mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	a non-constant GEP. I don't have any test case that demonstrates this, Nadav (indirectly) pointed this out in code review. I'm not sure how possible it is to contrive a test case for the current users of this code that triggers the bad issue sadly. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189188 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			743 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			743 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Value.cpp - Implement the Value class -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Value, ValueHandle, and User classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "LLVMContextImpl.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/ValueSymbolTable.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/LeakDetector.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Value Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static inline Type *checkType(Type *Ty) {
 | |
|   assert(Ty && "Value defined with a null type: Error!");
 | |
|   return const_cast<Type*>(Ty);
 | |
| }
 | |
| 
 | |
| Value::Value(Type *ty, unsigned scid)
 | |
|   : SubclassID(scid), HasValueHandle(0),
 | |
|     SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
 | |
|     UseList(0), Name(0) {
 | |
|   // FIXME: Why isn't this in the subclass gunk??
 | |
|   // Note, we cannot call isa<CallInst> before the CallInst has been
 | |
|   // constructed.
 | |
|   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
 | |
|     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
 | |
|            "invalid CallInst type!");
 | |
|   else if (SubclassID != BasicBlockVal &&
 | |
|            (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
 | |
|     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
 | |
|            "Cannot create non-first-class values except for constants!");
 | |
| }
 | |
| 
 | |
| Value::~Value() {
 | |
|   // Notify all ValueHandles (if present) that this value is going away.
 | |
|   if (HasValueHandle)
 | |
|     ValueHandleBase::ValueIsDeleted(this);
 | |
| 
 | |
| #ifndef NDEBUG      // Only in -g mode...
 | |
|   // Check to make sure that there are no uses of this value that are still
 | |
|   // around when the value is destroyed.  If there are, then we have a dangling
 | |
|   // reference and something is wrong.  This code is here to print out what is
 | |
|   // still being referenced.  The value in question should be printed as
 | |
|   // a <badref>
 | |
|   //
 | |
|   if (!use_empty()) {
 | |
|     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
 | |
|     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
 | |
|       dbgs() << "Use still stuck around after Def is destroyed:"
 | |
|            << **I << "\n";
 | |
|   }
 | |
| #endif
 | |
|   assert(use_empty() && "Uses remain when a value is destroyed!");
 | |
| 
 | |
|   // If this value is named, destroy the name.  This should not be in a symtab
 | |
|   // at this point.
 | |
|   if (Name && SubclassID != MDStringVal)
 | |
|     Name->Destroy();
 | |
| 
 | |
|   // There should be no uses of this object anymore, remove it.
 | |
|   LeakDetector::removeGarbageObject(this);
 | |
| }
 | |
| 
 | |
| /// hasNUses - Return true if this Value has exactly N users.
 | |
| ///
 | |
| bool Value::hasNUses(unsigned N) const {
 | |
|   const_use_iterator UI = use_begin(), E = use_end();
 | |
| 
 | |
|   for (; N; --N, ++UI)
 | |
|     if (UI == E) return false;  // Too few.
 | |
|   return UI == E;
 | |
| }
 | |
| 
 | |
| /// hasNUsesOrMore - Return true if this value has N users or more.  This is
 | |
| /// logically equivalent to getNumUses() >= N.
 | |
| ///
 | |
| bool Value::hasNUsesOrMore(unsigned N) const {
 | |
|   const_use_iterator UI = use_begin(), E = use_end();
 | |
| 
 | |
|   for (; N; --N, ++UI)
 | |
|     if (UI == E) return false;  // Too few.
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isUsedInBasicBlock - Return true if this value is used in the specified
 | |
| /// basic block.
 | |
| bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
 | |
|   // This can be computed either by scanning the instructions in BB, or by
 | |
|   // scanning the use list of this Value. Both lists can be very long, but
 | |
|   // usually one is quite short.
 | |
|   //
 | |
|   // Scan both lists simultaneously until one is exhausted. This limits the
 | |
|   // search to the shorter list.
 | |
|   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
 | |
|   const_use_iterator UI = use_begin(), UE = use_end();
 | |
|   for (; BI != BE && UI != UE; ++BI, ++UI) {
 | |
|     // Scan basic block: Check if this Value is used by the instruction at BI.
 | |
|     if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
 | |
|       return true;
 | |
|     // Scan use list: Check if the use at UI is in BB.
 | |
|     const Instruction *User = dyn_cast<Instruction>(*UI);
 | |
|     if (User && User->getParent() == BB)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getNumUses - This method computes the number of uses of this Value.  This
 | |
| /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
 | |
| /// values.
 | |
| unsigned Value::getNumUses() const {
 | |
|   return (unsigned)std::distance(use_begin(), use_end());
 | |
| }
 | |
| 
 | |
| static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
 | |
|   ST = 0;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     if (BasicBlock *P = I->getParent())
 | |
|       if (Function *PP = P->getParent())
 | |
|         ST = &PP->getValueSymbolTable();
 | |
|   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
 | |
|     if (Function *P = BB->getParent())
 | |
|       ST = &P->getValueSymbolTable();
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     if (Module *P = GV->getParent())
 | |
|       ST = &P->getValueSymbolTable();
 | |
|   } else if (Argument *A = dyn_cast<Argument>(V)) {
 | |
|     if (Function *P = A->getParent())
 | |
|       ST = &P->getValueSymbolTable();
 | |
|   } else if (isa<MDString>(V))
 | |
|     return true;
 | |
|   else {
 | |
|     assert(isa<Constant>(V) && "Unknown value type!");
 | |
|     return true;  // no name is setable for this.
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| StringRef Value::getName() const {
 | |
|   // Make sure the empty string is still a C string. For historical reasons,
 | |
|   // some clients want to call .data() on the result and expect it to be null
 | |
|   // terminated.
 | |
|   if (!Name) return StringRef("", 0);
 | |
|   return Name->getKey();
 | |
| }
 | |
| 
 | |
| void Value::setName(const Twine &NewName) {
 | |
|   assert(SubclassID != MDStringVal &&
 | |
|          "Cannot set the name of MDString with this method!");
 | |
| 
 | |
|   // Fast path for common IRBuilder case of setName("") when there is no name.
 | |
|   if (NewName.isTriviallyEmpty() && !hasName())
 | |
|     return;
 | |
| 
 | |
|   SmallString<256> NameData;
 | |
|   StringRef NameRef = NewName.toStringRef(NameData);
 | |
| 
 | |
|   // Name isn't changing?
 | |
|   if (getName() == NameRef)
 | |
|     return;
 | |
| 
 | |
|   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
 | |
| 
 | |
|   // Get the symbol table to update for this object.
 | |
|   ValueSymbolTable *ST;
 | |
|   if (getSymTab(this, ST))
 | |
|     return;  // Cannot set a name on this value (e.g. constant).
 | |
| 
 | |
|   if (Function *F = dyn_cast<Function>(this))
 | |
|     getContext().pImpl->IntrinsicIDCache.erase(F);
 | |
| 
 | |
|   if (!ST) { // No symbol table to update?  Just do the change.
 | |
|     if (NameRef.empty()) {
 | |
|       // Free the name for this value.
 | |
|       Name->Destroy();
 | |
|       Name = 0;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (Name)
 | |
|       Name->Destroy();
 | |
| 
 | |
|     // NOTE: Could optimize for the case the name is shrinking to not deallocate
 | |
|     // then reallocated.
 | |
| 
 | |
|     // Create the new name.
 | |
|     Name = ValueName::Create(NameRef.begin(), NameRef.end());
 | |
|     Name->setValue(this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // NOTE: Could optimize for the case the name is shrinking to not deallocate
 | |
|   // then reallocated.
 | |
|   if (hasName()) {
 | |
|     // Remove old name.
 | |
|     ST->removeValueName(Name);
 | |
|     Name->Destroy();
 | |
|     Name = 0;
 | |
| 
 | |
|     if (NameRef.empty())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Name is changing to something new.
 | |
|   Name = ST->createValueName(NameRef, this);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// takeName - transfer the name from V to this value, setting V's name to
 | |
| /// empty.  It is an error to call V->takeName(V).
 | |
| void Value::takeName(Value *V) {
 | |
|   assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
 | |
| 
 | |
|   ValueSymbolTable *ST = 0;
 | |
|   // If this value has a name, drop it.
 | |
|   if (hasName()) {
 | |
|     // Get the symtab this is in.
 | |
|     if (getSymTab(this, ST)) {
 | |
|       // We can't set a name on this value, but we need to clear V's name if
 | |
|       // it has one.
 | |
|       if (V->hasName()) V->setName("");
 | |
|       return;  // Cannot set a name on this value (e.g. constant).
 | |
|     }
 | |
| 
 | |
|     // Remove old name.
 | |
|     if (ST)
 | |
|       ST->removeValueName(Name);
 | |
|     Name->Destroy();
 | |
|     Name = 0;
 | |
|   }
 | |
| 
 | |
|   // Now we know that this has no name.
 | |
| 
 | |
|   // If V has no name either, we're done.
 | |
|   if (!V->hasName()) return;
 | |
| 
 | |
|   // Get this's symtab if we didn't before.
 | |
|   if (!ST) {
 | |
|     if (getSymTab(this, ST)) {
 | |
|       // Clear V's name.
 | |
|       V->setName("");
 | |
|       return;  // Cannot set a name on this value (e.g. constant).
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get V's ST, this should always succed, because V has a name.
 | |
|   ValueSymbolTable *VST;
 | |
|   bool Failure = getSymTab(V, VST);
 | |
|   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
 | |
| 
 | |
|   // If these values are both in the same symtab, we can do this very fast.
 | |
|   // This works even if both values have no symtab yet.
 | |
|   if (ST == VST) {
 | |
|     // Take the name!
 | |
|     Name = V->Name;
 | |
|     V->Name = 0;
 | |
|     Name->setValue(this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, things are slightly more complex.  Remove V's name from VST and
 | |
|   // then reinsert it into ST.
 | |
| 
 | |
|   if (VST)
 | |
|     VST->removeValueName(V->Name);
 | |
|   Name = V->Name;
 | |
|   V->Name = 0;
 | |
|   Name->setValue(this);
 | |
| 
 | |
|   if (ST)
 | |
|     ST->reinsertValue(this);
 | |
| }
 | |
| 
 | |
| 
 | |
| void Value::replaceAllUsesWith(Value *New) {
 | |
|   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
 | |
|   assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
 | |
|   assert(New->getType() == getType() &&
 | |
|          "replaceAllUses of value with new value of different type!");
 | |
| 
 | |
|   // Notify all ValueHandles (if present) that this value is going away.
 | |
|   if (HasValueHandle)
 | |
|     ValueHandleBase::ValueIsRAUWd(this, New);
 | |
| 
 | |
|   while (!use_empty()) {
 | |
|     Use &U = *UseList;
 | |
|     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
 | |
|     // constant because they are uniqued.
 | |
|     if (Constant *C = dyn_cast<Constant>(U.getUser())) {
 | |
|       if (!isa<GlobalValue>(C)) {
 | |
|         C->replaceUsesOfWithOnConstant(this, New, &U);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     U.set(New);
 | |
|   }
 | |
| 
 | |
|   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
 | |
|     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Various metrics for how much to strip off of pointers.
 | |
| enum PointerStripKind {
 | |
|   PSK_ZeroIndices,
 | |
|   PSK_ZeroIndicesAndAliases,
 | |
|   PSK_InBoundsConstantIndices,
 | |
|   PSK_InBounds
 | |
| };
 | |
| 
 | |
| template <PointerStripKind StripKind>
 | |
| static Value *stripPointerCastsAndOffsets(Value *V) {
 | |
|   if (!V->getType()->isPointerTy())
 | |
|     return V;
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
| 
 | |
|   Visited.insert(V);
 | |
|   do {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       switch (StripKind) {
 | |
|       case PSK_ZeroIndicesAndAliases:
 | |
|       case PSK_ZeroIndices:
 | |
|         if (!GEP->hasAllZeroIndices())
 | |
|           return V;
 | |
|         break;
 | |
|       case PSK_InBoundsConstantIndices:
 | |
|         if (!GEP->hasAllConstantIndices())
 | |
|           return V;
 | |
|         // fallthrough
 | |
|       case PSK_InBounds:
 | |
|         if (!GEP->isInBounds())
 | |
|           return V;
 | |
|         break;
 | |
|       }
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
 | |
|         return V;
 | |
|       V = GA->getAliasee();
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(V));
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| } // namespace
 | |
| 
 | |
| Value *Value::stripPointerCasts() {
 | |
|   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
 | |
| }
 | |
| 
 | |
| Value *Value::stripPointerCastsNoFollowAliases() {
 | |
|   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
 | |
| }
 | |
| 
 | |
| Value *Value::stripInBoundsConstantOffsets() {
 | |
|   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
 | |
| }
 | |
| 
 | |
| Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
 | |
|                                                         APInt &Offset) {
 | |
|   if (!getType()->isPointerTy())
 | |
|     return this;
 | |
| 
 | |
|   assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
 | |
|                                      getType())->getAddressSpace()) &&
 | |
|          "The offset must have exactly as many bits as our pointer.");
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   Visited.insert(this);
 | |
|   Value *V = this;
 | |
|   do {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       if (!GEP->isInBounds())
 | |
|         return V;
 | |
|       APInt GEPOffset(Offset);
 | |
|       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
 | |
|         return V;
 | |
|       Offset = GEPOffset;
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       V = GA->getAliasee();
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(V));
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *Value::stripInBoundsOffsets() {
 | |
|   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
 | |
| }
 | |
| 
 | |
| /// isDereferenceablePointer - Test if this value is always a pointer to
 | |
| /// allocated and suitably aligned memory for a simple load or store.
 | |
| static bool isDereferenceablePointer(const Value *V,
 | |
|                                      SmallPtrSet<const Value *, 32> &Visited) {
 | |
|   // Note that it is not safe to speculate into a malloc'd region because
 | |
|   // malloc may return null.
 | |
|   // It's also not always safe to follow a bitcast, for example:
 | |
|   //   bitcast i8* (alloca i8) to i32*
 | |
|   // would result in a 4-byte load from a 1-byte alloca. Some cases could
 | |
|   // be handled using DataLayout to check sizes and alignments though.
 | |
| 
 | |
|   // These are obviously ok.
 | |
|   if (isa<AllocaInst>(V)) return true;
 | |
| 
 | |
|   // Global variables which can't collapse to null are ok.
 | |
|   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return !GV->hasExternalWeakLinkage();
 | |
| 
 | |
|   // byval arguments are ok.
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     return A->hasByValAttr();
 | |
| 
 | |
|   // For GEPs, determine if the indexing lands within the allocated object.
 | |
|   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|     // Conservatively require that the base pointer be fully dereferenceable.
 | |
|     if (!Visited.insert(GEP->getOperand(0)))
 | |
|       return false;
 | |
|     if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
 | |
|       return false;
 | |
|     // Check the indices.
 | |
|     gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|     for (User::const_op_iterator I = GEP->op_begin()+1,
 | |
|          E = GEP->op_end(); I != E; ++I) {
 | |
|       Value *Index = *I;
 | |
|       Type *Ty = *GTI++;
 | |
|       // Struct indices can't be out of bounds.
 | |
|       if (isa<StructType>(Ty))
 | |
|         continue;
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
 | |
|       if (!CI)
 | |
|         return false;
 | |
|       // Zero is always ok.
 | |
|       if (CI->isZero())
 | |
|         continue;
 | |
|       // Check to see that it's within the bounds of an array.
 | |
|       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
 | |
|       if (!ATy)
 | |
|         return false;
 | |
|       if (CI->getValue().getActiveBits() > 64)
 | |
|         return false;
 | |
|       if (CI->getZExtValue() >= ATy->getNumElements())
 | |
|         return false;
 | |
|     }
 | |
|     // Indices check out; this is dereferenceable.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we don't know, assume the worst.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isDereferenceablePointer - Test if this value is always a pointer to
 | |
| /// allocated and suitably aligned memory for a simple load or store.
 | |
| bool Value::isDereferenceablePointer() const {
 | |
|   SmallPtrSet<const Value *, 32> Visited;
 | |
|   return ::isDereferenceablePointer(this, Visited);
 | |
| }
 | |
| 
 | |
| /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
 | |
| /// return the value in the PHI node corresponding to PredBB.  If not, return
 | |
| /// ourself.  This is useful if you want to know the value something has in a
 | |
| /// predecessor block.
 | |
| Value *Value::DoPHITranslation(const BasicBlock *CurBB,
 | |
|                                const BasicBlock *PredBB) {
 | |
|   PHINode *PN = dyn_cast<PHINode>(this);
 | |
|   if (PN && PN->getParent() == CurBB)
 | |
|     return PN->getIncomingValueForBlock(PredBB);
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| LLVMContext &Value::getContext() const { return VTy->getContext(); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             ValueHandleBase Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
 | |
| /// List is known to point into the existing use list.
 | |
| void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
 | |
|   assert(List && "Handle list is null?");
 | |
| 
 | |
|   // Splice ourselves into the list.
 | |
|   Next = *List;
 | |
|   *List = this;
 | |
|   setPrevPtr(List);
 | |
|   if (Next) {
 | |
|     Next->setPrevPtr(&Next);
 | |
|     assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
 | |
|   assert(List && "Must insert after existing node");
 | |
| 
 | |
|   Next = List->Next;
 | |
|   setPrevPtr(&List->Next);
 | |
|   List->Next = this;
 | |
|   if (Next)
 | |
|     Next->setPrevPtr(&Next);
 | |
| }
 | |
| 
 | |
| /// AddToUseList - Add this ValueHandle to the use list for VP.
 | |
| void ValueHandleBase::AddToUseList() {
 | |
|   assert(VP.getPointer() && "Null pointer doesn't have a use list!");
 | |
| 
 | |
|   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
 | |
| 
 | |
|   if (VP.getPointer()->HasValueHandle) {
 | |
|     // If this value already has a ValueHandle, then it must be in the
 | |
|     // ValueHandles map already.
 | |
|     ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
 | |
|     assert(Entry != 0 && "Value doesn't have any handles?");
 | |
|     AddToExistingUseList(&Entry);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Ok, it doesn't have any handles yet, so we must insert it into the
 | |
|   // DenseMap.  However, doing this insertion could cause the DenseMap to
 | |
|   // reallocate itself, which would invalidate all of the PrevP pointers that
 | |
|   // point into the old table.  Handle this by checking for reallocation and
 | |
|   // updating the stale pointers only if needed.
 | |
|   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
 | |
|   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
 | |
| 
 | |
|   ValueHandleBase *&Entry = Handles[VP.getPointer()];
 | |
|   assert(Entry == 0 && "Value really did already have handles?");
 | |
|   AddToExistingUseList(&Entry);
 | |
|   VP.getPointer()->HasValueHandle = true;
 | |
| 
 | |
|   // If reallocation didn't happen or if this was the first insertion, don't
 | |
|   // walk the table.
 | |
|   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
 | |
|       Handles.size() == 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, reallocation did happen.  Fix the Prev Pointers.
 | |
|   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
 | |
|        E = Handles.end(); I != E; ++I) {
 | |
|     assert(I->second && I->first == I->second->VP.getPointer() &&
 | |
|            "List invariant broken!");
 | |
|     I->second->setPrevPtr(&I->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RemoveFromUseList - Remove this ValueHandle from its current use list.
 | |
| void ValueHandleBase::RemoveFromUseList() {
 | |
|   assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
 | |
|          "Pointer doesn't have a use list!");
 | |
| 
 | |
|   // Unlink this from its use list.
 | |
|   ValueHandleBase **PrevPtr = getPrevPtr();
 | |
|   assert(*PrevPtr == this && "List invariant broken");
 | |
| 
 | |
|   *PrevPtr = Next;
 | |
|   if (Next) {
 | |
|     assert(Next->getPrevPtr() == &Next && "List invariant broken");
 | |
|     Next->setPrevPtr(PrevPtr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the Next pointer was null, then it is possible that this was the last
 | |
|   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
 | |
|   // map.
 | |
|   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
 | |
|   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
 | |
|   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
 | |
|     Handles.erase(VP.getPointer());
 | |
|     VP.getPointer()->HasValueHandle = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ValueHandleBase::ValueIsDeleted(Value *V) {
 | |
|   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
 | |
| 
 | |
|   // Get the linked list base, which is guaranteed to exist since the
 | |
|   // HasValueHandle flag is set.
 | |
|   LLVMContextImpl *pImpl = V->getContext().pImpl;
 | |
|   ValueHandleBase *Entry = pImpl->ValueHandles[V];
 | |
|   assert(Entry && "Value bit set but no entries exist");
 | |
| 
 | |
|   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
 | |
|   // and remove themselves from the list without breaking our iteration.  This
 | |
|   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
 | |
|   // Note that we deliberately do not the support the case when dropping a value
 | |
|   // handle results in a new value handle being permanently added to the list
 | |
|   // (as might occur in theory for CallbackVH's): the new value handle will not
 | |
|   // be processed and the checking code will mete out righteous punishment if
 | |
|   // the handle is still present once we have finished processing all the other
 | |
|   // value handles (it is fine to momentarily add then remove a value handle).
 | |
|   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
 | |
|     Iterator.RemoveFromUseList();
 | |
|     Iterator.AddToExistingUseListAfter(Entry);
 | |
|     assert(Entry->Next == &Iterator && "Loop invariant broken.");
 | |
| 
 | |
|     switch (Entry->getKind()) {
 | |
|     case Assert:
 | |
|       break;
 | |
|     case Tracking:
 | |
|       // Mark that this value has been deleted by setting it to an invalid Value
 | |
|       // pointer.
 | |
|       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
 | |
|       break;
 | |
|     case Weak:
 | |
|       // Weak just goes to null, which will unlink it from the list.
 | |
|       Entry->operator=(0);
 | |
|       break;
 | |
|     case Callback:
 | |
|       // Forward to the subclass's implementation.
 | |
|       static_cast<CallbackVH*>(Entry)->deleted();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All callbacks, weak references, and assertingVHs should be dropped by now.
 | |
|   if (V->HasValueHandle) {
 | |
| #ifndef NDEBUG      // Only in +Asserts mode...
 | |
|     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
 | |
|            << "\n";
 | |
|     if (pImpl->ValueHandles[V]->getKind() == Assert)
 | |
|       llvm_unreachable("An asserting value handle still pointed to this"
 | |
|                        " value!");
 | |
| 
 | |
| #endif
 | |
|     llvm_unreachable("All references to V were not removed?");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
 | |
|   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
 | |
|   assert(Old != New && "Changing value into itself!");
 | |
| 
 | |
|   // Get the linked list base, which is guaranteed to exist since the
 | |
|   // HasValueHandle flag is set.
 | |
|   LLVMContextImpl *pImpl = Old->getContext().pImpl;
 | |
|   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
 | |
| 
 | |
|   assert(Entry && "Value bit set but no entries exist");
 | |
| 
 | |
|   // We use a local ValueHandleBase as an iterator so that
 | |
|   // ValueHandles can add and remove themselves from the list without
 | |
|   // breaking our iteration.  This is not really an AssertingVH; we
 | |
|   // just have to give ValueHandleBase some kind.
 | |
|   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
 | |
|     Iterator.RemoveFromUseList();
 | |
|     Iterator.AddToExistingUseListAfter(Entry);
 | |
|     assert(Entry->Next == &Iterator && "Loop invariant broken.");
 | |
| 
 | |
|     switch (Entry->getKind()) {
 | |
|     case Assert:
 | |
|       // Asserting handle does not follow RAUW implicitly.
 | |
|       break;
 | |
|     case Tracking:
 | |
|       // Tracking goes to new value like a WeakVH. Note that this may make it
 | |
|       // something incompatible with its templated type. We don't want to have a
 | |
|       // virtual (or inline) interface to handle this though, so instead we make
 | |
|       // the TrackingVH accessors guarantee that a client never sees this value.
 | |
| 
 | |
|       // FALLTHROUGH
 | |
|     case Weak:
 | |
|       // Weak goes to the new value, which will unlink it from Old's list.
 | |
|       Entry->operator=(New);
 | |
|       break;
 | |
|     case Callback:
 | |
|       // Forward to the subclass's implementation.
 | |
|       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // If any new tracking or weak value handles were added while processing the
 | |
|   // list, then complain about it now.
 | |
|   if (Old->HasValueHandle)
 | |
|     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
 | |
|       switch (Entry->getKind()) {
 | |
|       case Tracking:
 | |
|       case Weak:
 | |
|         dbgs() << "After RAUW from " << *Old->getType() << " %"
 | |
|                << Old->getName() << " to " << *New->getType() << " %"
 | |
|                << New->getName() << "\n";
 | |
|         llvm_unreachable("A tracking or weak value handle still pointed to the"
 | |
|                          " old value!\n");
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Default implementation for CallbackVH.
 | |
| void CallbackVH::allUsesReplacedWith(Value *) {}
 | |
| 
 | |
| void CallbackVH::deleted() {
 | |
|   setValPtr(NULL);
 | |
| }
 |