mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	restricted. No test because no in-tree target currently has convergent MachineInstr's. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238763 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			782 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			782 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass moves instructions into successor blocks when possible, so that
 | |
| // they aren't executed on paths where their results aren't needed.
 | |
| //
 | |
| // This pass is not intended to be a replacement or a complete alternative
 | |
| // for an LLVM-IR-level sinking pass. It is only designed to sink simple
 | |
| // constructs that are not exposed before lowering and instruction selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SparseBitVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachinePostDominators.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "machine-sink"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| SplitEdges("machine-sink-split",
 | |
|            cl::desc("Split critical edges during machine sinking"),
 | |
|            cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UseBlockFreqInfo("machine-sink-bfi",
 | |
|            cl::desc("Use block frequency info to find successors to sink"),
 | |
|            cl::init(true), cl::Hidden);
 | |
| 
 | |
| 
 | |
| STATISTIC(NumSunk,      "Number of machine instructions sunk");
 | |
| STATISTIC(NumSplit,     "Number of critical edges split");
 | |
| STATISTIC(NumCoalesces, "Number of copies coalesced");
 | |
| 
 | |
| namespace {
 | |
|   class MachineSinking : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo  *MRI;     // Machine register information
 | |
|     MachineDominatorTree *DT;      // Machine dominator tree
 | |
|     MachinePostDominatorTree *PDT; // Machine post dominator tree
 | |
|     MachineLoopInfo *LI;
 | |
|     const MachineBlockFrequencyInfo *MBFI;
 | |
|     AliasAnalysis *AA;
 | |
| 
 | |
|     // Remember which edges have been considered for breaking.
 | |
|     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
 | |
|     CEBCandidates;
 | |
|     // Remember which edges we are about to split.
 | |
|     // This is different from CEBCandidates since those edges
 | |
|     // will be split.
 | |
|     SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
 | |
| 
 | |
|     SparseBitVector<> RegsToClearKillFlags;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     MachineSinking() : MachineFunctionPass(ID) {
 | |
|       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addRequired<MachinePostDominatorTree>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachinePostDominatorTree>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       if (UseBlockFreqInfo)
 | |
|         AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|     }
 | |
| 
 | |
|     void releaseMemory() override {
 | |
|       CEBCandidates.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool ProcessBlock(MachineBasicBlock &MBB);
 | |
|     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *From,
 | |
|                                      MachineBasicBlock *To);
 | |
|     /// \brief Postpone the splitting of the given critical
 | |
|     /// edge (\p From, \p To).
 | |
|     ///
 | |
|     /// We do not split the edges on the fly. Indeed, this invalidates
 | |
|     /// the dominance information and thus triggers a lot of updates
 | |
|     /// of that information underneath.
 | |
|     /// Instead, we postpone all the splits after each iteration of
 | |
|     /// the main loop. That way, the information is at least valid
 | |
|     /// for the lifetime of an iteration.
 | |
|     ///
 | |
|     /// \return True if the edge is marked as toSplit, false otherwise.
 | |
|     /// False can be returned if, for instance, this is not profitable.
 | |
|     bool PostponeSplitCriticalEdge(MachineInstr *MI,
 | |
|                                    MachineBasicBlock *From,
 | |
|                                    MachineBasicBlock *To,
 | |
|                                    bool BreakPHIEdge);
 | |
|     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
 | |
|     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
 | |
|                                  MachineBasicBlock *DefMBB,
 | |
|                                  bool &BreakPHIEdge, bool &LocalUse) const;
 | |
|     MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                bool &BreakPHIEdge);
 | |
|     bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
 | |
|                               MachineBasicBlock *MBB,
 | |
|                               MachineBasicBlock *SuccToSinkTo);
 | |
| 
 | |
|     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
 | |
|                                          MachineBasicBlock *MBB);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineSinking::ID = 0;
 | |
| char &llvm::MachineSinkingID = MachineSinking::ID;
 | |
| INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
 | |
|                 "Machine code sinking", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(MachineSinking, "machine-sink",
 | |
|                 "Machine code sinking", false, false)
 | |
| 
 | |
| bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
 | |
|                                                      MachineBasicBlock *MBB) {
 | |
|   if (!MI->isCopy())
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcReg = MI->getOperand(1).getReg();
 | |
|   unsigned DstReg = MI->getOperand(0).getReg();
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
 | |
|       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
 | |
|       !MRI->hasOneNonDBGUse(SrcReg))
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
 | |
|   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
 | |
|   if (SRC != DRC)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | |
|   if (DefMI->isCopyLike())
 | |
|     return false;
 | |
|   DEBUG(dbgs() << "Coalescing: " << *DefMI);
 | |
|   DEBUG(dbgs() << "*** to: " << *MI);
 | |
|   MRI->replaceRegWith(DstReg, SrcReg);
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   // Conservatively, clear any kill flags, since it's possible that they are no
 | |
|   // longer correct.
 | |
|   MRI->clearKillFlags(SrcReg);
 | |
| 
 | |
|   ++NumCoalesces;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified register
 | |
| /// occur in blocks dominated by the specified block. If any use is in the
 | |
| /// definition block, then return false since it is never legal to move def
 | |
| /// after uses.
 | |
| bool
 | |
| MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
 | |
|                                         MachineBasicBlock *MBB,
 | |
|                                         MachineBasicBlock *DefMBB,
 | |
|                                         bool &BreakPHIEdge,
 | |
|                                         bool &LocalUse) const {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|          "Only makes sense for vregs");
 | |
| 
 | |
|   // Ignore debug uses because debug info doesn't affect the code.
 | |
|   if (MRI->use_nodbg_empty(Reg))
 | |
|     return true;
 | |
| 
 | |
|   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
 | |
|   // into and they are all PHI nodes. In this case, machine-sink must break
 | |
|   // the critical edge first. e.g.
 | |
|   //
 | |
|   // BB#1: derived from LLVM BB %bb4.preheader
 | |
|   //   Predecessors according to CFG: BB#0
 | |
|   //     ...
 | |
|   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
 | |
|   //     ...
 | |
|   //     JE_4 <BB#37>, %EFLAGS<imp-use>
 | |
|   //   Successors according to CFG: BB#37 BB#2
 | |
|   //
 | |
|   // BB#2: derived from LLVM BB %bb.nph
 | |
|   //   Predecessors according to CFG: BB#0 BB#1
 | |
|   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
 | |
|   BreakPHIEdge = true;
 | |
|   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
 | |
|     MachineInstr *UseInst = MO.getParent();
 | |
|     unsigned OpNo = &MO - &UseInst->getOperand(0);
 | |
|     MachineBasicBlock *UseBlock = UseInst->getParent();
 | |
|     if (!(UseBlock == MBB && UseInst->isPHI() &&
 | |
|           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
 | |
|       BreakPHIEdge = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (BreakPHIEdge)
 | |
|     return true;
 | |
| 
 | |
|   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
 | |
|     // Determine the block of the use.
 | |
|     MachineInstr *UseInst = MO.getParent();
 | |
|     unsigned OpNo = &MO - &UseInst->getOperand(0);
 | |
|     MachineBasicBlock *UseBlock = UseInst->getParent();
 | |
|     if (UseInst->isPHI()) {
 | |
|       // PHI nodes use the operand in the predecessor block, not the block with
 | |
|       // the PHI.
 | |
|       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
 | |
|     } else if (UseBlock == DefMBB) {
 | |
|       LocalUse = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Check that it dominates.
 | |
|     if (!DT->dominates(MBB, UseBlock))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipOptnoneFunction(*MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "******** Machine Sinking ********\n");
 | |
| 
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   PDT = &getAnalysis<MachinePostDominatorTree>();
 | |
|   LI = &getAnalysis<MachineLoopInfo>();
 | |
|   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   bool EverMadeChange = false;
 | |
| 
 | |
|   while (1) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Process all basic blocks.
 | |
|     CEBCandidates.clear();
 | |
|     ToSplit.clear();
 | |
|     for (MachineFunction::iterator I = MF.begin(), E = MF.end();
 | |
|          I != E; ++I)
 | |
|       MadeChange |= ProcessBlock(*I);
 | |
| 
 | |
|     // If we have anything we marked as toSplit, split it now.
 | |
|     for (auto &Pair : ToSplit) {
 | |
|       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
 | |
|       if (NewSucc != nullptr) {
 | |
|         DEBUG(dbgs() << " *** Splitting critical edge:"
 | |
|               " BB#" << Pair.first->getNumber()
 | |
|               << " -- BB#" << NewSucc->getNumber()
 | |
|               << " -- BB#" << Pair.second->getNumber() << '\n');
 | |
|         MadeChange = true;
 | |
|         ++NumSplit;
 | |
|       } else
 | |
|         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
 | |
|     }
 | |
|     // If this iteration over the code changed anything, keep iterating.
 | |
|     if (!MadeChange) break;
 | |
|     EverMadeChange = true;
 | |
|   }
 | |
| 
 | |
|   // Now clear any kill flags for recorded registers.
 | |
|   for (auto I : RegsToClearKillFlags)
 | |
|     MRI->clearKillFlags(I);
 | |
|   RegsToClearKillFlags.clear();
 | |
| 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
 | |
|   // Can't sink anything out of a block that has less than two successors.
 | |
|   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
 | |
| 
 | |
|   // Don't bother sinking code out of unreachable blocks. In addition to being
 | |
|   // unprofitable, it can also lead to infinite looping, because in an
 | |
|   // unreachable loop there may be nowhere to stop.
 | |
|   if (!DT->isReachableFromEntry(&MBB)) return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Walk the basic block bottom-up.  Remember if we saw a store.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   --I;
 | |
|   bool ProcessedBegin, SawStore = false;
 | |
|   do {
 | |
|     MachineInstr *MI = I;  // The instruction to sink.
 | |
| 
 | |
|     // Predecrement I (if it's not begin) so that it isn't invalidated by
 | |
|     // sinking.
 | |
|     ProcessedBegin = I == MBB.begin();
 | |
|     if (!ProcessedBegin)
 | |
|       --I;
 | |
| 
 | |
|     if (MI->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
 | |
|     if (Joined) {
 | |
|       MadeChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SinkInstruction(MI, SawStore))
 | |
|       ++NumSunk, MadeChange = true;
 | |
| 
 | |
|     // If we just processed the first instruction in the block, we're done.
 | |
|   } while (!ProcessedBegin);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
 | |
|                                                  MachineBasicBlock *From,
 | |
|                                                  MachineBasicBlock *To) {
 | |
|   // FIXME: Need much better heuristics.
 | |
| 
 | |
|   // If the pass has already considered breaking this edge (during this pass
 | |
|   // through the function), then let's go ahead and break it. This means
 | |
|   // sinking multiple "cheap" instructions into the same block.
 | |
|   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
 | |
|     return true;
 | |
| 
 | |
|   if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
 | |
|     return true;
 | |
| 
 | |
|   // MI is cheap, we probably don't want to break the critical edge for it.
 | |
|   // However, if this would allow some definitions of its source operands
 | |
|   // to be sunk then it's probably worth it.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
| 
 | |
|     // We don't move live definitions of physical registers,
 | |
|     // so sinking their uses won't enable any opportunities.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     // If this instruction is the only user of a virtual register,
 | |
|     // check if breaking the edge will enable sinking
 | |
|     // both this instruction and the defining instruction.
 | |
|     if (MRI->hasOneNonDBGUse(Reg)) {
 | |
|       // If the definition resides in same MBB,
 | |
|       // claim it's likely we can sink these together.
 | |
|       // If definition resides elsewhere, we aren't
 | |
|       // blocking it from being sunk so don't break the edge.
 | |
|       MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | |
|       if (DefMI->getParent() == MI->getParent())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *FromBB,
 | |
|                                                MachineBasicBlock *ToBB,
 | |
|                                                bool BreakPHIEdge) {
 | |
|   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
 | |
|     return false;
 | |
| 
 | |
|   // Avoid breaking back edge. From == To means backedge for single BB loop.
 | |
|   if (!SplitEdges || FromBB == ToBB)
 | |
|     return false;
 | |
| 
 | |
|   // Check for backedges of more "complex" loops.
 | |
|   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
 | |
|       LI->isLoopHeader(ToBB))
 | |
|     return false;
 | |
| 
 | |
|   // It's not always legal to break critical edges and sink the computation
 | |
|   // to the edge.
 | |
|   //
 | |
|   // BB#1:
 | |
|   // v1024
 | |
|   // Beq BB#3
 | |
|   // <fallthrough>
 | |
|   // BB#2:
 | |
|   // ... no uses of v1024
 | |
|   // <fallthrough>
 | |
|   // BB#3:
 | |
|   // ...
 | |
|   //       = v1024
 | |
|   //
 | |
|   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
 | |
|   //
 | |
|   // BB#1:
 | |
|   // ...
 | |
|   // Bne BB#2
 | |
|   // BB#4:
 | |
|   // v1024 =
 | |
|   // B BB#3
 | |
|   // BB#2:
 | |
|   // ... no uses of v1024
 | |
|   // <fallthrough>
 | |
|   // BB#3:
 | |
|   // ...
 | |
|   //       = v1024
 | |
|   //
 | |
|   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
 | |
|   // flow. We need to ensure the new basic block where the computation is
 | |
|   // sunk to dominates all the uses.
 | |
|   // It's only legal to break critical edge and sink the computation to the
 | |
|   // new block if all the predecessors of "To", except for "From", are
 | |
|   // not dominated by "From". Given SSA property, this means these
 | |
|   // predecessors are dominated by "To".
 | |
|   //
 | |
|   // There is no need to do this check if all the uses are PHI nodes. PHI
 | |
|   // sources are only defined on the specific predecessor edges.
 | |
|   if (!BreakPHIEdge) {
 | |
|     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
 | |
|            E = ToBB->pred_end(); PI != E; ++PI) {
 | |
|       if (*PI == FromBB)
 | |
|         continue;
 | |
|       if (!DT->dominates(ToBB, *PI))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ToSplit.insert(std::make_pair(FromBB, ToBB));
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
 | |
|   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
 | |
| }
 | |
| 
 | |
| /// collectDebgValues - Scan instructions following MI and collect any
 | |
| /// matching DBG_VALUEs.
 | |
| static void collectDebugValues(MachineInstr *MI,
 | |
|                                SmallVectorImpl<MachineInstr *> &DbgValues) {
 | |
|   DbgValues.clear();
 | |
|   if (!MI->getOperand(0).isReg())
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock::iterator DI = MI; ++DI;
 | |
|   for (MachineBasicBlock::iterator DE = MI->getParent()->end();
 | |
|        DI != DE; ++DI) {
 | |
|     if (!DI->isDebugValue())
 | |
|       return;
 | |
|     if (DI->getOperand(0).isReg() &&
 | |
|         DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
 | |
|       DbgValues.push_back(DI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
 | |
| bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
 | |
|                                           MachineBasicBlock *MBB,
 | |
|                                           MachineBasicBlock *SuccToSinkTo) {
 | |
|   assert (MI && "Invalid MachineInstr!");
 | |
|   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
 | |
| 
 | |
|   if (MBB == SuccToSinkTo)
 | |
|     return false;
 | |
| 
 | |
|   // It is profitable if SuccToSinkTo does not post dominate current block.
 | |
|   if (!PDT->dominates(SuccToSinkTo, MBB))
 | |
|     return true;
 | |
| 
 | |
|   // It is profitable to sink an instruction from a deeper loop to a shallower
 | |
|   // loop, even if the latter post-dominates the former (PR21115).
 | |
|   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
 | |
|     return true;
 | |
| 
 | |
|   // Check if only use in post dominated block is PHI instruction.
 | |
|   bool NonPHIUse = false;
 | |
|   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
 | |
|     MachineBasicBlock *UseBlock = UseInst.getParent();
 | |
|     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
 | |
|       NonPHIUse = true;
 | |
|   }
 | |
|   if (!NonPHIUse)
 | |
|     return true;
 | |
| 
 | |
|   // If SuccToSinkTo post dominates then also it may be profitable if MI
 | |
|   // can further profitably sinked into another block in next round.
 | |
|   bool BreakPHIEdge = false;
 | |
|   // FIXME - If finding successor is compile time expensive then cache results.
 | |
|   if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
 | |
|     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
 | |
| 
 | |
|   // If SuccToSinkTo is final destination and it is a post dominator of current
 | |
|   // block then it is not profitable to sink MI into SuccToSinkTo block.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindSuccToSinkTo - Find a successor to sink this instruction to.
 | |
| MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
 | |
|                                    MachineBasicBlock *MBB,
 | |
|                                    bool &BreakPHIEdge) {
 | |
| 
 | |
|   assert (MI && "Invalid MachineInstr!");
 | |
|   assert (MBB && "Invalid MachineBasicBlock!");
 | |
| 
 | |
|   // Loop over all the operands of the specified instruction.  If there is
 | |
|   // anything we can't handle, bail out.
 | |
| 
 | |
|   // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | |
|   // decide.
 | |
|   MachineBasicBlock *SuccToSinkTo = nullptr;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;  // Ignore non-register operands.
 | |
| 
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
| 
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse()) {
 | |
|         // If the physreg has no defs anywhere, it's just an ambient register
 | |
|         // and we can freely move its uses. Alternatively, if it's allocatable,
 | |
|         // it could get allocated to something with a def during allocation.
 | |
|         if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
 | |
|           return nullptr;
 | |
|       } else if (!MO.isDead()) {
 | |
|         // A def that isn't dead. We can't move it.
 | |
|         return nullptr;
 | |
|       }
 | |
|     } else {
 | |
|       // Virtual register uses are always safe to sink.
 | |
|       if (MO.isUse()) continue;
 | |
| 
 | |
|       // If it's not safe to move defs of the register class, then abort.
 | |
|       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
 | |
|         return nullptr;
 | |
| 
 | |
|       // Virtual register defs can only be sunk if all their uses are in blocks
 | |
|       // dominated by one of the successors.
 | |
|       if (SuccToSinkTo) {
 | |
|         // If a previous operand picked a block to sink to, then this operand
 | |
|         // must be sinkable to the same block.
 | |
|         bool LocalUse = false;
 | |
|         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
 | |
|                                      BreakPHIEdge, LocalUse))
 | |
|           return nullptr;
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, we should look at all the successors and decide which one
 | |
|       // we should sink to. If we have reliable block frequency information
 | |
|       // (frequency != 0) available, give successors with smaller frequencies
 | |
|       // higher priority, otherwise prioritize smaller loop depths.
 | |
|       SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(),
 | |
|                                                MBB->succ_end());
 | |
| 
 | |
|       // Handle cases where sinking can happen but where the sink point isn't a
 | |
|       // successor. For example:
 | |
|       //
 | |
|       //   x = computation
 | |
|       //   if () {} else {}
 | |
|       //   use x
 | |
|       //
 | |
|       const std::vector<MachineDomTreeNode *> &Children =
 | |
|         DT->getNode(MBB)->getChildren();
 | |
|       for (const auto &DTChild : Children)
 | |
|         // DomTree children of MBB that have MBB as immediate dominator are added.
 | |
|         if (DTChild->getIDom()->getBlock() == MI->getParent() &&
 | |
|             // Skip MBBs already added to the Succs vector above.
 | |
|             !MBB->isSuccessor(DTChild->getBlock()))
 | |
|           Succs.push_back(DTChild->getBlock());
 | |
| 
 | |
|       // Sort Successors according to their loop depth or block frequency info.
 | |
|       std::stable_sort(
 | |
|           Succs.begin(), Succs.end(),
 | |
|           [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
 | |
|             uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
 | |
|             uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
 | |
|             bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
 | |
|             return HasBlockFreq ? LHSFreq < RHSFreq
 | |
|                                 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
 | |
|           });
 | |
|       for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(),
 | |
|              E = Succs.end(); SI != E; ++SI) {
 | |
|         MachineBasicBlock *SuccBlock = *SI;
 | |
|         bool LocalUse = false;
 | |
|         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
 | |
|                                     BreakPHIEdge, LocalUse)) {
 | |
|           SuccToSinkTo = SuccBlock;
 | |
|           break;
 | |
|         }
 | |
|         if (LocalUse)
 | |
|           // Def is used locally, it's never safe to move this def.
 | |
|           return nullptr;
 | |
|       }
 | |
| 
 | |
|       // If we couldn't find a block to sink to, ignore this instruction.
 | |
|       if (!SuccToSinkTo)
 | |
|         return nullptr;
 | |
|       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // It is not possible to sink an instruction into its own block.  This can
 | |
|   // happen with loops.
 | |
|   if (MBB == SuccToSinkTo)
 | |
|     return nullptr;
 | |
| 
 | |
|   // It's not safe to sink instructions to EH landing pad. Control flow into
 | |
|   // landing pad is implicitly defined.
 | |
|   if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
 | |
|     return nullptr;
 | |
| 
 | |
|   return SuccToSinkTo;
 | |
| }
 | |
| 
 | |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine
 | |
| /// instruction out of its current block into a successor.
 | |
| bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
 | |
|   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
 | |
|   // be close to the source to make it easier to coalesce.
 | |
|   if (AvoidsSinking(MI, MRI))
 | |
|     return false;
 | |
| 
 | |
|   // Check if it's safe to move the instruction.
 | |
|   if (!MI->isSafeToMove(AA, SawStore))
 | |
|     return false;
 | |
| 
 | |
|   // Convergent operations may only be moved to control equivalent locations.
 | |
|   if (MI->isConvergent())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: This should include support for sinking instructions within the
 | |
|   // block they are currently in to shorten the live ranges.  We often get
 | |
|   // instructions sunk into the top of a large block, but it would be better to
 | |
|   // also sink them down before their first use in the block.  This xform has to
 | |
|   // be careful not to *increase* register pressure though, e.g. sinking
 | |
|   // "x = y + z" down if it kills y and z would increase the live ranges of y
 | |
|   // and z and only shrink the live range of x.
 | |
| 
 | |
|   bool BreakPHIEdge = false;
 | |
|   MachineBasicBlock *ParentBlock = MI->getParent();
 | |
|   MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock,
 | |
|                                                      BreakPHIEdge);
 | |
| 
 | |
|   // If there are no outputs, it must have side-effects.
 | |
|   if (!SuccToSinkTo)
 | |
|     return false;
 | |
| 
 | |
| 
 | |
|   // If the instruction to move defines a dead physical register which is live
 | |
|   // when leaving the basic block, don't move it because it could turn into a
 | |
|   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
 | |
|   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
 | |
|     const MachineOperand &MO = MI->getOperand(I);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
 | |
|     if (SuccToSinkTo->isLiveIn(Reg))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
 | |
| 
 | |
|   // If the block has multiple predecessors, this is a critical edge.
 | |
|   // Decide if we can sink along it or need to break the edge.
 | |
|   if (SuccToSinkTo->pred_size() > 1) {
 | |
|     // We cannot sink a load across a critical edge - there may be stores in
 | |
|     // other code paths.
 | |
|     bool TryBreak = false;
 | |
|     bool store = true;
 | |
|     if (!MI->isSafeToMove(AA, store)) {
 | |
|       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
 | |
|       TryBreak = true;
 | |
|     }
 | |
| 
 | |
|     // We don't want to sink across a critical edge if we don't dominate the
 | |
|     // successor. We could be introducing calculations to new code paths.
 | |
|     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
 | |
|       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
 | |
|       TryBreak = true;
 | |
|     }
 | |
| 
 | |
|     // Don't sink instructions into a loop.
 | |
|     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
 | |
|       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
 | |
|       TryBreak = true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we are OK with sinking along a critical edge.
 | |
|     if (!TryBreak)
 | |
|       DEBUG(dbgs() << "Sinking along critical edge.\n");
 | |
|     else {
 | |
|       // Mark this edge as to be split.
 | |
|       // If the edge can actually be split, the next iteration of the main loop
 | |
|       // will sink MI in the newly created block.
 | |
|       bool Status =
 | |
|         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
 | |
|       if (!Status)
 | |
|         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
 | |
|               "break critical edge\n");
 | |
|       // The instruction will not be sunk this time.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BreakPHIEdge) {
 | |
|     // BreakPHIEdge is true if all the uses are in the successor MBB being
 | |
|     // sunken into and they are all PHI nodes. In this case, machine-sink must
 | |
|     // break the critical edge first.
 | |
|     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
 | |
|                                             SuccToSinkTo, BreakPHIEdge);
 | |
|     if (!Status)
 | |
|       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
 | |
|             "break critical edge\n");
 | |
|     // The instruction will not be sunk this time.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Determine where to insert into. Skip phi nodes.
 | |
|   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
 | |
|   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
 | |
|     ++InsertPos;
 | |
| 
 | |
|   // collect matching debug values.
 | |
|   SmallVector<MachineInstr *, 2> DbgValuesToSink;
 | |
|   collectDebugValues(MI, DbgValuesToSink);
 | |
| 
 | |
|   // Move the instruction.
 | |
|   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
 | |
|                        ++MachineBasicBlock::iterator(MI));
 | |
| 
 | |
|   // Move debug values.
 | |
|   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
 | |
|          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
 | |
|     MachineInstr *DbgMI = *DBI;
 | |
|     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
 | |
|                          ++MachineBasicBlock::iterator(DbgMI));
 | |
|   }
 | |
| 
 | |
|   // Conservatively, clear any kill flags, since it's possible that they are no
 | |
|   // longer correct.
 | |
|   // Note that we have to clear the kill flags for any register this instruction
 | |
|   // uses as we may sink over another instruction which currently kills the
 | |
|   // used registers.
 | |
|   for (MachineOperand &MO : MI->operands()) {
 | |
|     if (MO.isReg() && MO.isUse())
 | |
|       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 |