function, and should avoid creating new basic blocks. A new
 | 
						|
/// instance of this class is created for each instrumented function.
 | 
						|
struct VarArgHelper {
 | 
						|
  /// \brief Visit a CallSite.
 | 
						|
  virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
 | 
						|
 | 
						|
  /// \brief Visit a va_start call.
 | 
						|
  virtual void visitVAStartInst(VAStartInst &I) = 0;
 | 
						|
 | 
						|
  /// \brief Visit a va_copy call.
 | 
						|
  virtual void visitVACopyInst(VACopyInst &I) = 0;
 | 
						|
 | 
						|
  /// \brief Finalize function instrumentation.
 | 
						|
  ///
 | 
						|
  /// This method is called after visiting all interesting (see above)
 | 
						|
  /// instructions in a function.
 | 
						|
  virtual void finalizeInstrumentation() = 0;
 | 
						|
 | 
						|
  virtual ~VarArgHelper() {}
 | 
						|
};
 | 
						|
 | 
						|
struct MemorySanitizerVisitor;
 | 
						|
 | 
						|
VarArgHelper*
 | 
						|
CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
 | 
						|
                   MemorySanitizerVisitor &Visitor);
 | 
						|
 | 
						|
/// This class does all the work for a given function. Store and Load
 | 
						|
/// instructions store and load corresponding shadow and origin
 | 
						|
/// values. Most instructions propagate shadow from arguments to their
 | 
						|
/// return values. Certain instructions (most importantly, BranchInst)
 | 
						|
/// test their argument shadow and print reports (with a runtime call) if it's
 | 
						|
/// non-zero.
 | 
						|
struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
 | 
						|
  Function &F;
 | 
						|
  MemorySanitizer &MS;
 | 
						|
  SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
 | 
						|
  ValueMap<Value*, Value*> ShadowMap, OriginMap;
 | 
						|
  bool InsertChecks;
 | 
						|
  OwningPtr<VarArgHelper> VAHelper;
 | 
						|
 | 
						|
  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
 | 
						|
  // See a comment in visitCallSite for more details.
 | 
						|
  static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
 | 
						|
  static const unsigned AMD64FpEndOffset = 176;
 | 
						|
 | 
						|
  struct ShadowOriginAndInsertPoint {
 | 
						|
    Instruction *Shadow;
 | 
						|
    Instruction *Origin;
 | 
						|
    Instruction *OrigIns;
 | 
						|
    ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
 | 
						|
      : Shadow(S), Origin(O), OrigIns(I) { }
 | 
						|
    ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
 | 
						|
  };
 | 
						|
  SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
 | 
						|
  SmallVector<Instruction*, 16> StoreList;
 | 
						|
 | 
						|
  MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
 | 
						|
    : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
 | 
						|
    InsertChecks = !MS.BL->isIn(F);
 | 
						|
    DEBUG(if (!InsertChecks)
 | 
						|
            dbgs() << "MemorySanitizer is not inserting checks into '"
 | 
						|
                   << F.getName() << "'\n");
 | 
						|
  }
 | 
						|
 | 
						|
  void materializeStores() {
 | 
						|
    for (size_t i = 0, n = StoreList.size(); i < n; i++) {
 | 
						|
      StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);
 | 
						|
 | 
						|
      IRBuilder<> IRB(&I);
 | 
						|
      Value *Val = I.getValueOperand();
 | 
						|
      Value *Addr = I.getPointerOperand();
 | 
						|
      Value *Shadow = getShadow(Val);
 | 
						|
      Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
 | 
						|
 | 
						|
      StoreInst *NewSI =
 | 
						|
        IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
 | 
						|
      DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
 | 
						|
      (void)NewSI;
 | 
						|
 | 
						|
      if (ClCheckAccessAddress)
 | 
						|
        insertCheck(Addr, &I);
 | 
						|
 | 
						|
      if (MS.TrackOrigins) {
 | 
						|
        unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
 | 
						|
        if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
 | 
						|
          IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB),
 | 
						|
                                 Alignment);
 | 
						|
        } else {
 | 
						|
          Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
 | 
						|
 | 
						|
          Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
 | 
						|
          // TODO(eugenis): handle non-zero constant shadow by inserting an
 | 
						|
          // unconditional check (can not simply fail compilation as this could
 | 
						|
          // be in the dead code).
 | 
						|
          if (Cst)
 | 
						|
            continue;
 | 
						|
 | 
						|
          Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
 | 
						|
              getCleanShadow(ConvertedShadow), "_mscmp");
 | 
						|
          Instruction *CheckTerm =
 | 
						|
            SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false,
 | 
						|
                                      MS.OriginStoreWeights);
 | 
						|
          IRBuilder<> IRBNew(CheckTerm);
 | 
						|
          IRBNew.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRBNew),
 | 
						|
                                    Alignment);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void materializeChecks() {
 | 
						|
    for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
 | 
						|
      Instruction *Shadow = InstrumentationList[i].Shadow;
 | 
						|
      Instruction *OrigIns = InstrumentationList[i].OrigIns;
 | 
						|
      IRBuilder<> IRB(OrigIns);
 | 
						|
      DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
 | 
						|
      Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
 | 
						|
      DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
 | 
						|
      Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
 | 
						|
                                    getCleanShadow(ConvertedShadow), "_mscmp");
 | 
						|
      Instruction *CheckTerm =
 | 
						|
        SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
 | 
						|
                                  /* Unreachable */ !ClKeepGoing,
 | 
						|
                                  MS.ColdCallWeights);
 | 
						|
 | 
						|
      IRB.SetInsertPoint(CheckTerm);
 | 
						|
      if (MS.TrackOrigins) {
 | 
						|
        Instruction *Origin = InstrumentationList[i].Origin;
 | 
						|
        IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
 | 
						|
                        MS.OriginTLS);
 | 
						|
      }
 | 
						|
      CallInst *Call = IRB.CreateCall(MS.WarningFn);
 | 
						|
      Call->setDebugLoc(OrigIns->getDebugLoc());
 | 
						|
      IRB.CreateCall(MS.EmptyAsm);
 | 
						|
      DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "DONE:\n" << F);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Add MemorySanitizer instrumentation to a function.
 | 
						|
  bool runOnFunction() {
 | 
						|
    MS.initializeCallbacks(*F.getParent());
 | 
						|
    if (!MS.TD) return false;
 | 
						|
 | 
						|
    // In the presence of unreachable blocks, we may see Phi nodes with
 | 
						|
    // incoming nodes from such blocks. Since InstVisitor skips unreachable
 | 
						|
    // blocks, such nodes will not have any shadow value associated with them.
 | 
						|
    // It's easier to remove unreachable blocks than deal with missing shadow.
 | 
						|
    removeUnreachableBlocks(F);
 | 
						|
 | 
						|
    // Iterate all BBs in depth-first order and create shadow instructions
 | 
						|
    // for all instructions (where applicable).
 | 
						|
    // For PHI nodes we create dummy shadow PHIs which will be finalized later.
 | 
						|
    for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
 | 
						|
         DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
 | 
						|
      BasicBlock *BB = *DI;
 | 
						|
      visit(*BB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Finalize PHI nodes.
 | 
						|
    for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
 | 
						|
      PHINode *PN = ShadowPHINodes[i];
 | 
						|
      PHINode *PNS = cast<PHINode>(getShadow(PN));
 | 
						|
      PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
 | 
						|
      size_t NumValues = PN->getNumIncomingValues();
 | 
						|
      for (size_t v = 0; v < NumValues; v++) {
 | 
						|
        PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
 | 
						|
        if (PNO)
 | 
						|
          PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    VAHelper->finalizeInstrumentation();
 | 
						|
 | 
						|
    // Delayed instrumentation of StoreInst.
 | 
						|
    // This may add new checks to be inserted later.
 | 
						|
    materializeStores();
 | 
						|
 | 
						|
    // Insert shadow value checks.
 | 
						|
    materializeChecks();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the shadow type that corresponds to a given Value.
 | 
						|
  Type *getShadowTy(Value *V) {
 | 
						|
    return getShadowTy(V->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the shadow type that corresponds to a given Type.
 | 
						|
  Type *getShadowTy(Type *OrigTy) {
 | 
						|
    if (!OrigTy->isSized()) {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    // For integer type, shadow is the same as the original type.
 | 
						|
    // This may return weird-sized types like i1.
 | 
						|
    if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
 | 
						|
      return IT;
 | 
						|
    if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
 | 
						|
      uint32_t EltSize = MS.TD->getTypeSizeInBits(VT->getElementType());
 | 
						|
      return VectorType::get(IntegerType::get(*MS.C, EltSize),
 | 
						|
                             VT->getNumElements());
 | 
						|
    }
 | 
						|
    if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
 | 
						|
      SmallVector<Type*, 4> Elements;
 | 
						|
      for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
 | 
						|
        Elements.push_back(getShadowTy(ST->getElementType(i)));
 | 
						|
      StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
 | 
						|
      DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
    uint32_t TypeSize = MS.TD->getTypeSizeInBits(OrigTy);
 | 
						|
    return IntegerType::get(*MS.C, TypeSize);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Flatten a vector type.
 | 
						|
  Type *getShadowTyNoVec(Type *ty) {
 | 
						|
    if (VectorType *vt = dyn_cast<VectorType>(ty))
 | 
						|
      return IntegerType::get(*MS.C, vt->getBitWidth());
 | 
						|
    return ty;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Convert a shadow value to it's flattened variant.
 | 
						|
  Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
 | 
						|
    Type *Ty = V->getType();
 | 
						|
    Type *NoVecTy = getShadowTyNoVec(Ty);
 | 
						|
    if (Ty == NoVecTy) return V;
 | 
						|
    return IRB.CreateBitCast(V, NoVecTy);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the shadow address that corresponds to a given application
 | 
						|
  /// address.
 | 
						|
  ///
 | 
						|
  /// Shadow = Addr & ~ShadowMask.
 | 
						|
  Value *getShadowPtr(Value *Addr, Type *ShadowTy,
 | 
						|
                      IRBuilder<> &IRB) {
 | 
						|
    Value *ShadowLong =
 | 
						|
      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
 | 
						|
                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
 | 
						|
    return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the origin address that corresponds to a given application
 | 
						|
  /// address.
 | 
						|
  ///
 | 
						|
  /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
 | 
						|
  Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
 | 
						|
    Value *ShadowLong =
 | 
						|
      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
 | 
						|
                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
 | 
						|
    Value *Add =
 | 
						|
      IRB.CreateAdd(ShadowLong,
 | 
						|
                    ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
 | 
						|
    Value *SecondAnd =
 | 
						|
      IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
 | 
						|
    return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the shadow address for a given function argument.
 | 
						|
  ///
 | 
						|
  /// Shadow = ParamTLS+ArgOffset.
 | 
						|
  Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
 | 
						|
                                 int ArgOffset) {
 | 
						|
    Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
 | 
						|
    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
 | 
						|
    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
 | 
						|
                              "_msarg");
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the origin address for a given function argument.
 | 
						|
  Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
 | 
						|
                                 int ArgOffset) {
 | 
						|
    if (!MS.TrackOrigins) return 0;
 | 
						|
    Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
 | 
						|
    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
 | 
						|
    return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
 | 
						|
                              "_msarg_o");
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the shadow address for a retval.
 | 
						|
  Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
 | 
						|
    Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
 | 
						|
    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
 | 
						|
                              "_msret");
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the origin address for a retval.
 | 
						|
  Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
 | 
						|
    // We keep a single origin for the entire retval. Might be too optimistic.
 | 
						|
    return MS.RetvalOriginTLS;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Set SV to be the shadow value for V.
 | 
						|
  void setShadow(Value *V, Value *SV) {
 | 
						|
    assert(!ShadowMap.count(V) && "Values may only have one shadow");
 | 
						|
    ShadowMap[V] = SV;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Set Origin to be the origin value for V.
 | 
						|
  void setOrigin(Value *V, Value *Origin) {
 | 
						|
    if (!MS.TrackOrigins) return;
 | 
						|
    assert(!OriginMap.count(V) && "Values may only have one origin");
 | 
						|
    DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
 | 
						|
    OriginMap[V] = Origin;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Create a clean shadow value for a given value.
 | 
						|
  ///
 | 
						|
  /// Clean shadow (all zeroes) means all bits of the value are defined
 | 
						|
  /// (initialized).
 | 
						|
  Value *getCleanShadow(Value *V) {
 | 
						|
    Type *ShadowTy = getShadowTy(V);
 | 
						|
    if (!ShadowTy)
 | 
						|
      return 0;
 | 
						|
    return Constant::getNullValue(ShadowTy);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Create a dirty shadow of a given shadow type.
 | 
						|
  Constant *getPoisonedShadow(Type *ShadowTy) {
 | 
						|
    assert(ShadowTy);
 | 
						|
    if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
 | 
						|
      return Constant::getAllOnesValue(ShadowTy);
 | 
						|
    StructType *ST = cast<StructType>(ShadowTy);
 | 
						|
    SmallVector<Constant *, 4> Vals;
 | 
						|
    for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
 | 
						|
      Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
 | 
						|
    return ConstantStruct::get(ST, Vals);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Create a clean (zero) origin.
 | 
						|
  Value *getCleanOrigin() {
 | 
						|
    return Constant::getNullValue(MS.OriginTy);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Get the shadow value for a given Value.
 | 
						|
  ///
 | 
						|
  /// This function either returns the value set earlier with setShadow,
 | 
						|
  /// or extracts if from ParamTLS (for function arguments).
 | 
						|
  Value *getShadow(Value *V) {
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
      // For instructions the shadow is already stored in the map.
 | 
						|
      Value *Shadow = ShadowMap[V];
 | 
						|
      if (!Shadow) {
 | 
						|
        DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
 | 
						|
        (void)I;
 | 
						|
        assert(Shadow && "No shadow for a value");
 | 
						|
      }
 | 
						|
      return Shadow;
 | 
						|
    }
 | 
						|
    if (UndefValue *U = dyn_cast<UndefValue>(V)) {
 | 
						|
      Value *AllOnes = getPoisonedShadow(getShadowTy(V));
 | 
						|
      DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
 | 
						|
      (void)U;
 | 
						|
      return AllOnes;
 | 
						|
    }
 | 
						|
    if (Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
      // For arguments we compute the shadow on demand and store it in the map.
 | 
						|
      Value **ShadowPtr = &ShadowMap[V];
 | 
						|
      if (*ShadowPtr)
 | 
						|
        return *ShadowPtr;
 | 
						|
      Function *F = A->getParent();
 | 
						|
      IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
 | 
						|
      unsigned ArgOffset = 0;
 | 
						|
      for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
 | 
						|
           AI != AE; ++AI) {
 | 
						|
        if (!AI->getType()->isSized()) {
 | 
						|
          DEBUG(dbgs() << "Arg is not sized\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        unsigned Size = AI->hasByValAttr()
 | 
						|
          ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
 | 
						|
          : MS.TD->getTypeAllocSize(AI->getType());
 | 
						|
        if (A == AI) {
 | 
						|
          Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
 | 
						|
          if (AI->hasByValAttr()) {
 | 
						|
            // ByVal pointer itself has clean shadow. We copy the actual
 | 
						|
            // argument shadow to the underlying memory.
 | 
						|
            Value *Cpy = EntryIRB.CreateMemCpy(
 | 
						|
              getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
 | 
						|
              Base, Size, AI->getParamAlignment());
 | 
						|
            DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
 | 
						|
            (void)Cpy;
 | 
						|
            *ShadowPtr = getCleanShadow(V);
 | 
						|
          } else {
 | 
						|
            *ShadowPtr = EntryIRB.CreateLoad(Base);
 | 
						|
          }
 | 
						|
          DEBUG(dbgs() << "  ARG:    "  << *AI << " ==> " <<
 | 
						|
                **ShadowPtr << "\n");
 | 
						|
          if (MS.TrackOrigins) {
 | 
						|
            Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
 | 
						|
            setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
 | 
						|
      }
 | 
						|
      assert(*ShadowPtr && "Could not find shadow for an argument");
 | 
						|
      return *ShadowPtr;
 | 
						|
    }
 | 
						|
    // For everything else the shadow is zero.
 | 
						|
    return getCleanShadow(V);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Get the shadow for i-th argument of the instruction I.
 | 
						|
  Value *getShadow(Instruction *I, int i) {
 | 
						|
    return getShadow(I->getOperand(i));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Get the origin for a value.
 | 
						|
  Value *getOrigin(Value *V) {
 | 
						|
    if (!MS.TrackOrigins) return 0;
 | 
						|
    if (isa<Instruction>(V) || isa<Argument>(V)) {
 | 
						|
      Value *Origin = OriginMap[V];
 | 
						|
      if (!Origin) {
 | 
						|
        DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
 | 
						|
        Origin = getCleanOrigin();
 | 
						|
      }
 | 
						|
      return Origin;
 | 
						|
    }
 | 
						|
    return getCleanOrigin();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Get the origin for i-th argument of the instruction I.
 | 
						|
  Value *getOrigin(Instruction *I, int i) {
 | 
						|
    return getOrigin(I->getOperand(i));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Remember the place where a shadow check should be inserted.
 | 
						|
  ///
 | 
						|
  /// This location will be later instrumented with a check that will print a
 | 
						|
  /// UMR warning in runtime if the value is not fully defined.
 | 
						|
  void insertCheck(Value *Val, Instruction *OrigIns) {
 | 
						|
    assert(Val);
 | 
						|
    if (!InsertChecks) return;
 | 
						|
    Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
 | 
						|
    if (!Shadow) return;
 | 
						|
#ifndef NDEBUG
 | 
						|
    Type *ShadowTy = Shadow->getType();
 | 
						|
    assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
 | 
						|
           "Can only insert checks for integer and vector shadow types");
 | 
						|
#endif
 | 
						|
    Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
 | 
						|
    InstrumentationList.push_back(
 | 
						|
      ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
 | 
						|
  }
 | 
						|
 | 
						|
  // ------------------- Visitors.
 | 
						|
 | 
						|
  /// \brief Instrument LoadInst
 | 
						|
  ///
 | 
						|
  /// Loads the corresponding shadow and (optionally) origin.
 | 
						|
  /// Optionally, checks that the load address is fully defined.
 | 
						|
  void visitLoadInst(LoadInst &I) {
 | 
						|
    assert(I.getType()->isSized() && "Load type must have size");
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Type *ShadowTy = getShadowTy(&I);
 | 
						|
    Value *Addr = I.getPointerOperand();
 | 
						|
    Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
 | 
						|
    setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
 | 
						|
 | 
						|
    if (ClCheckAccessAddress)
 | 
						|
      insertCheck(I.getPointerOperand(), &I);
 | 
						|
 | 
						|
    if (MS.TrackOrigins) {
 | 
						|
      unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
 | 
						|
      setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Instrument StoreInst
 | 
						|
  ///
 | 
						|
  /// Stores the corresponding shadow and (optionally) origin.
 | 
						|
  /// Optionally, checks that the store address is fully defined.
 | 
						|
  void visitStoreInst(StoreInst &I) {
 | 
						|
    StoreList.push_back(&I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Vector manipulation.
 | 
						|
  void visitExtractElementInst(ExtractElementInst &I) {
 | 
						|
    insertCheck(I.getOperand(1), &I);
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
 | 
						|
              "_msprop"));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitInsertElementInst(InsertElementInst &I) {
 | 
						|
    insertCheck(I.getOperand(2), &I);
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
 | 
						|
              I.getOperand(2), "_msprop"));
 | 
						|
    setOriginForNaryOp(I);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitShuffleVectorInst(ShuffleVectorInst &I) {
 | 
						|
    insertCheck(I.getOperand(2), &I);
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
 | 
						|
              I.getOperand(2), "_msprop"));
 | 
						|
    setOriginForNaryOp(I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Casts.
 | 
						|
  void visitSExtInst(SExtInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitZExtInst(ZExtInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitTruncInst(TruncInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitBitCastInst(BitCastInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitPtrToIntInst(PtrToIntInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
 | 
						|
             "_msprop_ptrtoint"));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitIntToPtrInst(IntToPtrInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
 | 
						|
             "_msprop_inttoptr"));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
 | 
						|
  void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
 | 
						|
  void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
 | 
						|
  void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
 | 
						|
  void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
 | 
						|
  void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
 | 
						|
 | 
						|
  /// \brief Propagate shadow for bitwise AND.
 | 
						|
  ///
 | 
						|
  /// This code is exact, i.e. if, for example, a bit in the left argument
 | 
						|
  /// is defined and 0, then neither the value not definedness of the
 | 
						|
  /// corresponding bit in B don't affect the resulting shadow.
 | 
						|
  void visitAnd(BinaryOperator &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    //  "And" of 0 and a poisoned value results in unpoisoned value.
 | 
						|
    //  1&1 => 1;     0&1 => 0;     p&1 => p;
 | 
						|
    //  1&0 => 0;     0&0 => 0;     p&0 => 0;
 | 
						|
    //  1&p => p;     0&p => 0;     p&p => p;
 | 
						|
    //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
 | 
						|
    Value *S1 = getShadow(&I, 0);
 | 
						|
    Value *S2 = getShadow(&I, 1);
 | 
						|
    Value *V1 = I.getOperand(0);
 | 
						|
    Value *V2 = I.getOperand(1);
 | 
						|
    if (V1->getType() != S1->getType()) {
 | 
						|
      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
 | 
						|
      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
 | 
						|
    }
 | 
						|
    Value *S1S2 = IRB.CreateAnd(S1, S2);
 | 
						|
    Value *V1S2 = IRB.CreateAnd(V1, S2);
 | 
						|
    Value *S1V2 = IRB.CreateAnd(S1, V2);
 | 
						|
    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
 | 
						|
    setOriginForNaryOp(I);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitOr(BinaryOperator &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    //  "Or" of 1 and a poisoned value results in unpoisoned value.
 | 
						|
    //  1|1 => 1;     0|1 => 1;     p|1 => 1;
 | 
						|
    //  1|0 => 1;     0|0 => 0;     p|0 => p;
 | 
						|
    //  1|p => 1;     0|p => p;     p|p => p;
 | 
						|
    //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
 | 
						|
    Value *S1 = getShadow(&I, 0);
 | 
						|
    Value *S2 = getShadow(&I, 1);
 | 
						|
    Value *V1 = IRB.CreateNot(I.getOperand(0));
 | 
						|
    Value *V2 = IRB.CreateNot(I.getOperand(1));
 | 
						|
    if (V1->getType() != S1->getType()) {
 | 
						|
      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
 | 
						|
      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
 | 
						|
    }
 | 
						|
    Value *S1S2 = IRB.CreateAnd(S1, S2);
 | 
						|
    Value *V1S2 = IRB.CreateAnd(V1, S2);
 | 
						|
    Value *S1V2 = IRB.CreateAnd(S1, V2);
 | 
						|
    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
 | 
						|
    setOriginForNaryOp(I);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Default propagation of shadow and/or origin.
 | 
						|
  ///
 | 
						|
  /// This class implements the general case of shadow propagation, used in all
 | 
						|
  /// cases where we don't know and/or don't care about what the operation
 | 
						|
  /// actually does. It converts all input shadow values to a common type
 | 
						|
  /// (extending or truncating as necessary), and bitwise OR's them.
 | 
						|
  ///
 | 
						|
  /// This is much cheaper than inserting checks (i.e. requiring inputs to be
 | 
						|
  /// fully initialized), and less prone to false positives.
 | 
						|
  ///
 | 
						|
  /// This class also implements the general case of origin propagation. For a
 | 
						|
  /// Nary operation, result origin is set to the origin of an argument that is
 | 
						|
  /// not entirely initialized. If there is more than one such arguments, the
 | 
						|
  /// rightmost of them is picked. It does not matter which one is picked if all
 | 
						|
  /// arguments are initialized.
 | 
						|
  template <bool CombineShadow>
 | 
						|
  class Combiner {
 | 
						|
    Value *Shadow;
 | 
						|
    Value *Origin;
 | 
						|
    IRBuilder<> &IRB;
 | 
						|
    MemorySanitizerVisitor *MSV;
 | 
						|
 | 
						|
  public:
 | 
						|
    Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
 | 
						|
      Shadow(0), Origin(0), IRB(IRB), MSV(MSV) {}
 | 
						|
 | 
						|
    /// \brief Add a pair of shadow and origin values to the mix.
 | 
						|
    Combiner &Add(Value *OpShadow, Value *OpOrigin) {
 | 
						|
      if (CombineShadow) {
 | 
						|
        assert(OpShadow);
 | 
						|
        if (!Shadow)
 | 
						|
          Shadow = OpShadow;
 | 
						|
        else {
 | 
						|
          OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
 | 
						|
          Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (MSV->MS.TrackOrigins) {
 | 
						|
        assert(OpOrigin);
 | 
						|
        if (!Origin) {
 | 
						|
          Origin = OpOrigin;
 | 
						|
        } else {
 | 
						|
          Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
 | 
						|
          Value *Cond = IRB.CreateICmpNE(FlatShadow,
 | 
						|
                                         MSV->getCleanShadow(FlatShadow));
 | 
						|
          Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Add an application value to the mix.
 | 
						|
    Combiner &Add(Value *V) {
 | 
						|
      Value *OpShadow = MSV->getShadow(V);
 | 
						|
      Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : 0;
 | 
						|
      return Add(OpShadow, OpOrigin);
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Set the current combined values as the given instruction's shadow
 | 
						|
    /// and origin.
 | 
						|
    void Done(Instruction *I) {
 | 
						|
      if (CombineShadow) {
 | 
						|
        assert(Shadow);
 | 
						|
        Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
 | 
						|
        MSV->setShadow(I, Shadow);
 | 
						|
      }
 | 
						|
      if (MSV->MS.TrackOrigins) {
 | 
						|
        assert(Origin);
 | 
						|
        MSV->setOrigin(I, Origin);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  typedef Combiner<true> ShadowAndOriginCombiner;
 | 
						|
  typedef Combiner<false> OriginCombiner;
 | 
						|
 | 
						|
  /// \brief Propagate origin for arbitrary operation.
 | 
						|
  void setOriginForNaryOp(Instruction &I) {
 | 
						|
    if (!MS.TrackOrigins) return;
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    OriginCombiner OC(this, IRB);
 | 
						|
    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
 | 
						|
      OC.Add(OI->get());
 | 
						|
    OC.Done(&I);
 | 
						|
  }
 | 
						|
 | 
						|
  size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
 | 
						|
    assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
 | 
						|
           "Vector of pointers is not a valid shadow type");
 | 
						|
    return Ty->isVectorTy() ?
 | 
						|
      Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
 | 
						|
      Ty->getPrimitiveSizeInBits();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Cast between two shadow types, extending or truncating as
 | 
						|
  /// necessary.
 | 
						|
  Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy) {
 | 
						|
    Type *srcTy = V->getType();
 | 
						|
    if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
 | 
						|
      return IRB.CreateIntCast(V, dstTy, false);
 | 
						|
    if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
 | 
						|
        dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
 | 
						|
      return IRB.CreateIntCast(V, dstTy, false);
 | 
						|
    size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
 | 
						|
    size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
 | 
						|
    Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
 | 
						|
    Value *V2 =
 | 
						|
      IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), false);
 | 
						|
    return IRB.CreateBitCast(V2, dstTy);
 | 
						|
    // TODO: handle struct types.
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Propagate shadow for arbitrary operation.
 | 
						|
  void handleShadowOr(Instruction &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    ShadowAndOriginCombiner SC(this, IRB);
 | 
						|
    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
 | 
						|
      SC.Add(OI->get());
 | 
						|
    SC.Done(&I);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
 | 
						|
  void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
 | 
						|
  void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
 | 
						|
  void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
 | 
						|
  void visitSub(BinaryOperator &I) { handleShadowOr(I); }
 | 
						|
  void visitXor(BinaryOperator &I) { handleShadowOr(I); }
 | 
						|
  void visitMul(BinaryOperator &I) { handleShadowOr(I); }
 | 
						|
 | 
						|
  void handleDiv(Instruction &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    // Strict on the second argument.
 | 
						|
    insertCheck(I.getOperand(1), &I);
 | 
						|
    setShadow(&I, getShadow(&I, 0));
 | 
						|
    setOrigin(&I, getOrigin(&I, 0));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitUDiv(BinaryOperator &I) { handleDiv(I); }
 | 
						|
  void visitSDiv(BinaryOperator &I) { handleDiv(I); }
 | 
						|
  void visitFDiv(BinaryOperator &I) { handleDiv(I); }
 | 
						|
  void visitURem(BinaryOperator &I) { handleDiv(I); }
 | 
						|
  void visitSRem(BinaryOperator &I) { handleDiv(I); }
 | 
						|
  void visitFRem(BinaryOperator &I) { handleDiv(I); }
 | 
						|
 | 
						|
  /// \brief Instrument == and != comparisons.
 | 
						|
  ///
 | 
						|
  /// Sometimes the comparison result is known even if some of the bits of the
 | 
						|
  /// arguments are not.
 | 
						|
  void handleEqualityComparison(ICmpInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Value *A = I.getOperand(0);
 | 
						|
    Value *B = I.getOperand(1);
 | 
						|
    Value *Sa = getShadow(A);
 | 
						|
    Value *Sb = getShadow(B);
 | 
						|
 | 
						|
    // Get rid of pointers and vectors of pointers.
 | 
						|
    // For ints (and vectors of ints), types of A and Sa match,
 | 
						|
    // and this is a no-op.
 | 
						|
    A = IRB.CreatePointerCast(A, Sa->getType());
 | 
						|
    B = IRB.CreatePointerCast(B, Sb->getType());
 | 
						|
 | 
						|
    // A == B  <==>  (C = A^B) == 0
 | 
						|
    // A != B  <==>  (C = A^B) != 0
 | 
						|
    // Sc = Sa | Sb
 | 
						|
    Value *C = IRB.CreateXor(A, B);
 | 
						|
    Value *Sc = IRB.CreateOr(Sa, Sb);
 | 
						|
    // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
 | 
						|
    // Result is defined if one of the following is true
 | 
						|
    // * there is a defined 1 bit in C
 | 
						|
    // * C is fully defined
 | 
						|
    // Si = !(C & ~Sc) && Sc
 | 
						|
    Value *Zero = Constant::getNullValue(Sc->getType());
 | 
						|
    Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
 | 
						|
    Value *Si =
 | 
						|
      IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
 | 
						|
                    IRB.CreateICmpEQ(
 | 
						|
                      IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
 | 
						|
    Si->setName("_msprop_icmp");
 | 
						|
    setShadow(&I, Si);
 | 
						|
    setOriginForNaryOp(I);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Build the lowest possible value of V, taking into account V's
 | 
						|
  ///        uninitialized bits.
 | 
						|
  Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
 | 
						|
                                bool isSigned) {
 | 
						|
    if (isSigned) {
 | 
						|
      // Split shadow into sign bit and other bits.
 | 
						|
      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
 | 
						|
      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
 | 
						|
      // Maximise the undefined shadow bit, minimize other undefined bits.
 | 
						|
      return
 | 
						|
        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
 | 
						|
    } else {
 | 
						|
      // Minimize undefined bits.
 | 
						|
      return IRB.CreateAnd(A, IRB.CreateNot(Sa));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Build the highest possible value of V, taking into account V's
 | 
						|
  ///        uninitialized bits.
 | 
						|
  Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
 | 
						|
                                bool isSigned) {
 | 
						|
    if (isSigned) {
 | 
						|
      // Split shadow into sign bit and other bits.
 | 
						|
      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
 | 
						|
      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
 | 
						|
      // Minimise the undefined shadow bit, maximise other undefined bits.
 | 
						|
      return
 | 
						|
        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
 | 
						|
    } else {
 | 
						|
      // Maximize undefined bits.
 | 
						|
      return IRB.CreateOr(A, Sa);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Instrument relational comparisons.
 | 
						|
  ///
 | 
						|
  /// This function does exact shadow propagation for all relational
 | 
						|
  /// comparisons of integers, pointers and vectors of those.
 | 
						|
  /// FIXME: output seems suboptimal when one of the operands is a constant
 | 
						|
  void handleRelationalComparisonExact(ICmpInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Value *A = I.getOperand(0);
 | 
						|
    Value *B = I.getOperand(1);
 | 
						|
    Value *Sa = getShadow(A);
 | 
						|
    Value *Sb = getShadow(B);
 | 
						|
 | 
						|
    // Get rid of pointers and vectors of pointers.
 | 
						|
    // For ints (and vectors of ints), types of A and Sa match,
 | 
						|
    // and this is a no-op.
 | 
						|
    A = IRB.CreatePointerCast(A, Sa->getType());
 | 
						|
    B = IRB.CreatePointerCast(B, Sb->getType());
 | 
						|
 | 
						|
    // Let [a0, a1] be the interval of possible values of A, taking into account
 | 
						|
    // its undefined bits. Let [b0, b1] be the interval of possible values of B.
 | 
						|
    // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
 | 
						|
    bool IsSigned = I.isSigned();
 | 
						|
    Value *S1 = IRB.CreateICmp(I.getPredicate(),
 | 
						|
                               getLowestPossibleValue(IRB, A, Sa, IsSigned),
 | 
						|
                               getHighestPossibleValue(IRB, B, Sb, IsSigned));
 | 
						|
    Value *S2 = IRB.CreateICmp(I.getPredicate(),
 | 
						|
                               getHighestPossibleValue(IRB, A, Sa, IsSigned),
 | 
						|
                               getLowestPossibleValue(IRB, B, Sb, IsSigned));
 | 
						|
    Value *Si = IRB.CreateXor(S1, S2);
 | 
						|
    setShadow(&I, Si);
 | 
						|
    setOriginForNaryOp(I);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Instrument signed relational comparisons.
 | 
						|
  ///
 | 
						|
  /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
 | 
						|
  /// propagating the highest bit of the shadow. Everything else is delegated
 | 
						|
  /// to handleShadowOr().
 | 
						|
  void handleSignedRelationalComparison(ICmpInst &I) {
 | 
						|
    Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
 | 
						|
    Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
 | 
						|
    Value* op = NULL;
 | 
						|
    CmpInst::Predicate pre = I.getPredicate();
 | 
						|
    if (constOp0 && constOp0->isNullValue() &&
 | 
						|
        (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
 | 
						|
      op = I.getOperand(1);
 | 
						|
    } else if (constOp1 && constOp1->isNullValue() &&
 | 
						|
               (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
 | 
						|
      op = I.getOperand(0);
 | 
						|
    }
 | 
						|
    if (op) {
 | 
						|
      IRBuilder<> IRB(&I);
 | 
						|
      Value* Shadow =
 | 
						|
        IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
 | 
						|
      setShadow(&I, Shadow);
 | 
						|
      setOrigin(&I, getOrigin(op));
 | 
						|
    } else {
 | 
						|
      handleShadowOr(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void visitICmpInst(ICmpInst &I) {
 | 
						|
    if (!ClHandleICmp) {
 | 
						|
      handleShadowOr(I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (I.isEquality()) {
 | 
						|
      handleEqualityComparison(I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I.isRelational());
 | 
						|
    if (ClHandleICmpExact) {
 | 
						|
      handleRelationalComparisonExact(I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (I.isSigned()) {
 | 
						|
      handleSignedRelationalComparison(I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(I.isUnsigned());
 | 
						|
    if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
 | 
						|
      handleRelationalComparisonExact(I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    handleShadowOr(I);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitFCmpInst(FCmpInst &I) {
 | 
						|
    handleShadowOr(I);
 | 
						|
  }
 | 
						|
 | 
						|
  void handleShift(BinaryOperator &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    // If any of the S2 bits are poisoned, the whole thing is poisoned.
 | 
						|
    // Otherwise perform the same shift on S1.
 | 
						|
    Value *S1 = getShadow(&I, 0);
 | 
						|
    Value *S2 = getShadow(&I, 1);
 | 
						|
    Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
 | 
						|
                                   S2->getType());
 | 
						|
    Value *V2 = I.getOperand(1);
 | 
						|
    Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
 | 
						|
    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
 | 
						|
    setOriginForNaryOp(I);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitShl(BinaryOperator &I) { handleShift(I); }
 | 
						|
  void visitAShr(BinaryOperator &I) { handleShift(I); }
 | 
						|
  void visitLShr(BinaryOperator &I) { handleShift(I); }
 | 
						|
 | 
						|
  /// \brief Instrument llvm.memmove
 | 
						|
  ///
 | 
						|
  /// At this point we don't know if llvm.memmove will be inlined or not.
 | 
						|
  /// If we don't instrument it and it gets inlined,
 | 
						|
  /// our interceptor will not kick in and we will lose the memmove.
 | 
						|
  /// If we instrument the call here, but it does not get inlined,
 | 
						|
  /// we will memove the shadow twice: which is bad in case
 | 
						|
  /// of overlapping regions. So, we simply lower the intrinsic to a call.
 | 
						|
  ///
 | 
						|
  /// Similar situation exists for memcpy and memset.
 | 
						|
  void visitMemMoveInst(MemMoveInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    IRB.CreateCall3(
 | 
						|
      MS.MemmoveFn,
 | 
						|
      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
 | 
						|
      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
 | 
						|
      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
 | 
						|
    I.eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Similar to memmove: avoid copying shadow twice.
 | 
						|
  // This is somewhat unfortunate as it may slowdown small constant memcpys.
 | 
						|
  // FIXME: consider doing manual inline for small constant sizes and proper
 | 
						|
  // alignment.
 | 
						|
  void visitMemCpyInst(MemCpyInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    IRB.CreateCall3(
 | 
						|
      MS.MemcpyFn,
 | 
						|
      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
 | 
						|
      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
 | 
						|
      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
 | 
						|
    I.eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Same as memcpy.
 | 
						|
  void visitMemSetInst(MemSetInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    IRB.CreateCall3(
 | 
						|
      MS.MemsetFn,
 | 
						|
      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
 | 
						|
      IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
 | 
						|
      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
 | 
						|
    I.eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  void visitVAStartInst(VAStartInst &I) {
 | 
						|
    VAHelper->visitVAStartInst(I);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitVACopyInst(VACopyInst &I) {
 | 
						|
    VAHelper->visitVACopyInst(I);
 | 
						|
  }
 | 
						|
 | 
						|
  enum IntrinsicKind {
 | 
						|
    IK_DoesNotAccessMemory,
 | 
						|
    IK_OnlyReadsMemory,
 | 
						|
    IK_WritesMemory
 | 
						|
  };
 | 
						|
 | 
						|
  static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
 | 
						|
    const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
 | 
						|
    const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
 | 
						|
    const int OnlyReadsMemory = IK_OnlyReadsMemory;
 | 
						|
    const int OnlyAccessesArgumentPointees = IK_WritesMemory;
 | 
						|
    const int UnknownModRefBehavior = IK_WritesMemory;
 | 
						|
#define GET_INTRINSIC_MODREF_BEHAVIOR
 | 
						|
#define ModRefBehavior IntrinsicKind
 | 
						|
#include "llvm/IR/Intrinsics.gen"
 | 
						|
#undef ModRefBehavior
 | 
						|
#undef GET_INTRINSIC_MODREF_BEHAVIOR
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Handle vector store-like intrinsics.
 | 
						|
  ///
 | 
						|
  /// Instrument intrinsics that look like a simple SIMD store: writes memory,
 | 
						|
  /// has 1 pointer argument and 1 vector argument, returns void.
 | 
						|
  bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Value* Addr = I.getArgOperand(0);
 | 
						|
    Value *Shadow = getShadow(&I, 1);
 | 
						|
    Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
 | 
						|
 | 
						|
    // We don't know the pointer alignment (could be unaligned SSE store!).
 | 
						|
    // Have to assume to worst case.
 | 
						|
    IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
 | 
						|
 | 
						|
    if (ClCheckAccessAddress)
 | 
						|
      insertCheck(Addr, &I);
 | 
						|
 | 
						|
    // FIXME: use ClStoreCleanOrigin
 | 
						|
    // FIXME: factor out common code from materializeStores
 | 
						|
    if (MS.TrackOrigins)
 | 
						|
      IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Handle vector load-like intrinsics.
 | 
						|
  ///
 | 
						|
  /// Instrument intrinsics that look like a simple SIMD load: reads memory,
 | 
						|
  /// has 1 pointer argument, returns a vector.
 | 
						|
  bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Value *Addr = I.getArgOperand(0);
 | 
						|
 | 
						|
    Type *ShadowTy = getShadowTy(&I);
 | 
						|
    Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
 | 
						|
    // We don't know the pointer alignment (could be unaligned SSE load!).
 | 
						|
    // Have to assume to worst case.
 | 
						|
    setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
 | 
						|
 | 
						|
    if (ClCheckAccessAddress)
 | 
						|
      insertCheck(Addr, &I);
 | 
						|
 | 
						|
    if (MS.TrackOrigins)
 | 
						|
      setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Handle (SIMD arithmetic)-like intrinsics.
 | 
						|
  ///
 | 
						|
  /// Instrument intrinsics with any number of arguments of the same type,
 | 
						|
  /// equal to the return type. The type should be simple (no aggregates or
 | 
						|
  /// pointers; vectors are fine).
 | 
						|
  /// Caller guarantees that this intrinsic does not access memory.
 | 
						|
  bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
 | 
						|
    Type *RetTy = I.getType();
 | 
						|
    if (!(RetTy->isIntOrIntVectorTy() ||
 | 
						|
          RetTy->isFPOrFPVectorTy() ||
 | 
						|
          RetTy->isX86_MMXTy()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned NumArgOperands = I.getNumArgOperands();
 | 
						|
 | 
						|
    for (unsigned i = 0; i < NumArgOperands; ++i) {
 | 
						|
      Type *Ty = I.getArgOperand(i)->getType();
 | 
						|
      if (Ty != RetTy)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    ShadowAndOriginCombiner SC(this, IRB);
 | 
						|
    for (unsigned i = 0; i < NumArgOperands; ++i)
 | 
						|
      SC.Add(I.getArgOperand(i));
 | 
						|
    SC.Done(&I);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Heuristically instrument unknown intrinsics.
 | 
						|
  ///
 | 
						|
  /// The main purpose of this code is to do something reasonable with all
 | 
						|
  /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
 | 
						|
  /// We recognize several classes of intrinsics by their argument types and
 | 
						|
  /// ModRefBehaviour and apply special intrumentation when we are reasonably
 | 
						|
  /// sure that we know what the intrinsic does.
 | 
						|
  ///
 | 
						|
  /// We special-case intrinsics where this approach fails. See llvm.bswap
 | 
						|
  /// handling as an example of that.
 | 
						|
  bool handleUnknownIntrinsic(IntrinsicInst &I) {
 | 
						|
    unsigned NumArgOperands = I.getNumArgOperands();
 | 
						|
    if (NumArgOperands == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Intrinsic::ID iid = I.getIntrinsicID();
 | 
						|
    IntrinsicKind IK = getIntrinsicKind(iid);
 | 
						|
    bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
 | 
						|
    bool WritesMemory = IK == IK_WritesMemory;
 | 
						|
    assert(!(OnlyReadsMemory && WritesMemory));
 | 
						|
 | 
						|
    if (NumArgOperands == 2 &&
 | 
						|
        I.getArgOperand(0)->getType()->isPointerTy() &&
 | 
						|
        I.getArgOperand(1)->getType()->isVectorTy() &&
 | 
						|
        I.getType()->isVoidTy() &&
 | 
						|
        WritesMemory) {
 | 
						|
      // This looks like a vector store.
 | 
						|
      return handleVectorStoreIntrinsic(I);
 | 
						|
    }
 | 
						|
 | 
						|
    if (NumArgOperands == 1 &&
 | 
						|
        I.getArgOperand(0)->getType()->isPointerTy() &&
 | 
						|
        I.getType()->isVectorTy() &&
 | 
						|
        OnlyReadsMemory) {
 | 
						|
      // This looks like a vector load.
 | 
						|
      return handleVectorLoadIntrinsic(I);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!OnlyReadsMemory && !WritesMemory)
 | 
						|
      if (maybeHandleSimpleNomemIntrinsic(I))
 | 
						|
        return true;
 | 
						|
 | 
						|
    // FIXME: detect and handle SSE maskstore/maskload
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void handleBswap(IntrinsicInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Value *Op = I.getArgOperand(0);
 | 
						|
    Type *OpType = Op->getType();
 | 
						|
    Function *BswapFunc = Intrinsic::getDeclaration(
 | 
						|
      F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
 | 
						|
    setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
 | 
						|
    setOrigin(&I, getOrigin(Op));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitIntrinsicInst(IntrinsicInst &I) {
 | 
						|
    switch (I.getIntrinsicID()) {
 | 
						|
    case llvm::Intrinsic::bswap:
 | 
						|
      handleBswap(I);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      if (!handleUnknownIntrinsic(I))
 | 
						|
        visitInstruction(I);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void visitCallSite(CallSite CS) {
 | 
						|
    Instruction &I = *CS.getInstruction();
 | 
						|
    assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
 | 
						|
    if (CS.isCall()) {
 | 
						|
      CallInst *Call = cast<CallInst>(&I);
 | 
						|
 | 
						|
      // For inline asm, do the usual thing: check argument shadow and mark all
 | 
						|
      // outputs as clean. Note that any side effects of the inline asm that are
 | 
						|
      // not immediately visible in its constraints are not handled.
 | 
						|
      if (Call->isInlineAsm()) {
 | 
						|
        visitInstruction(I);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Allow only tail calls with the same types, otherwise
 | 
						|
      // we may have a false positive: shadow for a non-void RetVal
 | 
						|
      // will get propagated to a void RetVal.
 | 
						|
      if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
 | 
						|
        Call->setTailCall(false);
 | 
						|
 | 
						|
      assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
 | 
						|
 | 
						|
      // We are going to insert code that relies on the fact that the callee
 | 
						|
      // will become a non-readonly function after it is instrumented by us. To
 | 
						|
      // prevent this code from being optimized out, mark that function
 | 
						|
      // non-readonly in advance.
 | 
						|
      if (Function *Func = Call->getCalledFunction()) {
 | 
						|
        // Clear out readonly/readnone attributes.
 | 
						|
        AttrBuilder B;
 | 
						|
        B.addAttribute(Attribute::ReadOnly)
 | 
						|
          .addAttribute(Attribute::ReadNone);
 | 
						|
        Func->removeAttributes(AttributeSet::FunctionIndex,
 | 
						|
                               AttributeSet::get(Func->getContext(),
 | 
						|
                                                 AttributeSet::FunctionIndex,
 | 
						|
                                                 B));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    unsigned ArgOffset = 0;
 | 
						|
    DEBUG(dbgs() << "  CallSite: " << I << "\n");
 | 
						|
    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
 | 
						|
         ArgIt != End; ++ArgIt) {
 | 
						|
      Value *A = *ArgIt;
 | 
						|
      unsigned i = ArgIt - CS.arg_begin();
 | 
						|
      if (!A->getType()->isSized()) {
 | 
						|
        DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      unsigned Size = 0;
 | 
						|
      Value *Store = 0;
 | 
						|
      // Compute the Shadow for arg even if it is ByVal, because
 | 
						|
      // in that case getShadow() will copy the actual arg shadow to
 | 
						|
      // __msan_param_tls.
 | 
						|
      Value *ArgShadow = getShadow(A);
 | 
						|
      Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
 | 
						|
      DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
 | 
						|
            " Shadow: " << *ArgShadow << "\n");
 | 
						|
      if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
 | 
						|
        assert(A->getType()->isPointerTy() &&
 | 
						|
               "ByVal argument is not a pointer!");
 | 
						|
        Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
 | 
						|
        unsigned Alignment = CS.getParamAlignment(i + 1);
 | 
						|
        Store = IRB.CreateMemCpy(ArgShadowBase,
 | 
						|
                                 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
 | 
						|
                                 Size, Alignment);
 | 
						|
      } else {
 | 
						|
        Size = MS.TD->getTypeAllocSize(A->getType());
 | 
						|
        Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
 | 
						|
                                       kShadowTLSAlignment);
 | 
						|
      }
 | 
						|
      if (MS.TrackOrigins)
 | 
						|
        IRB.CreateStore(getOrigin(A),
 | 
						|
                        getOriginPtrForArgument(A, IRB, ArgOffset));
 | 
						|
      (void)Store;
 | 
						|
      assert(Size != 0 && Store != 0);
 | 
						|
      DEBUG(dbgs() << "  Param:" << *Store << "\n");
 | 
						|
      ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "  done with call args\n");
 | 
						|
 | 
						|
    FunctionType *FT =
 | 
						|
      cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
 | 
						|
    if (FT->isVarArg()) {
 | 
						|
      VAHelper->visitCallSite(CS, IRB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Now, get the shadow for the RetVal.
 | 
						|
    if (!I.getType()->isSized()) return;
 | 
						|
    IRBuilder<> IRBBefore(&I);
 | 
						|
    // Untill we have full dynamic coverage, make sure the retval shadow is 0.
 | 
						|
    Value *Base = getShadowPtrForRetval(&I, IRBBefore);
 | 
						|
    IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
 | 
						|
    Instruction *NextInsn = 0;
 | 
						|
    if (CS.isCall()) {
 | 
						|
      NextInsn = I.getNextNode();
 | 
						|
    } else {
 | 
						|
      BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
 | 
						|
      if (!NormalDest->getSinglePredecessor()) {
 | 
						|
        // FIXME: this case is tricky, so we are just conservative here.
 | 
						|
        // Perhaps we need to split the edge between this BB and NormalDest,
 | 
						|
        // but a naive attempt to use SplitEdge leads to a crash.
 | 
						|
        setShadow(&I, getCleanShadow(&I));
 | 
						|
        setOrigin(&I, getCleanOrigin());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      NextInsn = NormalDest->getFirstInsertionPt();
 | 
						|
      assert(NextInsn &&
 | 
						|
             "Could not find insertion point for retval shadow load");
 | 
						|
    }
 | 
						|
    IRBuilder<> IRBAfter(NextInsn);
 | 
						|
    Value *RetvalShadow =
 | 
						|
      IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
 | 
						|
                                 kShadowTLSAlignment, "_msret");
 | 
						|
    setShadow(&I, RetvalShadow);
 | 
						|
    if (MS.TrackOrigins)
 | 
						|
      setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitReturnInst(ReturnInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    if (Value *RetVal = I.getReturnValue()) {
 | 
						|
      // Set the shadow for the RetVal.
 | 
						|
      Value *Shadow = getShadow(RetVal);
 | 
						|
      Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
 | 
						|
      DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
 | 
						|
      IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
 | 
						|
      if (MS.TrackOrigins)
 | 
						|
        IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void visitPHINode(PHINode &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    ShadowPHINodes.push_back(&I);
 | 
						|
    setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
 | 
						|
                                "_msphi_s"));
 | 
						|
    if (MS.TrackOrigins)
 | 
						|
      setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
 | 
						|
                                  "_msphi_o"));
 | 
						|
  }
 | 
						|
 | 
						|
  void visitAllocaInst(AllocaInst &I) {
 | 
						|
    setShadow(&I, getCleanShadow(&I));
 | 
						|
    if (!ClPoisonStack) return;
 | 
						|
    IRBuilder<> IRB(I.getNextNode());
 | 
						|
    uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
 | 
						|
    if (ClPoisonStackWithCall) {
 | 
						|
      IRB.CreateCall2(MS.MsanPoisonStackFn,
 | 
						|
                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
 | 
						|
                      ConstantInt::get(MS.IntptrTy, Size));
 | 
						|
    } else {
 | 
						|
      Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
 | 
						|
      IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
 | 
						|
                       Size, I.getAlignment());
 | 
						|
    }
 | 
						|
 | 
						|
    if (MS.TrackOrigins) {
 | 
						|
      setOrigin(&I, getCleanOrigin());
 | 
						|
      SmallString<2048> StackDescriptionStorage;
 | 
						|
      raw_svector_ostream StackDescription(StackDescriptionStorage);
 | 
						|
      // We create a string with a description of the stack allocation and
 | 
						|
      // pass it into __msan_set_alloca_origin.
 | 
						|
      // It will be printed by the run-time if stack-originated UMR is found.
 | 
						|
      // The first 4 bytes of the string are set to '----' and will be replaced
 | 
						|
      // by __msan_va_arg_overflow_size_tls at the first call.
 | 
						|
      StackDescription << "----" << I.getName() << "@" << F.getName();
 | 
						|
      Value *Descr =
 | 
						|
          createPrivateNonConstGlobalForString(*F.getParent(),
 | 
						|
                                               StackDescription.str());
 | 
						|
      IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
 | 
						|
                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
 | 
						|
                      ConstantInt::get(MS.IntptrTy, Size),
 | 
						|
                      IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void visitSelectInst(SelectInst& I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    setShadow(&I,  IRB.CreateSelect(I.getCondition(),
 | 
						|
              getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
 | 
						|
              "_msprop"));
 | 
						|
    if (MS.TrackOrigins) {
 | 
						|
      // Origins are always i32, so any vector conditions must be flattened.
 | 
						|
      // FIXME: consider tracking vector origins for app vectors?
 | 
						|
      Value *Cond = I.getCondition();
 | 
						|
      if (Cond->getType()->isVectorTy()) {
 | 
						|
        Value *ConvertedShadow = convertToShadowTyNoVec(Cond, IRB);
 | 
						|
        Cond = IRB.CreateICmpNE(ConvertedShadow,
 | 
						|
                                getCleanShadow(ConvertedShadow), "_mso_select");
 | 
						|
      }
 | 
						|
      setOrigin(&I, IRB.CreateSelect(Cond,
 | 
						|
                getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void visitLandingPadInst(LandingPadInst &I) {
 | 
						|
    // Do nothing.
 | 
						|
    // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
 | 
						|
    setShadow(&I, getCleanShadow(&I));
 | 
						|
    setOrigin(&I, getCleanOrigin());
 | 
						|
  }
 | 
						|
 | 
						|
  void visitGetElementPtrInst(GetElementPtrInst &I) {
 | 
						|
    handleShadowOr(I);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitExtractValueInst(ExtractValueInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Value *Agg = I.getAggregateOperand();
 | 
						|
    DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
 | 
						|
    Value *AggShadow = getShadow(Agg);
 | 
						|
    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
 | 
						|
    Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
 | 
						|
    DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
 | 
						|
    setShadow(&I, ResShadow);
 | 
						|
    setOrigin(&I, getCleanOrigin());
 | 
						|
  }
 | 
						|
 | 
						|
  void visitInsertValueInst(InsertValueInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    DEBUG(dbgs() << "InsertValue:  " << I << "\n");
 | 
						|
    Value *AggShadow = getShadow(I.getAggregateOperand());
 | 
						|
    Value *InsShadow = getShadow(I.getInsertedValueOperand());
 | 
						|
    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
 | 
						|
    DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
 | 
						|
    Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
 | 
						|
    DEBUG(dbgs() << "   Res:        " << *Res << "\n");
 | 
						|
    setShadow(&I, Res);
 | 
						|
    setOrigin(&I, getCleanOrigin());
 | 
						|
  }
 | 
						|
 | 
						|
  void dumpInst(Instruction &I) {
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
      errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
 | 
						|
    } else {
 | 
						|
      errs() << "ZZZ " << I.getOpcodeName() << "\n";
 | 
						|
    }
 | 
						|
    errs() << "QQQ " << I << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  void visitResumeInst(ResumeInst &I) {
 | 
						|
    DEBUG(dbgs() << "Resume: " << I << "\n");
 | 
						|
    // Nothing to do here.
 | 
						|
  }
 | 
						|
 | 
						|
  void visitInstruction(Instruction &I) {
 | 
						|
    // Everything else: stop propagating and check for poisoned shadow.
 | 
						|
    if (ClDumpStrictInstructions)
 | 
						|
      dumpInst(I);
 | 
						|
    DEBUG(dbgs() << "DEFAULT: " << I << "\n");
 | 
						|
    for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
 | 
						|
      insertCheck(I.getOperand(i), &I);
 | 
						|
    setShadow(&I, getCleanShadow(&I));
 | 
						|
    setOrigin(&I, getCleanOrigin());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief AMD64-specific implementation of VarArgHelper.
 | 
						|
struct VarArgAMD64Helper : public VarArgHelper {
 | 
						|
  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
 | 
						|
  // See a comment in visitCallSite for more details.
 | 
						|
  static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
 | 
						|
  static const unsigned AMD64FpEndOffset = 176;
 | 
						|
 | 
						|
  Function &F;
 | 
						|
  MemorySanitizer &MS;
 | 
						|
  MemorySanitizerVisitor &MSV;
 | 
						|
  Value *VAArgTLSCopy;
 | 
						|
  Value *VAArgOverflowSize;
 | 
						|
 | 
						|
  SmallVector<CallInst*, 16> VAStartInstrumentationList;
 | 
						|
 | 
						|
  VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
 | 
						|
                    MemorySanitizerVisitor &MSV)
 | 
						|
    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }
 | 
						|
 | 
						|
  enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
 | 
						|
 | 
						|
  ArgKind classifyArgument(Value* arg) {
 | 
						|
    // A very rough approximation of X86_64 argument classification rules.
 | 
						|
    Type *T = arg->getType();
 | 
						|
    if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
 | 
						|
      return AK_FloatingPoint;
 | 
						|
    if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
 | 
						|
      return AK_GeneralPurpose;
 | 
						|
    if (T->isPointerTy())
 | 
						|
      return AK_GeneralPurpose;
 | 
						|
    return AK_Memory;
 | 
						|
  }
 | 
						|
 | 
						|
  // For VarArg functions, store the argument shadow in an ABI-specific format
 | 
						|
  // that corresponds to va_list layout.
 | 
						|
  // We do this because Clang lowers va_arg in the frontend, and this pass
 | 
						|
  // only sees the low level code that deals with va_list internals.
 | 
						|
  // A much easier alternative (provided that Clang emits va_arg instructions)
 | 
						|
  // would have been to associate each live instance of va_list with a copy of
 | 
						|
  // MSanParamTLS, and extract shadow on va_arg() call in the argument list
 | 
						|
  // order.
 | 
						|
  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
 | 
						|
    unsigned GpOffset = 0;
 | 
						|
    unsigned FpOffset = AMD64GpEndOffset;
 | 
						|
    unsigned OverflowOffset = AMD64FpEndOffset;
 | 
						|
    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
 | 
						|
         ArgIt != End; ++ArgIt) {
 | 
						|
      Value *A = *ArgIt;
 | 
						|
      ArgKind AK = classifyArgument(A);
 | 
						|
      if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
 | 
						|
        AK = AK_Memory;
 | 
						|
      if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
 | 
						|
        AK = AK_Memory;
 | 
						|
      Value *Base;
 | 
						|
      switch (AK) {
 | 
						|
      case AK_GeneralPurpose:
 | 
						|
        Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
 | 
						|
        GpOffset += 8;
 | 
						|
        break;
 | 
						|
      case AK_FloatingPoint:
 | 
						|
        Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
 | 
						|
        FpOffset += 16;
 | 
						|
        break;
 | 
						|
      case AK_Memory:
 | 
						|
        uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
 | 
						|
        Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
 | 
						|
        OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
 | 
						|
      }
 | 
						|
      IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
 | 
						|
    }
 | 
						|
    Constant *OverflowSize =
 | 
						|
      ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
 | 
						|
    IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Compute the shadow address for a given va_arg.
 | 
						|
  Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
 | 
						|
                                   int ArgOffset) {
 | 
						|
    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
 | 
						|
    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
 | 
						|
    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
 | 
						|
                              "_msarg");
 | 
						|
  }
 | 
						|
 | 
						|
  void visitVAStartInst(VAStartInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    VAStartInstrumentationList.push_back(&I);
 | 
						|
    Value *VAListTag = I.getArgOperand(0);
 | 
						|
    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
 | 
						|
 | 
						|
    // Unpoison the whole __va_list_tag.
 | 
						|
    // FIXME: magic ABI constants.
 | 
						|
    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
 | 
						|
                     /* size */24, /* alignment */8, false);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitVACopyInst(VACopyInst &I) {
 | 
						|
    IRBuilder<> IRB(&I);
 | 
						|
    Value *VAListTag = I.getArgOperand(0);
 | 
						|
    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
 | 
						|
 | 
						|
    // Unpoison the whole __va_list_tag.
 | 
						|
    // FIXME: magic ABI constants.
 | 
						|
    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
 | 
						|
                     /* size */24, /* alignment */8, false);
 | 
						|
  }
 | 
						|
 | 
						|
  void finalizeInstrumentation() {
 | 
						|
    assert(!VAArgOverflowSize && !VAArgTLSCopy &&
 | 
						|
           "finalizeInstrumentation called twice");
 | 
						|
    if (!VAStartInstrumentationList.empty()) {
 | 
						|
      // If there is a va_start in this function, make a backup copy of
 | 
						|
      // va_arg_tls somewhere in the function entry block.
 | 
						|
      IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
 | 
						|
      VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
 | 
						|
      Value *CopySize =
 | 
						|
        IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
 | 
						|
                      VAArgOverflowSize);
 | 
						|
      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
 | 
						|
      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
 | 
						|
    }
 | 
						|
 | 
						|
    // Instrument va_start.
 | 
						|
    // Copy va_list shadow from the backup copy of the TLS contents.
 | 
						|
    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
 | 
						|
      CallInst *OrigInst = VAStartInstrumentationList[i];
 | 
						|
      IRBuilder<> IRB(OrigInst->getNextNode());
 | 
						|
      Value *VAListTag = OrigInst->getArgOperand(0);
 | 
						|
 | 
						|
      Value *RegSaveAreaPtrPtr =
 | 
						|
        IRB.CreateIntToPtr(
 | 
						|
          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
 | 
						|
                        ConstantInt::get(MS.IntptrTy, 16)),
 | 
						|
          Type::getInt64PtrTy(*MS.C));
 | 
						|
      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
 | 
						|
      Value *RegSaveAreaShadowPtr =
 | 
						|
        MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
 | 
						|
      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
 | 
						|
                       AMD64FpEndOffset, 16);
 | 
						|
 | 
						|
      Value *OverflowArgAreaPtrPtr =
 | 
						|
        IRB.CreateIntToPtr(
 | 
						|
          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
 | 
						|
                        ConstantInt::get(MS.IntptrTy, 8)),
 | 
						|
          Type::getInt64PtrTy(*MS.C));
 | 
						|
      Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
 | 
						|
      Value *OverflowArgAreaShadowPtr =
 | 
						|
        MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
 | 
						|
      Value *SrcPtr =
 | 
						|
        getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
 | 
						|
      IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
 | 
						|
                                 MemorySanitizerVisitor &Visitor) {
 | 
						|
  return new VarArgAMD64Helper(Func, Msan, Visitor);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace
 | 
						|
 | 
						|
bool MemorySanitizer::runOnFunction(Function &F) {
 | 
						|
  MemorySanitizerVisitor Visitor(F, *this);
 | 
						|
 | 
						|
  // Clear out readonly/readnone attributes.
 | 
						|
  AttrBuilder B;
 | 
						|
  B.addAttribute(Attribute::ReadOnly)
 | 
						|
    .addAttribute(Attribute::ReadNone);
 | 
						|
  F.removeAttributes(AttributeSet::FunctionIndex,
 | 
						|
                     AttributeSet::get(F.getContext(),
 | 
						|
                                       AttributeSet::FunctionIndex, B));
 | 
						|
 | 
						|
  return Visitor.runOnFunction();
 | 
						|
}
 |