mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	A function with discardable linkage cannot be discarded if its a member of a COMDAT group without considering all the other COMDAT members as well. This sort of thing is already handled by GlobalOpt/GlobalDCE. This fixes PR21206. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219335 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			713 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			713 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Inliner.cpp - Code common to all inliners --------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the mechanics required to implement inlining without
 | 
						|
// missing any calls and updating the call graph.  The decisions of which calls
 | 
						|
// are profitable to inline are implemented elsewhere.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/InlinerPass.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionTracker.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "inline"
 | 
						|
 | 
						|
STATISTIC(NumInlined, "Number of functions inlined");
 | 
						|
STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
 | 
						|
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
 | 
						|
STATISTIC(NumMergedAllocas, "Number of allocas merged together");
 | 
						|
 | 
						|
// This weirdly named statistic tracks the number of times that, when attempting
 | 
						|
// to inline a function A into B, we analyze the callers of B in order to see
 | 
						|
// if those would be more profitable and blocked inline steps.
 | 
						|
STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
 | 
						|
 | 
						|
static cl::opt<int>
 | 
						|
InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
 | 
						|
        cl::desc("Control the amount of inlining to perform (default = 225)"));
 | 
						|
 | 
						|
static cl::opt<int>
 | 
						|
HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
 | 
						|
              cl::desc("Threshold for inlining functions with inline hint"));
 | 
						|
 | 
						|
// We instroduce this threshold to help performance of instrumentation based
 | 
						|
// PGO before we actually hook up inliner with analysis passes such as BPI and
 | 
						|
// BFI.
 | 
						|
static cl::opt<int>
 | 
						|
ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225),
 | 
						|
              cl::desc("Threshold for inlining functions with cold attribute"));
 | 
						|
 | 
						|
// Threshold to use when optsize is specified (and there is no -inline-limit).
 | 
						|
const int OptSizeThreshold = 75;
 | 
						|
 | 
						|
Inliner::Inliner(char &ID) 
 | 
						|
  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
 | 
						|
 | 
						|
Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
 | 
						|
  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
 | 
						|
                                          InlineLimit : Threshold),
 | 
						|
    InsertLifetime(InsertLifetime) {}
 | 
						|
 | 
						|
/// getAnalysisUsage - For this class, we declare that we require and preserve
 | 
						|
/// the call graph.  If the derived class implements this method, it should
 | 
						|
/// always explicitly call the implementation here.
 | 
						|
void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addRequired<AssumptionTracker>();
 | 
						|
  CallGraphSCCPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
 | 
						|
InlinedArrayAllocasTy;
 | 
						|
 | 
						|
/// \brief If the inlined function had a higher stack protection level than the
 | 
						|
/// calling function, then bump up the caller's stack protection level.
 | 
						|
static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
 | 
						|
  // If upgrading the SSP attribute, clear out the old SSP Attributes first.
 | 
						|
  // Having multiple SSP attributes doesn't actually hurt, but it adds useless
 | 
						|
  // clutter to the IR.
 | 
						|
  AttrBuilder B;
 | 
						|
  B.addAttribute(Attribute::StackProtect)
 | 
						|
    .addAttribute(Attribute::StackProtectStrong);
 | 
						|
  AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
 | 
						|
                                              AttributeSet::FunctionIndex,
 | 
						|
                                              B);
 | 
						|
  AttributeSet CallerAttr = Caller->getAttributes(),
 | 
						|
               CalleeAttr = Callee->getAttributes();
 | 
						|
 | 
						|
  if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                              Attribute::StackProtectReq)) {
 | 
						|
    Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
 | 
						|
    Caller->addFnAttr(Attribute::StackProtectReq);
 | 
						|
  } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                     Attribute::StackProtectStrong) &&
 | 
						|
             !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                      Attribute::StackProtectReq)) {
 | 
						|
    Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
 | 
						|
    Caller->addFnAttr(Attribute::StackProtectStrong);
 | 
						|
  } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                     Attribute::StackProtect) &&
 | 
						|
           !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                    Attribute::StackProtectReq) &&
 | 
						|
           !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                    Attribute::StackProtectStrong))
 | 
						|
    Caller->addFnAttr(Attribute::StackProtect);
 | 
						|
}
 | 
						|
 | 
						|
/// InlineCallIfPossible - If it is possible to inline the specified call site,
 | 
						|
/// do so and update the CallGraph for this operation.
 | 
						|
///
 | 
						|
/// This function also does some basic book-keeping to update the IR.  The
 | 
						|
/// InlinedArrayAllocas map keeps track of any allocas that are already
 | 
						|
/// available from other  functions inlined into the caller.  If we are able to
 | 
						|
/// inline this call site we attempt to reuse already available allocas or add
 | 
						|
/// any new allocas to the set if not possible.
 | 
						|
static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
 | 
						|
                                 InlinedArrayAllocasTy &InlinedArrayAllocas,
 | 
						|
                                 int InlineHistory, bool InsertLifetime,
 | 
						|
                                 const DataLayout *DL) {
 | 
						|
  Function *Callee = CS.getCalledFunction();
 | 
						|
  Function *Caller = CS.getCaller();
 | 
						|
 | 
						|
  // Try to inline the function.  Get the list of static allocas that were
 | 
						|
  // inlined.
 | 
						|
  if (!InlineFunction(CS, IFI, InsertLifetime))
 | 
						|
    return false;
 | 
						|
 | 
						|
  AdjustCallerSSPLevel(Caller, Callee);
 | 
						|
 | 
						|
  // Look at all of the allocas that we inlined through this call site.  If we
 | 
						|
  // have already inlined other allocas through other calls into this function,
 | 
						|
  // then we know that they have disjoint lifetimes and that we can merge them.
 | 
						|
  //
 | 
						|
  // There are many heuristics possible for merging these allocas, and the
 | 
						|
  // different options have different tradeoffs.  One thing that we *really*
 | 
						|
  // don't want to hurt is SRoA: once inlining happens, often allocas are no
 | 
						|
  // longer address taken and so they can be promoted.
 | 
						|
  //
 | 
						|
  // Our "solution" for that is to only merge allocas whose outermost type is an
 | 
						|
  // array type.  These are usually not promoted because someone is using a
 | 
						|
  // variable index into them.  These are also often the most important ones to
 | 
						|
  // merge.
 | 
						|
  //
 | 
						|
  // A better solution would be to have real memory lifetime markers in the IR
 | 
						|
  // and not have the inliner do any merging of allocas at all.  This would
 | 
						|
  // allow the backend to do proper stack slot coloring of all allocas that
 | 
						|
  // *actually make it to the backend*, which is really what we want.
 | 
						|
  //
 | 
						|
  // Because we don't have this information, we do this simple and useful hack.
 | 
						|
  //
 | 
						|
  SmallPtrSet<AllocaInst*, 16> UsedAllocas;
 | 
						|
  
 | 
						|
  // When processing our SCC, check to see if CS was inlined from some other
 | 
						|
  // call site.  For example, if we're processing "A" in this code:
 | 
						|
  //   A() { B() }
 | 
						|
  //   B() { x = alloca ... C() }
 | 
						|
  //   C() { y = alloca ... }
 | 
						|
  // Assume that C was not inlined into B initially, and so we're processing A
 | 
						|
  // and decide to inline B into A.  Doing this makes an alloca available for
 | 
						|
  // reuse and makes a callsite (C) available for inlining.  When we process
 | 
						|
  // the C call site we don't want to do any alloca merging between X and Y
 | 
						|
  // because their scopes are not disjoint.  We could make this smarter by
 | 
						|
  // keeping track of the inline history for each alloca in the
 | 
						|
  // InlinedArrayAllocas but this isn't likely to be a significant win.
 | 
						|
  if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Loop over all the allocas we have so far and see if they can be merged with
 | 
						|
  // a previously inlined alloca.  If not, remember that we had it.
 | 
						|
  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
 | 
						|
       AllocaNo != e; ++AllocaNo) {
 | 
						|
    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
 | 
						|
    
 | 
						|
    // Don't bother trying to merge array allocations (they will usually be
 | 
						|
    // canonicalized to be an allocation *of* an array), or allocations whose
 | 
						|
    // type is not itself an array (because we're afraid of pessimizing SRoA).
 | 
						|
    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
 | 
						|
    if (!ATy || AI->isArrayAllocation())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Get the list of all available allocas for this array type.
 | 
						|
    std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
 | 
						|
    
 | 
						|
    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
 | 
						|
    // that we have to be careful not to reuse the same "available" alloca for
 | 
						|
    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
 | 
						|
    // set to keep track of which "available" allocas are being used by this
 | 
						|
    // function.  Also, AllocasForType can be empty of course!
 | 
						|
    bool MergedAwayAlloca = false;
 | 
						|
    for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
 | 
						|
      AllocaInst *AvailableAlloca = AllocasForType[i];
 | 
						|
 | 
						|
      unsigned Align1 = AI->getAlignment(),
 | 
						|
               Align2 = AvailableAlloca->getAlignment();
 | 
						|
      // If we don't have data layout information, and only one alloca is using
 | 
						|
      // the target default, then we can't safely merge them because we can't
 | 
						|
      // pick the greater alignment.
 | 
						|
      if (!DL && (!Align1 || !Align2) && Align1 != Align2)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // The available alloca has to be in the right function, not in some other
 | 
						|
      // function in this SCC.
 | 
						|
      if (AvailableAlloca->getParent() != AI->getParent())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // If the inlined function already uses this alloca then we can't reuse
 | 
						|
      // it.
 | 
						|
      if (!UsedAllocas.insert(AvailableAlloca))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
 | 
						|
      // success!
 | 
						|
      DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
 | 
						|
                   << *AvailableAlloca << '\n');
 | 
						|
      
 | 
						|
      AI->replaceAllUsesWith(AvailableAlloca);
 | 
						|
 | 
						|
      if (Align1 != Align2) {
 | 
						|
        if (!Align1 || !Align2) {
 | 
						|
          assert(DL && "DataLayout required to compare default alignments");
 | 
						|
          unsigned TypeAlign = DL->getABITypeAlignment(AI->getAllocatedType());
 | 
						|
 | 
						|
          Align1 = Align1 ? Align1 : TypeAlign;
 | 
						|
          Align2 = Align2 ? Align2 : TypeAlign;
 | 
						|
        }
 | 
						|
 | 
						|
        if (Align1 > Align2)
 | 
						|
          AvailableAlloca->setAlignment(AI->getAlignment());
 | 
						|
      }
 | 
						|
 | 
						|
      AI->eraseFromParent();
 | 
						|
      MergedAwayAlloca = true;
 | 
						|
      ++NumMergedAllocas;
 | 
						|
      IFI.StaticAllocas[AllocaNo] = nullptr;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we already nuked the alloca, we're done with it.
 | 
						|
    if (MergedAwayAlloca)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If we were unable to merge away the alloca either because there are no
 | 
						|
    // allocas of the right type available or because we reused them all
 | 
						|
    // already, remember that this alloca came from an inlined function and mark
 | 
						|
    // it used so we don't reuse it for other allocas from this inline
 | 
						|
    // operation.
 | 
						|
    AllocasForType.push_back(AI);
 | 
						|
    UsedAllocas.insert(AI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned Inliner::getInlineThreshold(CallSite CS) const {
 | 
						|
  int thres = InlineThreshold; // -inline-threshold or else selected by
 | 
						|
                               // overall opt level
 | 
						|
 | 
						|
  // If -inline-threshold is not given, listen to the optsize attribute when it
 | 
						|
  // would decrease the threshold.
 | 
						|
  Function *Caller = CS.getCaller();
 | 
						|
  bool OptSize = Caller && !Caller->isDeclaration() &&
 | 
						|
    Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                         Attribute::OptimizeForSize);
 | 
						|
  if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
 | 
						|
      OptSizeThreshold < thres)
 | 
						|
    thres = OptSizeThreshold;
 | 
						|
 | 
						|
  // Listen to the inlinehint attribute when it would increase the threshold
 | 
						|
  // and the caller does not need to minimize its size.
 | 
						|
  Function *Callee = CS.getCalledFunction();
 | 
						|
  bool InlineHint = Callee && !Callee->isDeclaration() &&
 | 
						|
    Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                         Attribute::InlineHint);
 | 
						|
  if (InlineHint && HintThreshold > thres
 | 
						|
      && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                               Attribute::MinSize))
 | 
						|
    thres = HintThreshold;
 | 
						|
 | 
						|
  // Listen to the cold attribute when it would decrease the threshold.
 | 
						|
  bool ColdCallee = Callee && !Callee->isDeclaration() &&
 | 
						|
    Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                         Attribute::Cold);
 | 
						|
  // Command line argument for InlineLimit will override the default
 | 
						|
  // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold,
 | 
						|
  // do not use the default cold threshold even if it is smaller.
 | 
						|
  if ((InlineLimit.getNumOccurrences() == 0 ||
 | 
						|
       ColdThreshold.getNumOccurrences() > 0) && ColdCallee &&
 | 
						|
      ColdThreshold < thres)
 | 
						|
    thres = ColdThreshold;
 | 
						|
 | 
						|
  return thres;
 | 
						|
}
 | 
						|
 | 
						|
static void emitAnalysis(CallSite CS, const Twine &Msg) {
 | 
						|
  Function *Caller = CS.getCaller();
 | 
						|
  LLVMContext &Ctx = Caller->getContext();
 | 
						|
  DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
 | 
						|
  emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg);
 | 
						|
}
 | 
						|
 | 
						|
/// shouldInline - Return true if the inliner should attempt to inline
 | 
						|
/// at the given CallSite.
 | 
						|
bool Inliner::shouldInline(CallSite CS) {
 | 
						|
  InlineCost IC = getInlineCost(CS);
 | 
						|
  
 | 
						|
  if (IC.isAlways()) {
 | 
						|
    DEBUG(dbgs() << "    Inlining: cost=always"
 | 
						|
          << ", Call: " << *CS.getInstruction() << "\n");
 | 
						|
    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
 | 
						|
                         " should always be inlined (cost=always)");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (IC.isNever()) {
 | 
						|
    DEBUG(dbgs() << "    NOT Inlining: cost=never"
 | 
						|
          << ", Call: " << *CS.getInstruction() << "\n");
 | 
						|
    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
 | 
						|
                           " should never be inlined (cost=never)"));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Function *Caller = CS.getCaller();
 | 
						|
  if (!IC) {
 | 
						|
    DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
 | 
						|
          << ", thres=" << (IC.getCostDelta() + IC.getCost())
 | 
						|
          << ", Call: " << *CS.getInstruction() << "\n");
 | 
						|
    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
 | 
						|
                           " too costly to inline (cost=") +
 | 
						|
                         Twine(IC.getCost()) + ", threshold=" +
 | 
						|
                         Twine(IC.getCostDelta() + IC.getCost()) + ")");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Try to detect the case where the current inlining candidate caller (call
 | 
						|
  // it B) is a static or linkonce-ODR function and is an inlining candidate
 | 
						|
  // elsewhere, and the current candidate callee (call it C) is large enough
 | 
						|
  // that inlining it into B would make B too big to inline later. In these
 | 
						|
  // circumstances it may be best not to inline C into B, but to inline B into
 | 
						|
  // its callers.
 | 
						|
  //
 | 
						|
  // This only applies to static and linkonce-ODR functions because those are
 | 
						|
  // expected to be available for inlining in the translation units where they
 | 
						|
  // are used. Thus we will always have the opportunity to make local inlining
 | 
						|
  // decisions. Importantly the linkonce-ODR linkage covers inline functions
 | 
						|
  // and templates in C++.
 | 
						|
  //
 | 
						|
  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
 | 
						|
  // the internal implementation of the inline cost metrics rather than
 | 
						|
  // treating them as truly abstract units etc.
 | 
						|
  if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) {
 | 
						|
    int TotalSecondaryCost = 0;
 | 
						|
    // The candidate cost to be imposed upon the current function.
 | 
						|
    int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
 | 
						|
    // This bool tracks what happens if we do NOT inline C into B.
 | 
						|
    bool callerWillBeRemoved = Caller->hasLocalLinkage();
 | 
						|
    // This bool tracks what happens if we DO inline C into B.
 | 
						|
    bool inliningPreventsSomeOuterInline = false;
 | 
						|
    for (User *U : Caller->users()) {
 | 
						|
      CallSite CS2(U);
 | 
						|
 | 
						|
      // If this isn't a call to Caller (it could be some other sort
 | 
						|
      // of reference) skip it.  Such references will prevent the caller
 | 
						|
      // from being removed.
 | 
						|
      if (!CS2 || CS2.getCalledFunction() != Caller) {
 | 
						|
        callerWillBeRemoved = false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      InlineCost IC2 = getInlineCost(CS2);
 | 
						|
      ++NumCallerCallersAnalyzed;
 | 
						|
      if (!IC2) {
 | 
						|
        callerWillBeRemoved = false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (IC2.isAlways())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // See if inlining or original callsite would erase the cost delta of
 | 
						|
      // this callsite. We subtract off the penalty for the call instruction,
 | 
						|
      // which we would be deleting.
 | 
						|
      if (IC2.getCostDelta() <= CandidateCost) {
 | 
						|
        inliningPreventsSomeOuterInline = true;
 | 
						|
        TotalSecondaryCost += IC2.getCost();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If all outer calls to Caller would get inlined, the cost for the last
 | 
						|
    // one is set very low by getInlineCost, in anticipation that Caller will
 | 
						|
    // be removed entirely.  We did not account for this above unless there
 | 
						|
    // is only one caller of Caller.
 | 
						|
    if (callerWillBeRemoved && !Caller->use_empty())
 | 
						|
      TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
 | 
						|
 | 
						|
    if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
 | 
						|
      DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
 | 
						|
           " Cost = " << IC.getCost() <<
 | 
						|
           ", outer Cost = " << TotalSecondaryCost << '\n');
 | 
						|
      emitAnalysis(
 | 
						|
          CS, Twine("Not inlining. Cost of inlining " +
 | 
						|
                    CS.getCalledFunction()->getName() +
 | 
						|
                    " increases the cost of inlining " +
 | 
						|
                    CS.getCaller()->getName() + " in other contexts"));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
 | 
						|
        << ", thres=" << (IC.getCostDelta() + IC.getCost())
 | 
						|
        << ", Call: " << *CS.getInstruction() << '\n');
 | 
						|
  emitAnalysis(
 | 
						|
      CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") +
 | 
						|
              CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) +
 | 
						|
              " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InlineHistoryIncludes - Return true if the specified inline history ID
 | 
						|
/// indicates an inline history that includes the specified function.
 | 
						|
static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
 | 
						|
            const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
 | 
						|
  while (InlineHistoryID != -1) {
 | 
						|
    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
 | 
						|
           "Invalid inline history ID");
 | 
						|
    if (InlineHistory[InlineHistoryID].first == F)
 | 
						|
      return true;
 | 
						|
    InlineHistoryID = InlineHistory[InlineHistoryID].second;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Inliner::runOnSCC(CallGraphSCC &SCC) {
 | 
						|
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
 | 
						|
  AssumptionTracker *AT = &getAnalysis<AssumptionTracker>();
 | 
						|
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
  const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
 | 
						|
  const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
 | 
						|
  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  SmallPtrSet<Function*, 8> SCCFunctions;
 | 
						|
  DEBUG(dbgs() << "Inliner visiting SCC:");
 | 
						|
  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
 | 
						|
    Function *F = (*I)->getFunction();
 | 
						|
    if (F) SCCFunctions.insert(F);
 | 
						|
    DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan through and identify all call sites ahead of time so that we only
 | 
						|
  // inline call sites in the original functions, not call sites that result
 | 
						|
  // from inlining other functions.
 | 
						|
  SmallVector<std::pair<CallSite, int>, 16> CallSites;
 | 
						|
  
 | 
						|
  // When inlining a callee produces new call sites, we want to keep track of
 | 
						|
  // the fact that they were inlined from the callee.  This allows us to avoid
 | 
						|
  // infinite inlining in some obscure cases.  To represent this, we use an
 | 
						|
  // index into the InlineHistory vector.
 | 
						|
  SmallVector<std::pair<Function*, int>, 8> InlineHistory;
 | 
						|
 | 
						|
  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
 | 
						|
    Function *F = (*I)->getFunction();
 | 
						|
    if (!F) continue;
 | 
						|
    
 | 
						|
    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
        CallSite CS(cast<Value>(I));
 | 
						|
        // If this isn't a call, or it is a call to an intrinsic, it can
 | 
						|
        // never be inlined.
 | 
						|
        if (!CS || isa<IntrinsicInst>(I))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        // If this is a direct call to an external function, we can never inline
 | 
						|
        // it.  If it is an indirect call, inlining may resolve it to be a
 | 
						|
        // direct call, so we keep it.
 | 
						|
        if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        CallSites.push_back(std::make_pair(CS, -1));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
 | 
						|
 | 
						|
  // If there are no calls in this function, exit early.
 | 
						|
  if (CallSites.empty())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Now that we have all of the call sites, move the ones to functions in the
 | 
						|
  // current SCC to the end of the list.
 | 
						|
  unsigned FirstCallInSCC = CallSites.size();
 | 
						|
  for (unsigned i = 0; i < FirstCallInSCC; ++i)
 | 
						|
    if (Function *F = CallSites[i].first.getCalledFunction())
 | 
						|
      if (SCCFunctions.count(F))
 | 
						|
        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
 | 
						|
 | 
						|
  
 | 
						|
  InlinedArrayAllocasTy InlinedArrayAllocas;
 | 
						|
  InlineFunctionInfo InlineInfo(&CG, DL, AA, AT);
 | 
						|
  
 | 
						|
  // Now that we have all of the call sites, loop over them and inline them if
 | 
						|
  // it looks profitable to do so.
 | 
						|
  bool Changed = false;
 | 
						|
  bool LocalChange;
 | 
						|
  do {
 | 
						|
    LocalChange = false;
 | 
						|
    // Iterate over the outer loop because inlining functions can cause indirect
 | 
						|
    // calls to become direct calls.
 | 
						|
    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
 | 
						|
      CallSite CS = CallSites[CSi].first;
 | 
						|
      
 | 
						|
      Function *Caller = CS.getCaller();
 | 
						|
      Function *Callee = CS.getCalledFunction();
 | 
						|
 | 
						|
      // If this call site is dead and it is to a readonly function, we should
 | 
						|
      // just delete the call instead of trying to inline it, regardless of
 | 
						|
      // size.  This happens because IPSCCP propagates the result out of the
 | 
						|
      // call and then we're left with the dead call.
 | 
						|
      if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
 | 
						|
        DEBUG(dbgs() << "    -> Deleting dead call: "
 | 
						|
                     << *CS.getInstruction() << "\n");
 | 
						|
        // Update the call graph by deleting the edge from Callee to Caller.
 | 
						|
        CG[Caller]->removeCallEdgeFor(CS);
 | 
						|
        CS.getInstruction()->eraseFromParent();
 | 
						|
        ++NumCallsDeleted;
 | 
						|
      } else {
 | 
						|
        // We can only inline direct calls to non-declarations.
 | 
						|
        if (!Callee || Callee->isDeclaration()) continue;
 | 
						|
      
 | 
						|
        // If this call site was obtained by inlining another function, verify
 | 
						|
        // that the include path for the function did not include the callee
 | 
						|
        // itself.  If so, we'd be recursively inlining the same function,
 | 
						|
        // which would provide the same callsites, which would cause us to
 | 
						|
        // infinitely inline.
 | 
						|
        int InlineHistoryID = CallSites[CSi].second;
 | 
						|
        if (InlineHistoryID != -1 &&
 | 
						|
            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        LLVMContext &CallerCtx = Caller->getContext();
 | 
						|
 | 
						|
        // Get DebugLoc to report. CS will be invalid after Inliner.
 | 
						|
        DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
 | 
						|
 | 
						|
        // If the policy determines that we should inline this function,
 | 
						|
        // try to do so.
 | 
						|
        if (!shouldInline(CS)) {
 | 
						|
          emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
 | 
						|
                                       Twine(Callee->getName() +
 | 
						|
                                             " will not be inlined into " +
 | 
						|
                                             Caller->getName()));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Attempt to inline the function.
 | 
						|
        if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
 | 
						|
                                  InlineHistoryID, InsertLifetime, DL)) {
 | 
						|
          emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
 | 
						|
                                       Twine(Callee->getName() +
 | 
						|
                                             " will not be inlined into " +
 | 
						|
                                             Caller->getName()));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ++NumInlined;
 | 
						|
 | 
						|
        // Report the inline decision.
 | 
						|
        emitOptimizationRemark(
 | 
						|
            CallerCtx, DEBUG_TYPE, *Caller, DLoc,
 | 
						|
            Twine(Callee->getName() + " inlined into " + Caller->getName()));
 | 
						|
 | 
						|
        // If inlining this function gave us any new call sites, throw them
 | 
						|
        // onto our worklist to process.  They are useful inline candidates.
 | 
						|
        if (!InlineInfo.InlinedCalls.empty()) {
 | 
						|
          // Create a new inline history entry for this, so that we remember
 | 
						|
          // that these new callsites came about due to inlining Callee.
 | 
						|
          int NewHistoryID = InlineHistory.size();
 | 
						|
          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
 | 
						|
 | 
						|
          for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
 | 
						|
               i != e; ++i) {
 | 
						|
            Value *Ptr = InlineInfo.InlinedCalls[i];
 | 
						|
            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If we inlined or deleted the last possible call site to the function,
 | 
						|
      // delete the function body now.
 | 
						|
      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
 | 
						|
          // TODO: Can remove if in SCC now.
 | 
						|
          !SCCFunctions.count(Callee) &&
 | 
						|
          
 | 
						|
          // The function may be apparently dead, but if there are indirect
 | 
						|
          // callgraph references to the node, we cannot delete it yet, this
 | 
						|
          // could invalidate the CGSCC iterator.
 | 
						|
          CG[Callee]->getNumReferences() == 0) {
 | 
						|
        DEBUG(dbgs() << "    -> Deleting dead function: "
 | 
						|
              << Callee->getName() << "\n");
 | 
						|
        CallGraphNode *CalleeNode = CG[Callee];
 | 
						|
        
 | 
						|
        // Remove any call graph edges from the callee to its callees.
 | 
						|
        CalleeNode->removeAllCalledFunctions();
 | 
						|
        
 | 
						|
        // Removing the node for callee from the call graph and delete it.
 | 
						|
        delete CG.removeFunctionFromModule(CalleeNode);
 | 
						|
        ++NumDeleted;
 | 
						|
      }
 | 
						|
 | 
						|
      // Remove this call site from the list.  If possible, use 
 | 
						|
      // swap/pop_back for efficiency, but do not use it if doing so would
 | 
						|
      // move a call site to a function in this SCC before the
 | 
						|
      // 'FirstCallInSCC' barrier.
 | 
						|
      if (SCC.isSingular()) {
 | 
						|
        CallSites[CSi] = CallSites.back();
 | 
						|
        CallSites.pop_back();
 | 
						|
      } else {
 | 
						|
        CallSites.erase(CallSites.begin()+CSi);
 | 
						|
      }
 | 
						|
      --CSi;
 | 
						|
 | 
						|
      Changed = true;
 | 
						|
      LocalChange = true;
 | 
						|
    }
 | 
						|
  } while (LocalChange);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// doFinalization - Remove now-dead linkonce functions at the end of
 | 
						|
// processing to avoid breaking the SCC traversal.
 | 
						|
bool Inliner::doFinalization(CallGraph &CG) {
 | 
						|
  return removeDeadFunctions(CG);
 | 
						|
}
 | 
						|
 | 
						|
/// removeDeadFunctions - Remove dead functions that are not included in
 | 
						|
/// DNR (Do Not Remove) list.
 | 
						|
bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
 | 
						|
  SmallVector<CallGraphNode*, 16> FunctionsToRemove;
 | 
						|
 | 
						|
  // Scan for all of the functions, looking for ones that should now be removed
 | 
						|
  // from the program.  Insert the dead ones in the FunctionsToRemove set.
 | 
						|
  for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
 | 
						|
    CallGraphNode *CGN = I->second;
 | 
						|
    Function *F = CGN->getFunction();
 | 
						|
    if (!F || F->isDeclaration())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Handle the case when this function is called and we only want to care
 | 
						|
    // about always-inline functions. This is a bit of a hack to share code
 | 
						|
    // between here and the InlineAlways pass.
 | 
						|
    if (AlwaysInlineOnly &&
 | 
						|
        !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                         Attribute::AlwaysInline))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the only remaining users of the function are dead constants, remove
 | 
						|
    // them.
 | 
						|
    F->removeDeadConstantUsers();
 | 
						|
 | 
						|
    if (!F->isDefTriviallyDead())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // It is unsafe to drop a function with discardable linkage from a COMDAT
 | 
						|
    // without also dropping the other members of the COMDAT.
 | 
						|
    // The inliner doesn't visit non-function entities which are in COMDAT
 | 
						|
    // groups so it is unsafe to do so *unless* the linkage is local.
 | 
						|
    if (!F->hasLocalLinkage() && F->hasComdat())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Remove any call graph edges from the function to its callees.
 | 
						|
    CGN->removeAllCalledFunctions();
 | 
						|
 | 
						|
    // Remove any edges from the external node to the function's call graph
 | 
						|
    // node.  These edges might have been made irrelegant due to
 | 
						|
    // optimization of the program.
 | 
						|
    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
 | 
						|
 | 
						|
    // Removing the node for callee from the call graph and delete it.
 | 
						|
    FunctionsToRemove.push_back(CGN);
 | 
						|
  }
 | 
						|
  if (FunctionsToRemove.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now that we know which functions to delete, do so.  We didn't want to do
 | 
						|
  // this inline, because that would invalidate our CallGraph::iterator
 | 
						|
  // objects. :(
 | 
						|
  //
 | 
						|
  // Note that it doesn't matter that we are iterating over a non-stable order
 | 
						|
  // here to do this, it doesn't matter which order the functions are deleted
 | 
						|
  // in.
 | 
						|
  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
 | 
						|
  FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
 | 
						|
                                      FunctionsToRemove.end()),
 | 
						|
                          FunctionsToRemove.end());
 | 
						|
  for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
 | 
						|
                                                  E = FunctionsToRemove.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    delete CG.removeFunctionFromModule(*I);
 | 
						|
    ++NumDeleted;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 |