mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234058 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			400 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			400 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Convert generic global variables into either .global or .const access based
 | 
						|
// on the variable's "constant" qualifier.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "NVPTX.h"
 | 
						|
#include "MCTargetDesc/NVPTXBaseInfo.h"
 | 
						|
#include "NVPTXUtilities.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LegacyPassManager.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/ValueMap.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
void initializeGenericToNVVMPass(PassRegistry &);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class GenericToNVVM : public ModulePass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  GenericToNVVM() : ModulePass(ID) {}
 | 
						|
 | 
						|
  bool runOnModule(Module &M) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {}
 | 
						|
 | 
						|
private:
 | 
						|
  Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
 | 
						|
                         IRBuilder<> &Builder);
 | 
						|
  Value *remapConstant(Module *M, Function *F, Constant *C,
 | 
						|
                       IRBuilder<> &Builder);
 | 
						|
  Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
 | 
						|
                                                Constant *C,
 | 
						|
                                                IRBuilder<> &Builder);
 | 
						|
  Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
 | 
						|
                           IRBuilder<> &Builder);
 | 
						|
  void remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N);
 | 
						|
 | 
						|
  typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
 | 
						|
  typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
 | 
						|
  GVMapTy GVMap;
 | 
						|
  ConstantToValueMapTy ConstantToValueMap;
 | 
						|
};
 | 
						|
} // end namespace
 | 
						|
 | 
						|
char GenericToNVVM::ID = 0;
 | 
						|
 | 
						|
ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
 | 
						|
 | 
						|
INITIALIZE_PASS(
 | 
						|
    GenericToNVVM, "generic-to-nvvm",
 | 
						|
    "Ensure that the global variables are in the global address space", false,
 | 
						|
    false)
 | 
						|
 | 
						|
bool GenericToNVVM::runOnModule(Module &M) {
 | 
						|
  // Create a clone of each global variable that has the default address space.
 | 
						|
  // The clone is created with the global address space  specifier, and the pair
 | 
						|
  // of original global variable and its clone is placed in the GVMap for later
 | 
						|
  // use.
 | 
						|
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
       I != E;) {
 | 
						|
    GlobalVariable *GV = I++;
 | 
						|
    if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
 | 
						|
        !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
 | 
						|
        !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
 | 
						|
      GlobalVariable *NewGV = new GlobalVariable(
 | 
						|
          M, GV->getType()->getElementType(), GV->isConstant(),
 | 
						|
          GV->getLinkage(),
 | 
						|
          GV->hasInitializer() ? GV->getInitializer() : nullptr,
 | 
						|
          "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
 | 
						|
      NewGV->copyAttributesFrom(GV);
 | 
						|
      GVMap[GV] = NewGV;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Return immediately, if every global variable has a specific address space
 | 
						|
  // specifier.
 | 
						|
  if (GVMap.empty()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk through the instructions in function defitinions, and replace any use
 | 
						|
  // of original global variables in GVMap with a use of the corresponding
 | 
						|
  // copies in GVMap.  If necessary, promote constants to instructions.
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | 
						|
    if (I->isDeclaration()) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
 | 
						|
    for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
 | 
						|
         ++BBI) {
 | 
						|
      for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
 | 
						|
           ++II) {
 | 
						|
        for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
 | 
						|
          Value *Operand = II->getOperand(i);
 | 
						|
          if (isa<Constant>(Operand)) {
 | 
						|
            II->setOperand(
 | 
						|
                i, remapConstant(&M, I, cast<Constant>(Operand), Builder));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ConstantToValueMap.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy GVMap over to a standard value map.
 | 
						|
  ValueToValueMapTy VM;
 | 
						|
  for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
 | 
						|
    VM[I->first] = I->second;
 | 
						|
 | 
						|
  // Walk through the metadata section and update the debug information
 | 
						|
  // associated with the global variables in the default address space.
 | 
						|
  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
 | 
						|
                                       E = M.named_metadata_end();
 | 
						|
       I != E; I++) {
 | 
						|
    remapNamedMDNode(VM, I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk through the global variable  initializers, and replace any use of
 | 
						|
  // original global variables in GVMap with a use of the corresponding copies
 | 
						|
  // in GVMap.  The copies need to be bitcast to the original global variable
 | 
						|
  // types, as we cannot use cvta in global variable initializers.
 | 
						|
  for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
 | 
						|
    GlobalVariable *GV = I->first;
 | 
						|
    GlobalVariable *NewGV = I->second;
 | 
						|
 | 
						|
    // Remove GV from the map so that it can be RAUWed.  Note that
 | 
						|
    // DenseMap::erase() won't invalidate any iterators but this one.
 | 
						|
    auto Next = std::next(I);
 | 
						|
    GVMap.erase(I);
 | 
						|
    I = Next;
 | 
						|
 | 
						|
    Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
 | 
						|
    // At this point, the remaining uses of GV should be found only in global
 | 
						|
    // variable initializers, as other uses have been already been removed
 | 
						|
    // while walking through the instructions in function definitions.
 | 
						|
    GV->replaceAllUsesWith(BitCastNewGV);
 | 
						|
    std::string Name = GV->getName();
 | 
						|
    GV->eraseFromParent();
 | 
						|
    NewGV->setName(Name);
 | 
						|
  }
 | 
						|
  assert(GVMap.empty() && "Expected it to be empty by now");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
 | 
						|
                                      GlobalVariable *GV,
 | 
						|
                                      IRBuilder<> &Builder) {
 | 
						|
  PointerType *GVType = GV->getType();
 | 
						|
  Value *CVTA = nullptr;
 | 
						|
 | 
						|
  // See if the address space conversion requires the operand to be bitcast
 | 
						|
  // to i8 addrspace(n)* first.
 | 
						|
  EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
 | 
						|
  if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
 | 
						|
    // A bitcast to i8 addrspace(n)* on the operand is needed.
 | 
						|
    LLVMContext &Context = M->getContext();
 | 
						|
    unsigned int AddrSpace = GVType->getAddressSpace();
 | 
						|
    Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
 | 
						|
    CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
 | 
						|
    // Insert the address space conversion.
 | 
						|
    Type *ResultType =
 | 
						|
        PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
 | 
						|
    SmallVector<Type *, 2> ParamTypes;
 | 
						|
    ParamTypes.push_back(ResultType);
 | 
						|
    ParamTypes.push_back(DestTy);
 | 
						|
    Function *CVTAFunction = Intrinsic::getDeclaration(
 | 
						|
        M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
 | 
						|
    CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
 | 
						|
    // Another bitcast from i8 * to <the element type of GVType> * is
 | 
						|
    // required.
 | 
						|
    DestTy =
 | 
						|
        PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
 | 
						|
    CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
 | 
						|
  } else {
 | 
						|
    // A simple CVTA is enough.
 | 
						|
    SmallVector<Type *, 2> ParamTypes;
 | 
						|
    ParamTypes.push_back(PointerType::get(GVType->getElementType(),
 | 
						|
                                          llvm::ADDRESS_SPACE_GENERIC));
 | 
						|
    ParamTypes.push_back(GVType);
 | 
						|
    Function *CVTAFunction = Intrinsic::getDeclaration(
 | 
						|
        M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
 | 
						|
    CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
 | 
						|
  }
 | 
						|
 | 
						|
  return CVTA;
 | 
						|
}
 | 
						|
 | 
						|
Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
 | 
						|
                                    IRBuilder<> &Builder) {
 | 
						|
  // If the constant C has been converted already in the given function  F, just
 | 
						|
  // return the converted value.
 | 
						|
  ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
 | 
						|
  if (CTII != ConstantToValueMap.end()) {
 | 
						|
    return CTII->second;
 | 
						|
  }
 | 
						|
 | 
						|
  Value *NewValue = C;
 | 
						|
  if (isa<GlobalVariable>(C)) {
 | 
						|
    // If the constant C is a global variable and is found in  GVMap, generate a
 | 
						|
    // set set of instructions that convert the clone of C with the global
 | 
						|
    // address space specifier to a generic pointer.
 | 
						|
    // The constant C cannot be used here, as it will be erased from the
 | 
						|
    // module eventually.  And the clone of C with the global address space
 | 
						|
    // specifier cannot be used here either, as it will affect the types of
 | 
						|
    // other instructions in the function.  Hence, this address space conversion
 | 
						|
    // is required.
 | 
						|
    GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
 | 
						|
    if (I != GVMap.end()) {
 | 
						|
      NewValue = getOrInsertCVTA(M, F, I->second, Builder);
 | 
						|
    }
 | 
						|
  } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
 | 
						|
             isa<ConstantStruct>(C)) {
 | 
						|
    // If any element in the constant vector or aggregate C is or uses a global
 | 
						|
    // variable in GVMap, the constant C needs to be reconstructed, using a set
 | 
						|
    // of instructions.
 | 
						|
    NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
 | 
						|
  } else if (isa<ConstantExpr>(C)) {
 | 
						|
    // If any operand in the constant expression C is or uses a global variable
 | 
						|
    // in GVMap, the constant expression C needs to be reconstructed, using a
 | 
						|
    // set of instructions.
 | 
						|
    NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantToValueMap[C] = NewValue;
 | 
						|
  return NewValue;
 | 
						|
}
 | 
						|
 | 
						|
Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
 | 
						|
    Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
 | 
						|
  bool OperandChanged = false;
 | 
						|
  SmallVector<Value *, 4> NewOperands;
 | 
						|
  unsigned NumOperands = C->getNumOperands();
 | 
						|
 | 
						|
  // Check if any element is or uses a global variable in  GVMap, and thus
 | 
						|
  // converted to another value.
 | 
						|
  for (unsigned i = 0; i < NumOperands; ++i) {
 | 
						|
    Value *Operand = C->getOperand(i);
 | 
						|
    Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
 | 
						|
    OperandChanged |= Operand != NewOperand;
 | 
						|
    NewOperands.push_back(NewOperand);
 | 
						|
  }
 | 
						|
 | 
						|
  // If none of the elements has been modified, return C as it is.
 | 
						|
  if (!OperandChanged) {
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
 | 
						|
  // If any of the elements has been  modified, construct the equivalent
 | 
						|
  // vector or aggregate value with a set instructions and the converted
 | 
						|
  // elements.
 | 
						|
  Value *NewValue = UndefValue::get(C->getType());
 | 
						|
  if (isa<ConstantVector>(C)) {
 | 
						|
    for (unsigned i = 0; i < NumOperands; ++i) {
 | 
						|
      Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
 | 
						|
      NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0; i < NumOperands; ++i) {
 | 
						|
      NewValue =
 | 
						|
          Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NewValue;
 | 
						|
}
 | 
						|
 | 
						|
Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
 | 
						|
                                        IRBuilder<> &Builder) {
 | 
						|
  bool OperandChanged = false;
 | 
						|
  SmallVector<Value *, 4> NewOperands;
 | 
						|
  unsigned NumOperands = C->getNumOperands();
 | 
						|
 | 
						|
  // Check if any operand is or uses a global variable in  GVMap, and thus
 | 
						|
  // converted to another value.
 | 
						|
  for (unsigned i = 0; i < NumOperands; ++i) {
 | 
						|
    Value *Operand = C->getOperand(i);
 | 
						|
    Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
 | 
						|
    OperandChanged |= Operand != NewOperand;
 | 
						|
    NewOperands.push_back(NewOperand);
 | 
						|
  }
 | 
						|
 | 
						|
  // If none of the operands has been modified, return C as it is.
 | 
						|
  if (!OperandChanged) {
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
 | 
						|
  // If any of the operands has been modified, construct the instruction with
 | 
						|
  // the converted operands.
 | 
						|
  unsigned Opcode = C->getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::ICmp:
 | 
						|
    // CompareConstantExpr (icmp)
 | 
						|
    return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
 | 
						|
                              NewOperands[0], NewOperands[1]);
 | 
						|
  case Instruction::FCmp:
 | 
						|
    // CompareConstantExpr (fcmp)
 | 
						|
    assert(false && "Address space conversion should have no effect "
 | 
						|
                    "on float point CompareConstantExpr (fcmp)!");
 | 
						|
    return C;
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    // ExtractElementConstantExpr
 | 
						|
    return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    // InsertElementConstantExpr
 | 
						|
    return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
 | 
						|
                                       NewOperands[2]);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    // ShuffleVector
 | 
						|
    return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
 | 
						|
                                       NewOperands[2]);
 | 
						|
  case Instruction::ExtractValue:
 | 
						|
    // ExtractValueConstantExpr
 | 
						|
    return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
 | 
						|
  case Instruction::InsertValue:
 | 
						|
    // InsertValueConstantExpr
 | 
						|
    return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
 | 
						|
                                     C->getIndices());
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    // GetElementPtrConstantExpr
 | 
						|
    return cast<GEPOperator>(C)->isInBounds()
 | 
						|
               ? Builder.CreateGEP(
 | 
						|
                     cast<GEPOperator>(C)->getSourceElementType(),
 | 
						|
                     NewOperands[0],
 | 
						|
                     makeArrayRef(&NewOperands[1], NumOperands - 1))
 | 
						|
               : Builder.CreateInBoundsGEP(
 | 
						|
                     cast<GEPOperator>(C)->getSourceElementType(),
 | 
						|
                     NewOperands[0],
 | 
						|
                     makeArrayRef(&NewOperands[1], NumOperands - 1));
 | 
						|
  case Instruction::Select:
 | 
						|
    // SelectConstantExpr
 | 
						|
    return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
 | 
						|
  default:
 | 
						|
    // BinaryConstantExpr
 | 
						|
    if (Instruction::isBinaryOp(Opcode)) {
 | 
						|
      return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
 | 
						|
                                 NewOperands[0], NewOperands[1]);
 | 
						|
    }
 | 
						|
    // UnaryConstantExpr
 | 
						|
    if (Instruction::isCast(Opcode)) {
 | 
						|
      return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
 | 
						|
                                NewOperands[0], C->getType());
 | 
						|
    }
 | 
						|
    assert(false && "GenericToNVVM encountered an unsupported ConstantExpr");
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GenericToNVVM::remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N) {
 | 
						|
 | 
						|
  bool OperandChanged = false;
 | 
						|
  SmallVector<MDNode *, 16> NewOperands;
 | 
						|
  unsigned NumOperands = N->getNumOperands();
 | 
						|
 | 
						|
  // Check if any operand is or contains a global variable in  GVMap, and thus
 | 
						|
  // converted to another value.
 | 
						|
  for (unsigned i = 0; i < NumOperands; ++i) {
 | 
						|
    MDNode *Operand = N->getOperand(i);
 | 
						|
    MDNode *NewOperand = MapMetadata(Operand, VM);
 | 
						|
    OperandChanged |= Operand != NewOperand;
 | 
						|
    NewOperands.push_back(NewOperand);
 | 
						|
  }
 | 
						|
 | 
						|
  // If none of the operands has been modified, return immediately.
 | 
						|
  if (!OperandChanged) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace the old operands with the new operands.
 | 
						|
  N->dropAllReferences();
 | 
						|
  for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
 | 
						|
                                           E = NewOperands.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    N->addOperand(*I);
 | 
						|
  }
 | 
						|
}
 |