mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	This patch corresponds to review: http://reviews.llvm.org/D9440 It adds a new register class to the PPC back end to contain single precision values in VSX registers. Additionally, it adds scalar loads and stores for VSX registers. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236755 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4295 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4295 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pattern matching instruction selector for PowerPC,
 | |
| // converting from a legalized dag to a PPC dag.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPC.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-codegen"
 | |
| 
 | |
| // FIXME: Remove this once the bug has been fixed!
 | |
| cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
 | |
| cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
 | |
|                        cl::desc("use aggressive ppc isel for bit permutations"),
 | |
|                        cl::Hidden);
 | |
| static cl::opt<bool> BPermRewriterNoMasking(
 | |
|     "ppc-bit-perm-rewriter-stress-rotates",
 | |
|     cl::desc("stress rotate selection in aggressive ppc isel for "
 | |
|              "bit permutations"),
 | |
|     cl::Hidden);
 | |
| 
 | |
| namespace llvm {
 | |
|   void initializePPCDAGToDAGISelPass(PassRegistry&);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | |
|   /// instructions for SelectionDAG operations.
 | |
|   ///
 | |
|   class PPCDAGToDAGISel : public SelectionDAGISel {
 | |
|     const PPCTargetMachine &TM;
 | |
|     const PPCSubtarget *PPCSubTarget;
 | |
|     const PPCTargetLowering *PPCLowering;
 | |
|     unsigned GlobalBaseReg;
 | |
|   public:
 | |
|     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
 | |
|         : SelectionDAGISel(tm), TM(tm) {
 | |
|       initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override {
 | |
|       // Make sure we re-emit a set of the global base reg if necessary
 | |
|       GlobalBaseReg = 0;
 | |
|       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
 | |
|       PPCLowering = PPCSubTarget->getTargetLowering();
 | |
|       SelectionDAGISel::runOnMachineFunction(MF);
 | |
| 
 | |
|       if (!PPCSubTarget->isSVR4ABI())
 | |
|         InsertVRSaveCode(MF);
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     void PreprocessISelDAG() override;
 | |
|     void PostprocessISelDAG() override;
 | |
| 
 | |
|     /// getI32Imm - Return a target constant with the specified value, of type
 | |
|     /// i32.
 | |
|     inline SDValue getI32Imm(unsigned Imm, SDLoc dl) {
 | |
|       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getI64Imm - Return a target constant with the specified value, of type
 | |
|     /// i64.
 | |
|     inline SDValue getI64Imm(uint64_t Imm, SDLoc dl) {
 | |
|       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
 | |
|     }
 | |
| 
 | |
|     /// getSmallIPtrImm - Return a target constant of pointer type.
 | |
|     inline SDValue getSmallIPtrImm(unsigned Imm, SDLoc dl) {
 | |
|       return CurDAG->getTargetConstant(Imm, dl, PPCLowering->getPointerTy());
 | |
|     }
 | |
| 
 | |
|     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
 | |
|     /// rotate and mask opcode and mask operation.
 | |
|     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
 | |
|                                 unsigned &SH, unsigned &MB, unsigned &ME);
 | |
| 
 | |
|     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | |
|     /// base register.  Return the virtual register that holds this value.
 | |
|     SDNode *getGlobalBaseReg();
 | |
| 
 | |
|     SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
 | |
| 
 | |
|     // Select - Convert the specified operand from a target-independent to a
 | |
|     // target-specific node if it hasn't already been changed.
 | |
|     SDNode *Select(SDNode *N) override;
 | |
| 
 | |
|     SDNode *SelectBitfieldInsert(SDNode *N);
 | |
|     SDNode *SelectBitPermutation(SDNode *N);
 | |
| 
 | |
|     /// SelectCC - Select a comparison of the specified values with the
 | |
|     /// specified condition code, returning the CR# of the expression.
 | |
|     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
 | |
| 
 | |
|     /// SelectAddrImm - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 16-bit displacement [r+imm].
 | |
|     bool SelectAddrImm(SDValue N, SDValue &Disp,
 | |
|                        SDValue &Base) {
 | |
|       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
 | |
|     /// immediate field.  Note that the operand at this point is already the
 | |
|     /// result of a prior SelectAddressRegImm call.
 | |
|     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
 | |
|       if (N.getOpcode() == ISD::TargetConstant ||
 | |
|           N.getOpcode() == ISD::TargetGlobalAddress) {
 | |
|         Out = N;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | |
|     /// represented as an indexed [r+r] operation.  Returns false if it can
 | |
|     /// be represented by [r+imm], which are preferred.
 | |
|     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
 | |
|       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | |
|     /// represented as an indexed [r+r] operation.
 | |
|     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
 | |
|       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
 | |
|     }
 | |
| 
 | |
|     /// SelectAddrImmX4 - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
 | |
|     /// Suitable for use by STD and friends.
 | |
|     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
 | |
|       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
 | |
|     }
 | |
| 
 | |
|     // Select an address into a single register.
 | |
|     bool SelectAddr(SDValue N, SDValue &Base) {
 | |
|       Base = N;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|     /// inline asm expressions.  It is always correct to compute the value into
 | |
|     /// a register.  The case of adding a (possibly relocatable) constant to a
 | |
|     /// register can be improved, but it is wrong to substitute Reg+Reg for
 | |
|     /// Reg in an asm, because the load or store opcode would have to change.
 | |
|     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                                       unsigned ConstraintID,
 | |
|                                       std::vector<SDValue> &OutOps) override {
 | |
| 
 | |
|       switch(ConstraintID) {
 | |
|       default:
 | |
|         errs() << "ConstraintID: " << ConstraintID << "\n";
 | |
|         llvm_unreachable("Unexpected asm memory constraint");
 | |
|       case InlineAsm::Constraint_es:
 | |
|       case InlineAsm::Constraint_i:
 | |
|       case InlineAsm::Constraint_m:
 | |
|       case InlineAsm::Constraint_o:
 | |
|       case InlineAsm::Constraint_Q:
 | |
|       case InlineAsm::Constraint_Z:
 | |
|       case InlineAsm::Constraint_Zy:
 | |
|         // We need to make sure that this one operand does not end up in r0
 | |
|         // (because we might end up lowering this as 0(%op)).
 | |
|         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
 | |
|         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
 | |
|         SDLoc dl(Op);
 | |
|         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
 | |
|         SDValue NewOp =
 | |
|           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
 | |
|                                          dl, Op.getValueType(),
 | |
|                                          Op, RC), 0);
 | |
| 
 | |
|         OutOps.push_back(NewOp);
 | |
|         return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     void InsertVRSaveCode(MachineFunction &MF);
 | |
| 
 | |
|     const char *getPassName() const override {
 | |
|       return "PowerPC DAG->DAG Pattern Instruction Selection";
 | |
|     }
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "PPCGenDAGISel.inc"
 | |
| 
 | |
| private:
 | |
|     SDNode *SelectSETCC(SDNode *N);
 | |
| 
 | |
|     void PeepholePPC64();
 | |
|     void PeepholePPC64ZExt();
 | |
|     void PeepholeCROps();
 | |
| 
 | |
|     SDValue combineToCMPB(SDNode *N);
 | |
|     void foldBoolExts(SDValue &Res, SDNode *&N);
 | |
| 
 | |
|     bool AllUsersSelectZero(SDNode *N);
 | |
|     void SwapAllSelectUsers(SDNode *N);
 | |
| 
 | |
|     SDNode *transferMemOperands(SDNode *N, SDNode *Result);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// InsertVRSaveCode - Once the entire function has been instruction selected,
 | |
| /// all virtual registers are created and all machine instructions are built,
 | |
| /// check to see if we need to save/restore VRSAVE.  If so, do it.
 | |
| void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
 | |
|   // Check to see if this function uses vector registers, which means we have to
 | |
|   // save and restore the VRSAVE register and update it with the regs we use.
 | |
|   //
 | |
|   // In this case, there will be virtual registers of vector type created
 | |
|   // by the scheduler.  Detect them now.
 | |
|   bool HasVectorVReg = false;
 | |
|   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
 | |
|       HasVectorVReg = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!HasVectorVReg) return;  // nothing to do.
 | |
| 
 | |
|   // If we have a vector register, we want to emit code into the entry and exit
 | |
|   // blocks to save and restore the VRSAVE register.  We do this here (instead
 | |
|   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | |
|   //
 | |
|   // 1. This (trivially) reduces the load on the register allocator, by not
 | |
|   //    having to represent the live range of the VRSAVE register.
 | |
|   // 2. This (more significantly) allows us to create a temporary virtual
 | |
|   //    register to hold the saved VRSAVE value, allowing this temporary to be
 | |
|   //    register allocated, instead of forcing it to be spilled to the stack.
 | |
| 
 | |
|   // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | |
|   // function and one for the value after having bits or'd into it.
 | |
|   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
| 
 | |
|   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
 | |
|   MachineBasicBlock &EntryBB = *Fn.begin();
 | |
|   DebugLoc dl;
 | |
|   // Emit the following code into the entry block:
 | |
|   // InVRSAVE = MFVRSAVE
 | |
|   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | |
|   // MTVRSAVE UpdatedVRSAVE
 | |
|   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
 | |
|           UpdatedVRSAVE).addReg(InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
 | |
| 
 | |
|   // Find all return blocks, outputting a restore in each epilog.
 | |
|   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     if (!BB->empty() && BB->back().isReturn()) {
 | |
|       IP = BB->end(); --IP;
 | |
| 
 | |
|       // Skip over all terminator instructions, which are part of the return
 | |
|       // sequence.
 | |
|       MachineBasicBlock::iterator I2 = IP;
 | |
|       while (I2 != BB->begin() && (--I2)->isTerminator())
 | |
|         IP = I2;
 | |
| 
 | |
|       // Emit: MTVRSAVE InVRSave
 | |
|       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
 | |
|   if (!GlobalBaseReg) {
 | |
|     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = MF->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     const Module *M = MF->getFunction()->getParent();
 | |
|     DebugLoc dl;
 | |
| 
 | |
|     if (PPCLowering->getPointerTy() == MVT::i32) {
 | |
|       if (PPCSubTarget->isTargetELF()) {
 | |
|         GlobalBaseReg = PPC::R30;
 | |
|         if (M->getPICLevel() == PICLevel::Small) {
 | |
|           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
 | |
|           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | |
|           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
 | |
|         } else {
 | |
|           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
 | |
|           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | |
|           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|           BuildMI(FirstMBB, MBBI, dl,
 | |
|                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
 | |
|                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
 | |
|           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
 | |
|         }
 | |
|       } else {
 | |
|         GlobalBaseReg =
 | |
|           RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
 | |
|         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
 | |
|         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | |
|       }
 | |
|     } else {
 | |
|       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
 | |
|       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
 | |
|     }
 | |
|   }
 | |
|   return CurDAG->getRegister(GlobalBaseReg,
 | |
|                              PPCLowering->getPointerTy()).getNode();
 | |
| }
 | |
| 
 | |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | |
| /// or 64-bit immediate, and if the value can be accurately represented as a
 | |
| /// sign extension from a 16-bit value.  If so, this returns true and the
 | |
| /// immediate.
 | |
| static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | |
|   if (N->getOpcode() != ISD::Constant)
 | |
|     return false;
 | |
| 
 | |
|   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   if (N->getValueType(0) == MVT::i32)
 | |
|     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   else
 | |
|     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
| }
 | |
| 
 | |
| static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | |
|   return isIntS16Immediate(Op.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | |
| /// operand. If so Imm will receive the 32-bit value.
 | |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
 | |
| /// operand.  If so Imm will receive the 64-bit value.
 | |
| static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isInt32Immediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | |
|   return isInt32Immediate(N.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | |
|   return N->getOpcode() == Opc
 | |
|          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | |
| }
 | |
| 
 | |
| SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
 | |
|   SDLoc dl(SN);
 | |
|   int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
 | |
|   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
 | |
|   if (SN->hasOneUse())
 | |
|     return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
 | |
|                                 getSmallIPtrImm(Offset, dl));
 | |
|   return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
 | |
|                                 getSmallIPtrImm(Offset, dl));
 | |
| }
 | |
| 
 | |
| bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
 | |
|                                       bool isShiftMask, unsigned &SH,
 | |
|                                       unsigned &MB, unsigned &ME) {
 | |
|   // Don't even go down this path for i64, since different logic will be
 | |
|   // necessary for rldicl/rldicr/rldimi.
 | |
|   if (N->getValueType(0) != MVT::i32)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Shift  = 32;
 | |
|   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (N->getNumOperands() != 2 ||
 | |
|       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
 | |
|     return false;
 | |
| 
 | |
|   if (Opcode == ISD::SHL) {
 | |
|     // apply shift left to mask if it comes first
 | |
|     if (isShiftMask) Mask = Mask << Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu << Shift);
 | |
|   } else if (Opcode == ISD::SRL) {
 | |
|     // apply shift right to mask if it comes first
 | |
|     if (isShiftMask) Mask = Mask >> Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | |
|     // adjust for the left rotate
 | |
|     Shift = 32 - Shift;
 | |
|   } else if (Opcode == ISD::ROTL) {
 | |
|     Indeterminant = 0;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // if the mask doesn't intersect any Indeterminant bits
 | |
|   if (Mask && !(Mask & Indeterminant)) {
 | |
|     SH = Shift & 31;
 | |
|     // make sure the mask is still a mask (wrap arounds may not be)
 | |
|     return isRunOfOnes(Mask, MB, ME);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectBitfieldInsert - turn an or of two masked values into
 | |
| /// the rotate left word immediate then mask insert (rlwimi) instruction.
 | |
| SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   APInt LKZ, LKO, RKZ, RKO;
 | |
|   CurDAG->computeKnownBits(Op0, LKZ, LKO);
 | |
|   CurDAG->computeKnownBits(Op1, RKZ, RKO);
 | |
| 
 | |
|   unsigned TargetMask = LKZ.getZExtValue();
 | |
|   unsigned InsertMask = RKZ.getZExtValue();
 | |
| 
 | |
|   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
 | |
|     unsigned Op0Opc = Op0.getOpcode();
 | |
|     unsigned Op1Opc = Op1.getOpcode();
 | |
|     unsigned Value, SH = 0;
 | |
|     TargetMask = ~TargetMask;
 | |
|     InsertMask = ~InsertMask;
 | |
| 
 | |
|     // If the LHS has a foldable shift and the RHS does not, then swap it to the
 | |
|     // RHS so that we can fold the shift into the insert.
 | |
|     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | |
|       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|           Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | |
|             Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | |
|           std::swap(Op0, Op1);
 | |
|           std::swap(Op0Opc, Op1Opc);
 | |
|           std::swap(TargetMask, InsertMask);
 | |
|         }
 | |
|       }
 | |
|     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
 | |
|       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | |
|           Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | |
|         std::swap(Op0, Op1);
 | |
|         std::swap(Op0Opc, Op1Opc);
 | |
|         std::swap(TargetMask, InsertMask);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned MB, ME;
 | |
|     if (isRunOfOnes(InsertMask, MB, ME)) {
 | |
|       SDValue Tmp1, Tmp2;
 | |
| 
 | |
|       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
 | |
|           isInt32Immediate(Op1.getOperand(1), Value)) {
 | |
|         Op1 = Op1.getOperand(0);
 | |
|         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
 | |
|       }
 | |
|       if (Op1Opc == ISD::AND) {
 | |
|        // The AND mask might not be a constant, and we need to make sure that
 | |
|        // if we're going to fold the masking with the insert, all bits not
 | |
|        // know to be zero in the mask are known to be one.
 | |
|         APInt MKZ, MKO;
 | |
|         CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
 | |
|         bool CanFoldMask = InsertMask == MKO.getZExtValue();
 | |
| 
 | |
|         unsigned SHOpc = Op1.getOperand(0).getOpcode();
 | |
|         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
 | |
|             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
 | |
|           // Note that Value must be in range here (less than 32) because
 | |
|           // otherwise there would not be any bits set in InsertMask.
 | |
|           Op1 = Op1.getOperand(0).getOperand(0);
 | |
|           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SH &= 31;
 | |
|       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
 | |
|                           getI32Imm(ME, dl) };
 | |
|       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Predict the number of instructions that would be generated by calling
 | |
| // SelectInt64(N).
 | |
| static unsigned SelectInt64CountDirect(int64_t Imm) {
 | |
|   // Assume no remaining bits.
 | |
|   unsigned Remainder = 0;
 | |
|   // Assume no shift required.
 | |
|   unsigned Shift = 0;
 | |
| 
 | |
|   // If it can't be represented as a 32 bit value.
 | |
|   if (!isInt<32>(Imm)) {
 | |
|     Shift = countTrailingZeros<uint64_t>(Imm);
 | |
|     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | |
| 
 | |
|     // If the shifted value fits 32 bits.
 | |
|     if (isInt<32>(ImmSh)) {
 | |
|       // Go with the shifted value.
 | |
|       Imm = ImmSh;
 | |
|     } else {
 | |
|       // Still stuck with a 64 bit value.
 | |
|       Remainder = Imm;
 | |
|       Shift = 32;
 | |
|       Imm >>= 32;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Intermediate operand.
 | |
|   unsigned Result = 0;
 | |
| 
 | |
|   // Handle first 32 bits.
 | |
|   unsigned Lo = Imm & 0xFFFF;
 | |
|   unsigned Hi = (Imm >> 16) & 0xFFFF;
 | |
| 
 | |
|   // Simple value.
 | |
|   if (isInt<16>(Imm)) {
 | |
|     // Just the Lo bits.
 | |
|     ++Result;
 | |
|   } else if (Lo) {
 | |
|     // Handle the Hi bits and Lo bits.
 | |
|     Result += 2;
 | |
|   } else {
 | |
|     // Just the Hi bits.
 | |
|     ++Result;
 | |
|   }
 | |
| 
 | |
|   // If no shift, we're done.
 | |
|   if (!Shift) return Result;
 | |
| 
 | |
|   // Shift for next step if the upper 32-bits were not zero.
 | |
|   if (Imm)
 | |
|     ++Result;
 | |
| 
 | |
|   // Add in the last bits as required.
 | |
|   if ((Hi = (Remainder >> 16) & 0xFFFF))
 | |
|     ++Result;
 | |
|   if ((Lo = Remainder & 0xFFFF))
 | |
|     ++Result;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static uint64_t Rot64(uint64_t Imm, unsigned R) {
 | |
|   return (Imm << R) | (Imm >> (64 - R));
 | |
| }
 | |
| 
 | |
| static unsigned SelectInt64Count(int64_t Imm) {
 | |
|   unsigned Count = SelectInt64CountDirect(Imm);
 | |
|   if (Count == 1)
 | |
|     return Count;
 | |
| 
 | |
|   for (unsigned r = 1; r < 63; ++r) {
 | |
|     uint64_t RImm = Rot64(Imm, r);
 | |
|     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
 | |
|     Count = std::min(Count, RCount);
 | |
| 
 | |
|     // See comments in SelectInt64 for an explanation of the logic below.
 | |
|     unsigned LS = findLastSet(RImm);
 | |
|     if (LS != r-1)
 | |
|       continue;
 | |
| 
 | |
|     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
 | |
|     uint64_t RImmWithOnes = RImm | OnesMask;
 | |
| 
 | |
|     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
 | |
|     Count = std::min(Count, RCount);
 | |
|   }
 | |
| 
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
 | |
| // (above) needs to be kept in sync with this function.
 | |
| static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
 | |
|   // Assume no remaining bits.
 | |
|   unsigned Remainder = 0;
 | |
|   // Assume no shift required.
 | |
|   unsigned Shift = 0;
 | |
| 
 | |
|   // If it can't be represented as a 32 bit value.
 | |
|   if (!isInt<32>(Imm)) {
 | |
|     Shift = countTrailingZeros<uint64_t>(Imm);
 | |
|     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | |
| 
 | |
|     // If the shifted value fits 32 bits.
 | |
|     if (isInt<32>(ImmSh)) {
 | |
|       // Go with the shifted value.
 | |
|       Imm = ImmSh;
 | |
|     } else {
 | |
|       // Still stuck with a 64 bit value.
 | |
|       Remainder = Imm;
 | |
|       Shift = 32;
 | |
|       Imm >>= 32;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Intermediate operand.
 | |
|   SDNode *Result;
 | |
| 
 | |
|   // Handle first 32 bits.
 | |
|   unsigned Lo = Imm & 0xFFFF;
 | |
|   unsigned Hi = (Imm >> 16) & 0xFFFF;
 | |
| 
 | |
|   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | |
|   };
 | |
| 
 | |
|   // Simple value.
 | |
|   if (isInt<16>(Imm)) {
 | |
|     // Just the Lo bits.
 | |
|     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
 | |
|   } else if (Lo) {
 | |
|     // Handle the Hi bits.
 | |
|     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
 | |
|     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
 | |
|     // And Lo bits.
 | |
|     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | |
|                                     SDValue(Result, 0), getI32Imm(Lo));
 | |
|   } else {
 | |
|     // Just the Hi bits.
 | |
|     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
 | |
|   }
 | |
| 
 | |
|   // If no shift, we're done.
 | |
|   if (!Shift) return Result;
 | |
| 
 | |
|   // Shift for next step if the upper 32-bits were not zero.
 | |
|   if (Imm) {
 | |
|     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
 | |
|                                     SDValue(Result, 0),
 | |
|                                     getI32Imm(Shift),
 | |
|                                     getI32Imm(63 - Shift));
 | |
|   }
 | |
| 
 | |
|   // Add in the last bits as required.
 | |
|   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
 | |
|     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
 | |
|                                     SDValue(Result, 0), getI32Imm(Hi));
 | |
|   }
 | |
|   if ((Lo = Remainder & 0xFFFF)) {
 | |
|     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | |
|                                     SDValue(Result, 0), getI32Imm(Lo));
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
 | |
|   unsigned Count = SelectInt64CountDirect(Imm);
 | |
|   if (Count == 1)
 | |
|     return SelectInt64Direct(CurDAG, dl, Imm);
 | |
| 
 | |
|   unsigned RMin = 0;
 | |
| 
 | |
|   int64_t MatImm;
 | |
|   unsigned MaskEnd;
 | |
| 
 | |
|   for (unsigned r = 1; r < 63; ++r) {
 | |
|     uint64_t RImm = Rot64(Imm, r);
 | |
|     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
 | |
|     if (RCount < Count) {
 | |
|       Count = RCount;
 | |
|       RMin = r;
 | |
|       MatImm = RImm;
 | |
|       MaskEnd = 63;
 | |
|     }
 | |
| 
 | |
|     // If the immediate to generate has many trailing zeros, it might be
 | |
|     // worthwhile to generate a rotated value with too many leading ones
 | |
|     // (because that's free with li/lis's sign-extension semantics), and then
 | |
|     // mask them off after rotation.
 | |
| 
 | |
|     unsigned LS = findLastSet(RImm);
 | |
|     // We're adding (63-LS) higher-order ones, and we expect to mask them off
 | |
|     // after performing the inverse rotation by (64-r). So we need that:
 | |
|     //   63-LS == 64-r => LS == r-1
 | |
|     if (LS != r-1)
 | |
|       continue;
 | |
| 
 | |
|     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
 | |
|     uint64_t RImmWithOnes = RImm | OnesMask;
 | |
| 
 | |
|     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
 | |
|     if (RCount < Count) {
 | |
|       Count = RCount;
 | |
|       RMin = r;
 | |
|       MatImm = RImmWithOnes;
 | |
|       MaskEnd = LS;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!RMin)
 | |
|     return SelectInt64Direct(CurDAG, dl, Imm);
 | |
| 
 | |
|   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | |
|   };
 | |
| 
 | |
|   SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
 | |
|   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
 | |
|                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
 | |
| }
 | |
| 
 | |
| // Select a 64-bit constant.
 | |
| static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // Get 64 bit value.
 | |
|   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   return SelectInt64(CurDAG, dl, Imm);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class BitPermutationSelector {
 | |
|   struct ValueBit {
 | |
|     SDValue V;
 | |
| 
 | |
|     // The bit number in the value, using a convention where bit 0 is the
 | |
|     // lowest-order bit.
 | |
|     unsigned Idx;
 | |
| 
 | |
|     enum Kind {
 | |
|       ConstZero,
 | |
|       Variable
 | |
|     } K;
 | |
| 
 | |
|     ValueBit(SDValue V, unsigned I, Kind K = Variable)
 | |
|       : V(V), Idx(I), K(K) {}
 | |
|     ValueBit(Kind K = Variable)
 | |
|       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
 | |
| 
 | |
|     bool isZero() const {
 | |
|       return K == ConstZero;
 | |
|     }
 | |
| 
 | |
|     bool hasValue() const {
 | |
|       return K == Variable;
 | |
|     }
 | |
| 
 | |
|     SDValue getValue() const {
 | |
|       assert(hasValue() && "Cannot get the value of a constant bit");
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     unsigned getValueBitIndex() const {
 | |
|       assert(hasValue() && "Cannot get the value bit index of a constant bit");
 | |
|       return Idx;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // A bit group has the same underlying value and the same rotate factor.
 | |
|   struct BitGroup {
 | |
|     SDValue V;
 | |
|     unsigned RLAmt;
 | |
|     unsigned StartIdx, EndIdx;
 | |
| 
 | |
|     // This rotation amount assumes that the lower 32 bits of the quantity are
 | |
|     // replicated in the high 32 bits by the rotation operator (which is done
 | |
|     // by rlwinm and friends in 64-bit mode).
 | |
|     bool Repl32;
 | |
|     // Did converting to Repl32 == true change the rotation factor? If it did,
 | |
|     // it decreased it by 32.
 | |
|     bool Repl32CR;
 | |
|     // Was this group coalesced after setting Repl32 to true?
 | |
|     bool Repl32Coalesced;
 | |
| 
 | |
|     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
 | |
|       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
 | |
|         Repl32Coalesced(false) {
 | |
|       DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
 | |
|                       " [" << S << ", " << E << "]\n");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Information on each (Value, RLAmt) pair (like the number of groups
 | |
|   // associated with each) used to choose the lowering method.
 | |
|   struct ValueRotInfo {
 | |
|     SDValue V;
 | |
|     unsigned RLAmt;
 | |
|     unsigned NumGroups;
 | |
|     unsigned FirstGroupStartIdx;
 | |
|     bool Repl32;
 | |
| 
 | |
|     ValueRotInfo()
 | |
|       : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
 | |
|         Repl32(false) {}
 | |
| 
 | |
|     // For sorting (in reverse order) by NumGroups, and then by
 | |
|     // FirstGroupStartIdx.
 | |
|     bool operator < (const ValueRotInfo &Other) const {
 | |
|       // We need to sort so that the non-Repl32 come first because, when we're
 | |
|       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
 | |
|       // masking operation.
 | |
|       if (Repl32 < Other.Repl32)
 | |
|         return true;
 | |
|       else if (Repl32 > Other.Repl32)
 | |
|         return false;
 | |
|       else if (NumGroups > Other.NumGroups)
 | |
|         return true;
 | |
|       else if (NumGroups < Other.NumGroups)
 | |
|         return false;
 | |
|       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
 | |
|         return true;
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Return true if something interesting was deduced, return false if we're
 | |
|   // providing only a generic representation of V (or something else likewise
 | |
|   // uninteresting for instruction selection).
 | |
|   bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
 | |
|     switch (V.getOpcode()) {
 | |
|     default: break;
 | |
|     case ISD::ROTL:
 | |
|       if (isa<ConstantSDNode>(V.getOperand(1))) {
 | |
|         unsigned RotAmt = V.getConstantOperandVal(1);
 | |
| 
 | |
|         SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | |
|         getValueBits(V.getOperand(0), LHSBits);
 | |
| 
 | |
|         for (unsigned i = 0; i < Bits.size(); ++i)
 | |
|           Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|       break;
 | |
|     case ISD::SHL:
 | |
|       if (isa<ConstantSDNode>(V.getOperand(1))) {
 | |
|         unsigned ShiftAmt = V.getConstantOperandVal(1);
 | |
| 
 | |
|         SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | |
|         getValueBits(V.getOperand(0), LHSBits);
 | |
| 
 | |
|         for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
 | |
|           Bits[i] = LHSBits[i - ShiftAmt];
 | |
| 
 | |
|         for (unsigned i = 0; i < ShiftAmt; ++i)
 | |
|           Bits[i] = ValueBit(ValueBit::ConstZero);
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|       break;
 | |
|     case ISD::SRL:
 | |
|       if (isa<ConstantSDNode>(V.getOperand(1))) {
 | |
|         unsigned ShiftAmt = V.getConstantOperandVal(1);
 | |
| 
 | |
|         SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | |
|         getValueBits(V.getOperand(0), LHSBits);
 | |
| 
 | |
|         for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
 | |
|           Bits[i] = LHSBits[i + ShiftAmt];
 | |
| 
 | |
|         for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
 | |
|           Bits[i] = ValueBit(ValueBit::ConstZero);
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|       break;
 | |
|     case ISD::AND:
 | |
|       if (isa<ConstantSDNode>(V.getOperand(1))) {
 | |
|         uint64_t Mask = V.getConstantOperandVal(1);
 | |
| 
 | |
|         SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | |
|         bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
 | |
| 
 | |
|         for (unsigned i = 0; i < Bits.size(); ++i)
 | |
|           if (((Mask >> i) & 1) == 1)
 | |
|             Bits[i] = LHSBits[i];
 | |
|           else
 | |
|             Bits[i] = ValueBit(ValueBit::ConstZero);
 | |
| 
 | |
|         // Mark this as interesting, only if the LHS was also interesting. This
 | |
|         // prevents the overall procedure from matching a single immediate 'and'
 | |
|         // (which is non-optimal because such an and might be folded with other
 | |
|         // things if we don't select it here).
 | |
|         return LHSTrivial;
 | |
|       }
 | |
|       break;
 | |
|     case ISD::OR: {
 | |
|       SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
 | |
|       getValueBits(V.getOperand(0), LHSBits);
 | |
|       getValueBits(V.getOperand(1), RHSBits);
 | |
| 
 | |
|       bool AllDisjoint = true;
 | |
|       for (unsigned i = 0; i < Bits.size(); ++i)
 | |
|         if (LHSBits[i].isZero())
 | |
|           Bits[i] = RHSBits[i];
 | |
|         else if (RHSBits[i].isZero())
 | |
|           Bits[i] = LHSBits[i];
 | |
|         else {
 | |
|           AllDisjoint = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (!AllDisjoint)
 | |
|         break;
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0; i < Bits.size(); ++i)
 | |
|       Bits[i] = ValueBit(V, i);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For each value (except the constant ones), compute the left-rotate amount
 | |
|   // to get it from its original to final position.
 | |
|   void computeRotationAmounts() {
 | |
|     HasZeros = false;
 | |
|     RLAmt.resize(Bits.size());
 | |
|     for (unsigned i = 0; i < Bits.size(); ++i)
 | |
|       if (Bits[i].hasValue()) {
 | |
|         unsigned VBI = Bits[i].getValueBitIndex();
 | |
|         if (i >= VBI)
 | |
|           RLAmt[i] = i - VBI;
 | |
|         else
 | |
|           RLAmt[i] = Bits.size() - (VBI - i);
 | |
|       } else if (Bits[i].isZero()) {
 | |
|         HasZeros = true;
 | |
|         RLAmt[i] = UINT32_MAX;
 | |
|       } else {
 | |
|         llvm_unreachable("Unknown value bit type");
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Collect groups of consecutive bits with the same underlying value and
 | |
|   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
 | |
|   // they break up groups.
 | |
|   void collectBitGroups(bool LateMask) {
 | |
|     BitGroups.clear();
 | |
| 
 | |
|     unsigned LastRLAmt = RLAmt[0];
 | |
|     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
 | |
|     unsigned LastGroupStartIdx = 0;
 | |
|     for (unsigned i = 1; i < Bits.size(); ++i) {
 | |
|       unsigned ThisRLAmt = RLAmt[i];
 | |
|       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
 | |
|       if (LateMask && !ThisValue) {
 | |
|         ThisValue = LastValue;
 | |
|         ThisRLAmt = LastRLAmt;
 | |
|         // If we're doing late masking, then the first bit group always starts
 | |
|         // at zero (even if the first bits were zero).
 | |
|         if (BitGroups.empty())
 | |
|           LastGroupStartIdx = 0;
 | |
|       }
 | |
| 
 | |
|       // If this bit has the same underlying value and the same rotate factor as
 | |
|       // the last one, then they're part of the same group.
 | |
|       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
 | |
|         continue;
 | |
| 
 | |
|       if (LastValue.getNode())
 | |
|         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
 | |
|                                      i-1));
 | |
|       LastRLAmt = ThisRLAmt;
 | |
|       LastValue = ThisValue;
 | |
|       LastGroupStartIdx = i;
 | |
|     }
 | |
|     if (LastValue.getNode())
 | |
|       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
 | |
|                                    Bits.size()-1));
 | |
| 
 | |
|     if (BitGroups.empty())
 | |
|       return;
 | |
| 
 | |
|     // We might be able to combine the first and last groups.
 | |
|     if (BitGroups.size() > 1) {
 | |
|       // If the first and last groups are the same, then remove the first group
 | |
|       // in favor of the last group, making the ending index of the last group
 | |
|       // equal to the ending index of the to-be-removed first group.
 | |
|       if (BitGroups[0].StartIdx == 0 &&
 | |
|           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
 | |
|           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
 | |
|           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
 | |
|         DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
 | |
|         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
 | |
|         BitGroups.erase(BitGroups.begin());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
 | |
|   // associated with each. If there is a degeneracy, pick the one that occurs
 | |
|   // first (in the final value).
 | |
|   void collectValueRotInfo() {
 | |
|     ValueRots.clear();
 | |
| 
 | |
|     for (auto &BG : BitGroups) {
 | |
|       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
 | |
|       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
 | |
|       VRI.V = BG.V;
 | |
|       VRI.RLAmt = BG.RLAmt;
 | |
|       VRI.Repl32 = BG.Repl32;
 | |
|       VRI.NumGroups += 1;
 | |
|       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
 | |
|     }
 | |
| 
 | |
|     // Now that we've collected the various ValueRotInfo instances, we need to
 | |
|     // sort them.
 | |
|     ValueRotsVec.clear();
 | |
|     for (auto &I : ValueRots) {
 | |
|       ValueRotsVec.push_back(I.second);
 | |
|     }
 | |
|     std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
 | |
|   }
 | |
| 
 | |
|   // In 64-bit mode, rlwinm and friends have a rotation operator that
 | |
|   // replicates the low-order 32 bits into the high-order 32-bits. The mask
 | |
|   // indices of these instructions can only be in the lower 32 bits, so they
 | |
|   // can only represent some 64-bit bit groups. However, when they can be used,
 | |
|   // the 32-bit replication can be used to represent, as a single bit group,
 | |
|   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
 | |
|   // groups when possible. Returns true if any of the bit groups were
 | |
|   // converted.
 | |
|   void assignRepl32BitGroups() {
 | |
|     // If we have bits like this:
 | |
|     //
 | |
|     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
 | |
|     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
 | |
|     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
 | |
|     //
 | |
|     // But, making use of a 32-bit operation that replicates the low-order 32
 | |
|     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
 | |
|     // of 8.
 | |
| 
 | |
|     auto IsAllLow32 = [this](BitGroup & BG) {
 | |
|       if (BG.StartIdx <= BG.EndIdx) {
 | |
|         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
 | |
|           if (!Bits[i].hasValue())
 | |
|             continue;
 | |
|           if (Bits[i].getValueBitIndex() >= 32)
 | |
|             return false;
 | |
|         }
 | |
|       } else {
 | |
|         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
 | |
|           if (!Bits[i].hasValue())
 | |
|             continue;
 | |
|           if (Bits[i].getValueBitIndex() >= 32)
 | |
|             return false;
 | |
|         }
 | |
|         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
 | |
|           if (!Bits[i].hasValue())
 | |
|             continue;
 | |
|           if (Bits[i].getValueBitIndex() >= 32)
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     };
 | |
| 
 | |
|     for (auto &BG : BitGroups) {
 | |
|       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
 | |
|         if (IsAllLow32(BG)) {
 | |
|           if (BG.RLAmt >= 32) {
 | |
|             BG.RLAmt -= 32;
 | |
|             BG.Repl32CR = true;
 | |
|           }
 | |
| 
 | |
|           BG.Repl32 = true;
 | |
| 
 | |
|           DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
 | |
|                           BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
 | |
|                           " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now walk through the bit groups, consolidating where possible.
 | |
|     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | |
|       // We might want to remove this bit group by merging it with the previous
 | |
|       // group (which might be the ending group).
 | |
|       auto IP = (I == BitGroups.begin()) ?
 | |
|                 std::prev(BitGroups.end()) : std::prev(I);
 | |
|       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
 | |
|           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
 | |
| 
 | |
|         DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
 | |
|                         I->V.getNode() << " RLAmt = " << I->RLAmt <<
 | |
|                         " [" << I->StartIdx << ", " << I->EndIdx <<
 | |
|                         "] with group with range [" <<
 | |
|                         IP->StartIdx << ", " << IP->EndIdx << "]\n");
 | |
| 
 | |
|         IP->EndIdx = I->EndIdx;
 | |
|         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
 | |
|         IP->Repl32Coalesced = true;
 | |
|         I = BitGroups.erase(I);
 | |
|         continue;
 | |
|       } else {
 | |
|         // There is a special case worth handling: If there is a single group
 | |
|         // covering the entire upper 32 bits, and it can be merged with both
 | |
|         // the next and previous groups (which might be the same group), then
 | |
|         // do so. If it is the same group (so there will be only one group in
 | |
|         // total), then we need to reverse the order of the range so that it
 | |
|         // covers the entire 64 bits.
 | |
|         if (I->StartIdx == 32 && I->EndIdx == 63) {
 | |
|           assert(std::next(I) == BitGroups.end() &&
 | |
|                  "bit group ends at index 63 but there is another?");
 | |
|           auto IN = BitGroups.begin();
 | |
| 
 | |
|           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 
 | |
|               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
 | |
|               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
 | |
|               IsAllLow32(*I)) {
 | |
| 
 | |
|             DEBUG(dbgs() << "\tcombining bit group for " <<
 | |
|                             I->V.getNode() << " RLAmt = " << I->RLAmt <<
 | |
|                             " [" << I->StartIdx << ", " << I->EndIdx <<
 | |
|                             "] with 32-bit replicated groups with ranges [" <<
 | |
|                             IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
 | |
|                             IN->StartIdx << ", " << IN->EndIdx << "]\n");
 | |
| 
 | |
|             if (IP == IN) {
 | |
|               // There is only one other group; change it to cover the whole
 | |
|               // range (backward, so that it can still be Repl32 but cover the
 | |
|               // whole 64-bit range).
 | |
|               IP->StartIdx = 31;
 | |
|               IP->EndIdx = 30;
 | |
|               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
 | |
|               IP->Repl32Coalesced = true;
 | |
|               I = BitGroups.erase(I);
 | |
|             } else {
 | |
|               // There are two separate groups, one before this group and one
 | |
|               // after us (at the beginning). We're going to remove this group,
 | |
|               // but also the group at the very beginning.
 | |
|               IP->EndIdx = IN->EndIdx;
 | |
|               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
 | |
|               IP->Repl32Coalesced = true;
 | |
|               I = BitGroups.erase(I);
 | |
|               BitGroups.erase(BitGroups.begin());
 | |
|             }
 | |
| 
 | |
|             // This must be the last group in the vector (and we might have
 | |
|             // just invalidated the iterator above), so break here.
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue getI32Imm(unsigned Imm, SDLoc dl) {
 | |
|     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   uint64_t getZerosMask() {
 | |
|     uint64_t Mask = 0;
 | |
|     for (unsigned i = 0; i < Bits.size(); ++i) {
 | |
|       if (Bits[i].hasValue())
 | |
|         continue;
 | |
|       Mask |= (UINT64_C(1) << i);
 | |
|     }
 | |
| 
 | |
|     return ~Mask;
 | |
|   }
 | |
| 
 | |
|   // Depending on the number of groups for a particular value, it might be
 | |
|   // better to rotate, mask explicitly (using andi/andis), and then or the
 | |
|   // result. Select this part of the result first.
 | |
|   void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
 | |
|     if (BPermRewriterNoMasking)
 | |
|       return;
 | |
| 
 | |
|     for (ValueRotInfo &VRI : ValueRotsVec) {
 | |
|       unsigned Mask = 0;
 | |
|       for (unsigned i = 0; i < Bits.size(); ++i) {
 | |
|         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
 | |
|           continue;
 | |
|         if (RLAmt[i] != VRI.RLAmt)
 | |
|           continue;
 | |
|         Mask |= (1u << i);
 | |
|       }
 | |
| 
 | |
|       // Compute the masks for andi/andis that would be necessary.
 | |
|       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
 | |
|       assert((ANDIMask != 0 || ANDISMask != 0) &&
 | |
|              "No set bits in mask for value bit groups");
 | |
|       bool NeedsRotate = VRI.RLAmt != 0;
 | |
| 
 | |
|       // We're trying to minimize the number of instructions. If we have one
 | |
|       // group, using one of andi/andis can break even.  If we have three
 | |
|       // groups, we can use both andi and andis and break even (to use both
 | |
|       // andi and andis we also need to or the results together). We need four
 | |
|       // groups if we also need to rotate. To use andi/andis we need to do more
 | |
|       // than break even because rotate-and-mask instructions tend to be easier
 | |
|       // to schedule.
 | |
| 
 | |
|       // FIXME: We've biased here against using andi/andis, which is right for
 | |
|       // POWER cores, but not optimal everywhere. For example, on the A2,
 | |
|       // andi/andis have single-cycle latency whereas the rotate-and-mask
 | |
|       // instructions take two cycles, and it would be better to bias toward
 | |
|       // andi/andis in break-even cases.
 | |
| 
 | |
|       unsigned NumAndInsts = (unsigned) NeedsRotate +
 | |
|                              (unsigned) (ANDIMask != 0) +
 | |
|                              (unsigned) (ANDISMask != 0) +
 | |
|                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
 | |
|                              (unsigned) (bool) Res;
 | |
| 
 | |
|       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
 | |
|                       " RL: " << VRI.RLAmt << ":" <<
 | |
|                       "\n\t\t\tisel using masking: " << NumAndInsts <<
 | |
|                       " using rotates: " << VRI.NumGroups << "\n");
 | |
| 
 | |
|       if (NumAndInsts >= VRI.NumGroups)
 | |
|         continue;
 | |
| 
 | |
|       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
 | |
| 
 | |
|       if (InstCnt) *InstCnt += NumAndInsts;
 | |
| 
 | |
|       SDValue VRot;
 | |
|       if (VRI.RLAmt) {
 | |
|         SDValue Ops[] =
 | |
|           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
 | |
|             getI32Imm(31, dl) };
 | |
|         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
 | |
|                                               Ops), 0);
 | |
|       } else {
 | |
|         VRot = VRI.V;
 | |
|       }
 | |
| 
 | |
|       SDValue ANDIVal, ANDISVal;
 | |
|       if (ANDIMask != 0)
 | |
|         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
 | |
|                             VRot, getI32Imm(ANDIMask, dl)), 0);
 | |
|       if (ANDISMask != 0)
 | |
|         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
 | |
|                              VRot, getI32Imm(ANDISMask, dl)), 0);
 | |
| 
 | |
|       SDValue TotalVal;
 | |
|       if (!ANDIVal)
 | |
|         TotalVal = ANDISVal;
 | |
|       else if (!ANDISVal)
 | |
|         TotalVal = ANDIVal;
 | |
|       else
 | |
|         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
 | |
|                              ANDIVal, ANDISVal), 0);
 | |
| 
 | |
|       if (!Res)
 | |
|         Res = TotalVal;
 | |
|       else
 | |
|         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
 | |
|                         Res, TotalVal), 0);
 | |
| 
 | |
|       // Now, remove all groups with this underlying value and rotation
 | |
|       // factor.
 | |
|       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | |
|         if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
 | |
|           I = BitGroups.erase(I);
 | |
|         else
 | |
|           ++I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Instruction selection for the 32-bit case.
 | |
|   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
 | |
|     SDLoc dl(N);
 | |
|     SDValue Res;
 | |
| 
 | |
|     if (InstCnt) *InstCnt = 0;
 | |
| 
 | |
|     // Take care of cases that should use andi/andis first.
 | |
|     SelectAndParts32(dl, Res, InstCnt);
 | |
| 
 | |
|     // If we've not yet selected a 'starting' instruction, and we have no zeros
 | |
|     // to fill in, select the (Value, RLAmt) with the highest priority (largest
 | |
|     // number of groups), and start with this rotated value.
 | |
|     if ((!HasZeros || LateMask) && !Res) {
 | |
|       ValueRotInfo &VRI = ValueRotsVec[0];
 | |
|       if (VRI.RLAmt) {
 | |
|         if (InstCnt) *InstCnt += 1;
 | |
|         SDValue Ops[] =
 | |
|           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
 | |
|             getI32Imm(31, dl) };
 | |
|         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
 | |
|                       0);
 | |
|       } else {
 | |
|         Res = VRI.V;
 | |
|       }
 | |
| 
 | |
|       // Now, remove all groups with this underlying value and rotation factor.
 | |
|       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | |
|         if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
 | |
|           I = BitGroups.erase(I);
 | |
|         else
 | |
|           ++I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (InstCnt) *InstCnt += BitGroups.size();
 | |
| 
 | |
|     // Insert the other groups (one at a time).
 | |
|     for (auto &BG : BitGroups) {
 | |
|       if (!Res) {
 | |
|         SDValue Ops[] =
 | |
|           { BG.V, getI32Imm(BG.RLAmt, dl),
 | |
|             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
 | |
|             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
 | |
|         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | |
|       } else {
 | |
|         SDValue Ops[] =
 | |
|           { Res, BG.V, getI32Imm(BG.RLAmt, dl),
 | |
|               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
 | |
|             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
 | |
|         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (LateMask) {
 | |
|       unsigned Mask = (unsigned) getZerosMask();
 | |
| 
 | |
|       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
 | |
|       assert((ANDIMask != 0 || ANDISMask != 0) &&
 | |
|              "No set bits in zeros mask?");
 | |
| 
 | |
|       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
 | |
|                                (unsigned) (ANDISMask != 0) +
 | |
|                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
 | |
| 
 | |
|       SDValue ANDIVal, ANDISVal;
 | |
|       if (ANDIMask != 0)
 | |
|         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
 | |
|                             Res, getI32Imm(ANDIMask, dl)), 0);
 | |
|       if (ANDISMask != 0)
 | |
|         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
 | |
|                              Res, getI32Imm(ANDISMask, dl)), 0);
 | |
| 
 | |
|       if (!ANDIVal)
 | |
|         Res = ANDISVal;
 | |
|       else if (!ANDISVal)
 | |
|         Res = ANDIVal;
 | |
|       else
 | |
|         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
 | |
|                         ANDIVal, ANDISVal), 0);
 | |
|     }
 | |
| 
 | |
|     return Res.getNode();
 | |
|   }
 | |
| 
 | |
|   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
 | |
|                                 unsigned MaskStart, unsigned MaskEnd,
 | |
|                                 bool IsIns) {
 | |
|     // In the notation used by the instructions, 'start' and 'end' are reversed
 | |
|     // because bits are counted from high to low order.
 | |
|     unsigned InstMaskStart = 64 - MaskEnd - 1,
 | |
|              InstMaskEnd   = 64 - MaskStart - 1;
 | |
| 
 | |
|     if (Repl32)
 | |
|       return 1;
 | |
| 
 | |
|     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
 | |
|         InstMaskEnd == 63 - RLAmt)
 | |
|       return 1;
 | |
| 
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   // For 64-bit values, not all combinations of rotates and masks are
 | |
|   // available. Produce one if it is available.
 | |
|   SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
 | |
|                           unsigned MaskStart, unsigned MaskEnd,
 | |
|                           unsigned *InstCnt = nullptr) {
 | |
|     // In the notation used by the instructions, 'start' and 'end' are reversed
 | |
|     // because bits are counted from high to low order.
 | |
|     unsigned InstMaskStart = 64 - MaskEnd - 1,
 | |
|              InstMaskEnd   = 64 - MaskStart - 1;
 | |
| 
 | |
|     if (InstCnt) *InstCnt += 1;
 | |
| 
 | |
|     if (Repl32) {
 | |
|       // This rotation amount assumes that the lower 32 bits of the quantity
 | |
|       // are replicated in the high 32 bits by the rotation operator (which is
 | |
|       // done by rlwinm and friends).
 | |
|       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
 | |
|       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
 | |
|       SDValue Ops[] =
 | |
|         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
 | |
|           getI32Imm(InstMaskEnd - 32, dl) };
 | |
|       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
 | |
|                                             Ops), 0);
 | |
|     }
 | |
| 
 | |
|     if (InstMaskEnd == 63) {
 | |
|       SDValue Ops[] =
 | |
|         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
 | |
|       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
 | |
|     }
 | |
| 
 | |
|     if (InstMaskStart == 0) {
 | |
|       SDValue Ops[] =
 | |
|         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
 | |
|       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
 | |
|     }
 | |
| 
 | |
|     if (InstMaskEnd == 63 - RLAmt) {
 | |
|       SDValue Ops[] =
 | |
|         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
 | |
|       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
 | |
|     }
 | |
| 
 | |
|     // We cannot do this with a single instruction, so we'll use two. The
 | |
|     // problem is that we're not free to choose both a rotation amount and mask
 | |
|     // start and end independently. We can choose an arbitrary mask start and
 | |
|     // end, but then the rotation amount is fixed. Rotation, however, can be
 | |
|     // inverted, and so by applying an "inverse" rotation first, we can get the
 | |
|     // desired result.
 | |
|     if (InstCnt) *InstCnt += 1;
 | |
| 
 | |
|     // The rotation mask for the second instruction must be MaskStart.
 | |
|     unsigned RLAmt2 = MaskStart;
 | |
|     // The first instruction must rotate V so that the overall rotation amount
 | |
|     // is RLAmt.
 | |
|     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
 | |
|     if (RLAmt1)
 | |
|       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
 | |
|     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
 | |
|   }
 | |
| 
 | |
|   // For 64-bit values, not all combinations of rotates and masks are
 | |
|   // available. Produce a rotate-mask-and-insert if one is available.
 | |
|   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
 | |
|                              bool Repl32, unsigned MaskStart,
 | |
|                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
 | |
|     // In the notation used by the instructions, 'start' and 'end' are reversed
 | |
|     // because bits are counted from high to low order.
 | |
|     unsigned InstMaskStart = 64 - MaskEnd - 1,
 | |
|              InstMaskEnd   = 64 - MaskStart - 1;
 | |
| 
 | |
|     if (InstCnt) *InstCnt += 1;
 | |
| 
 | |
|     if (Repl32) {
 | |
|       // This rotation amount assumes that the lower 32 bits of the quantity
 | |
|       // are replicated in the high 32 bits by the rotation operator (which is
 | |
|       // done by rlwinm and friends).
 | |
|       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
 | |
|       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
 | |
|       SDValue Ops[] =
 | |
|         { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
 | |
|           getI32Imm(InstMaskEnd - 32, dl) };
 | |
|       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
 | |
|                                             Ops), 0);
 | |
|     }
 | |
| 
 | |
|     if (InstMaskEnd == 63 - RLAmt) {
 | |
|       SDValue Ops[] =
 | |
|         { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
 | |
|       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
 | |
|     }
 | |
| 
 | |
|     // We cannot do this with a single instruction, so we'll use two. The
 | |
|     // problem is that we're not free to choose both a rotation amount and mask
 | |
|     // start and end independently. We can choose an arbitrary mask start and
 | |
|     // end, but then the rotation amount is fixed. Rotation, however, can be
 | |
|     // inverted, and so by applying an "inverse" rotation first, we can get the
 | |
|     // desired result.
 | |
|     if (InstCnt) *InstCnt += 1;
 | |
| 
 | |
|     // The rotation mask for the second instruction must be MaskStart.
 | |
|     unsigned RLAmt2 = MaskStart;
 | |
|     // The first instruction must rotate V so that the overall rotation amount
 | |
|     // is RLAmt.
 | |
|     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
 | |
|     if (RLAmt1)
 | |
|       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
 | |
|     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
 | |
|   }
 | |
| 
 | |
|   void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
 | |
|     if (BPermRewriterNoMasking)
 | |
|       return;
 | |
| 
 | |
|     // The idea here is the same as in the 32-bit version, but with additional
 | |
|     // complications from the fact that Repl32 might be true. Because we
 | |
|     // aggressively convert bit groups to Repl32 form (which, for small
 | |
|     // rotation factors, involves no other change), and then coalesce, it might
 | |
|     // be the case that a single 64-bit masking operation could handle both
 | |
|     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
 | |
|     // form allowed coalescing, then we must use a 32-bit rotaton in order to
 | |
|     // completely capture the new combined bit group.
 | |
| 
 | |
|     for (ValueRotInfo &VRI : ValueRotsVec) {
 | |
|       uint64_t Mask = 0;
 | |
| 
 | |
|       // We need to add to the mask all bits from the associated bit groups.
 | |
|       // If Repl32 is false, we need to add bits from bit groups that have
 | |
|       // Repl32 true, but are trivially convertable to Repl32 false. Such a
 | |
|       // group is trivially convertable if it overlaps only with the lower 32
 | |
|       // bits, and the group has not been coalesced.
 | |
|       auto MatchingBG = [VRI](BitGroup &BG) {
 | |
|         if (VRI.V != BG.V)
 | |
|           return false;
 | |
| 
 | |
|         unsigned EffRLAmt = BG.RLAmt;
 | |
|         if (!VRI.Repl32 && BG.Repl32) {
 | |
|           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
 | |
|               !BG.Repl32Coalesced) {
 | |
|             if (BG.Repl32CR)
 | |
|               EffRLAmt += 32;
 | |
|           } else {
 | |
|             return false;
 | |
|           }
 | |
|         } else if (VRI.Repl32 != BG.Repl32) {
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         if (VRI.RLAmt != EffRLAmt)
 | |
|           return false;
 | |
| 
 | |
|         return true;
 | |
|       };
 | |
| 
 | |
|       for (auto &BG : BitGroups) {
 | |
|         if (!MatchingBG(BG))
 | |
|           continue;
 | |
| 
 | |
|         if (BG.StartIdx <= BG.EndIdx) {
 | |
|           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
 | |
|             Mask |= (UINT64_C(1) << i);
 | |
|         } else {
 | |
|           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
 | |
|             Mask |= (UINT64_C(1) << i);
 | |
|           for (unsigned i = 0; i <= BG.EndIdx; ++i)
 | |
|             Mask |= (UINT64_C(1) << i);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We can use the 32-bit andi/andis technique if the mask does not
 | |
|       // require any higher-order bits. This can save an instruction compared
 | |
|       // to always using the general 64-bit technique.
 | |
|       bool Use32BitInsts = isUInt<32>(Mask);
 | |
|       // Compute the masks for andi/andis that would be necessary.
 | |
|       unsigned ANDIMask = (Mask & UINT16_MAX),
 | |
|                ANDISMask = (Mask >> 16) & UINT16_MAX;
 | |
| 
 | |
|       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
 | |
| 
 | |
|       unsigned NumAndInsts = (unsigned) NeedsRotate +
 | |
|                              (unsigned) (bool) Res;
 | |
|       if (Use32BitInsts)
 | |
|         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
 | |
|                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
 | |
|       else
 | |
|         NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
 | |
| 
 | |
|       unsigned NumRLInsts = 0;
 | |
|       bool FirstBG = true;
 | |
|       for (auto &BG : BitGroups) {
 | |
|         if (!MatchingBG(BG))
 | |
|           continue;
 | |
|         NumRLInsts +=
 | |
|           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
 | |
|                                !FirstBG);
 | |
|         FirstBG = false;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
 | |
|                       " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
 | |
|                       "\n\t\t\tisel using masking: " << NumAndInsts <<
 | |
|                       " using rotates: " << NumRLInsts << "\n");
 | |
| 
 | |
|       // When we'd use andi/andis, we bias toward using the rotates (andi only
 | |
|       // has a record form, and is cracked on POWER cores). However, when using
 | |
|       // general 64-bit constant formation, bias toward the constant form,
 | |
|       // because that exposes more opportunities for CSE.
 | |
|       if (NumAndInsts > NumRLInsts)
 | |
|         continue;
 | |
|       if (Use32BitInsts && NumAndInsts == NumRLInsts)
 | |
|         continue;
 | |
| 
 | |
|       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
 | |
| 
 | |
|       if (InstCnt) *InstCnt += NumAndInsts;
 | |
| 
 | |
|       SDValue VRot;
 | |
|       // We actually need to generate a rotation if we have a non-zero rotation
 | |
|       // factor or, in the Repl32 case, if we care about any of the
 | |
|       // higher-order replicated bits. In the latter case, we generate a mask
 | |
|       // backward so that it actually includes the entire 64 bits.
 | |
|       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
 | |
|         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
 | |
|                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
 | |
|       else
 | |
|         VRot = VRI.V;
 | |
| 
 | |
|       SDValue TotalVal;
 | |
|       if (Use32BitInsts) {
 | |
|         assert((ANDIMask != 0 || ANDISMask != 0) &&
 | |
|                "No set bits in mask when using 32-bit ands for 64-bit value");
 | |
| 
 | |
|         SDValue ANDIVal, ANDISVal;
 | |
|         if (ANDIMask != 0)
 | |
|           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
 | |
|                               VRot, getI32Imm(ANDIMask, dl)), 0);
 | |
|         if (ANDISMask != 0)
 | |
|           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
 | |
|                                VRot, getI32Imm(ANDISMask, dl)), 0);
 | |
| 
 | |
|         if (!ANDIVal)
 | |
|           TotalVal = ANDISVal;
 | |
|         else if (!ANDISVal)
 | |
|           TotalVal = ANDIVal;
 | |
|         else
 | |
|           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
 | |
|                                ANDIVal, ANDISVal), 0);
 | |
|       } else {
 | |
|         TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
 | |
|         TotalVal =
 | |
|           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
 | |
|                                          VRot, TotalVal), 0);
 | |
|      }
 | |
| 
 | |
|       if (!Res)
 | |
|         Res = TotalVal;
 | |
|       else
 | |
|         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
 | |
|                                              Res, TotalVal), 0);
 | |
| 
 | |
|       // Now, remove all groups with this underlying value and rotation
 | |
|       // factor.
 | |
|       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | |
|         if (MatchingBG(*I))
 | |
|           I = BitGroups.erase(I);
 | |
|         else
 | |
|           ++I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Instruction selection for the 64-bit case.
 | |
|   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
 | |
|     SDLoc dl(N);
 | |
|     SDValue Res;
 | |
| 
 | |
|     if (InstCnt) *InstCnt = 0;
 | |
| 
 | |
|     // Take care of cases that should use andi/andis first.
 | |
|     SelectAndParts64(dl, Res, InstCnt);
 | |
| 
 | |
|     // If we've not yet selected a 'starting' instruction, and we have no zeros
 | |
|     // to fill in, select the (Value, RLAmt) with the highest priority (largest
 | |
|     // number of groups), and start with this rotated value.
 | |
|     if ((!HasZeros || LateMask) && !Res) {
 | |
|       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
 | |
|       // groups will come first, and so the VRI representing the largest number
 | |
|       // of groups might not be first (it might be the first Repl32 groups).
 | |
|       unsigned MaxGroupsIdx = 0;
 | |
|       if (!ValueRotsVec[0].Repl32) {
 | |
|         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
 | |
|           if (ValueRotsVec[i].Repl32) {
 | |
|             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
 | |
|               MaxGroupsIdx = i;
 | |
|             break;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
 | |
|       bool NeedsRotate = false;
 | |
|       if (VRI.RLAmt) {
 | |
|         NeedsRotate = true;
 | |
|       } else if (VRI.Repl32) {
 | |
|         for (auto &BG : BitGroups) {
 | |
|           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
 | |
|               BG.Repl32 != VRI.Repl32)
 | |
|             continue;
 | |
| 
 | |
|           // We don't need a rotate if the bit group is confined to the lower
 | |
|           // 32 bits.
 | |
|           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
 | |
|             continue;
 | |
| 
 | |
|           NeedsRotate = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (NeedsRotate)
 | |
|         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
 | |
|                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
 | |
|                               InstCnt);
 | |
|       else
 | |
|         Res = VRI.V;
 | |
| 
 | |
|       // Now, remove all groups with this underlying value and rotation factor.
 | |
|       if (Res)
 | |
|         for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | |
|           if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
 | |
|             I = BitGroups.erase(I);
 | |
|           else
 | |
|             ++I;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Because 64-bit rotates are more flexible than inserts, we might have a
 | |
|     // preference regarding which one we do first (to save one instruction).
 | |
|     if (!Res)
 | |
|       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
 | |
|         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
 | |
|                                 false) <
 | |
|             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
 | |
|                                 true)) {
 | |
|           if (I != BitGroups.begin()) {
 | |
|             BitGroup BG = *I;
 | |
|             BitGroups.erase(I);
 | |
|             BitGroups.insert(BitGroups.begin(), BG);
 | |
|           }
 | |
| 
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Insert the other groups (one at a time).
 | |
|     for (auto &BG : BitGroups) {
 | |
|       if (!Res)
 | |
|         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
 | |
|                               BG.EndIdx, InstCnt);
 | |
|       else
 | |
|         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
 | |
|                                  BG.StartIdx, BG.EndIdx, InstCnt);
 | |
|     }
 | |
| 
 | |
|     if (LateMask) {
 | |
|       uint64_t Mask = getZerosMask();
 | |
| 
 | |
|       // We can use the 32-bit andi/andis technique if the mask does not
 | |
|       // require any higher-order bits. This can save an instruction compared
 | |
|       // to always using the general 64-bit technique.
 | |
|       bool Use32BitInsts = isUInt<32>(Mask);
 | |
|       // Compute the masks for andi/andis that would be necessary.
 | |
|       unsigned ANDIMask = (Mask & UINT16_MAX),
 | |
|                ANDISMask = (Mask >> 16) & UINT16_MAX;
 | |
| 
 | |
|       if (Use32BitInsts) {
 | |
|         assert((ANDIMask != 0 || ANDISMask != 0) &&
 | |
|                "No set bits in mask when using 32-bit ands for 64-bit value");
 | |
| 
 | |
|         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
 | |
|                                  (unsigned) (ANDISMask != 0) +
 | |
|                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
 | |
| 
 | |
|         SDValue ANDIVal, ANDISVal;
 | |
|         if (ANDIMask != 0)
 | |
|           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
 | |
|                               Res, getI32Imm(ANDIMask, dl)), 0);
 | |
|         if (ANDISMask != 0)
 | |
|           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
 | |
|                                Res, getI32Imm(ANDISMask, dl)), 0);
 | |
| 
 | |
|         if (!ANDIVal)
 | |
|           Res = ANDISVal;
 | |
|         else if (!ANDISVal)
 | |
|           Res = ANDIVal;
 | |
|         else
 | |
|           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
 | |
|                           ANDIVal, ANDISVal), 0);
 | |
|       } else {
 | |
|         if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
 | |
| 
 | |
|         SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
 | |
|         Res =
 | |
|           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
 | |
|                                          Res, MaskVal), 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Res.getNode();
 | |
|   }
 | |
| 
 | |
|   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
 | |
|     // Fill in BitGroups.
 | |
|     collectBitGroups(LateMask);
 | |
|     if (BitGroups.empty())
 | |
|       return nullptr;
 | |
| 
 | |
|     // For 64-bit values, figure out when we can use 32-bit instructions.
 | |
|     if (Bits.size() == 64)
 | |
|       assignRepl32BitGroups();
 | |
| 
 | |
|     // Fill in ValueRotsVec.
 | |
|     collectValueRotInfo();
 | |
| 
 | |
|     if (Bits.size() == 32) {
 | |
|       return Select32(N, LateMask, InstCnt);
 | |
|     } else {
 | |
|       assert(Bits.size() == 64 && "Not 64 bits here?");
 | |
|       return Select64(N, LateMask, InstCnt);
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   SmallVector<ValueBit, 64> Bits;
 | |
| 
 | |
|   bool HasZeros;
 | |
|   SmallVector<unsigned, 64> RLAmt;
 | |
| 
 | |
|   SmallVector<BitGroup, 16> BitGroups;
 | |
| 
 | |
|   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
 | |
|   SmallVector<ValueRotInfo, 16> ValueRotsVec;
 | |
| 
 | |
|   SelectionDAG *CurDAG;
 | |
| 
 | |
| public:
 | |
|   BitPermutationSelector(SelectionDAG *DAG)
 | |
|     : CurDAG(DAG) {}
 | |
| 
 | |
|   // Here we try to match complex bit permutations into a set of
 | |
|   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
 | |
|   // known to produce optimial code for common cases (like i32 byte swapping).
 | |
|   SDNode *Select(SDNode *N) {
 | |
|     Bits.resize(N->getValueType(0).getSizeInBits());
 | |
|     if (!getValueBits(SDValue(N, 0), Bits))
 | |
|       return nullptr;
 | |
| 
 | |
|     DEBUG(dbgs() << "Considering bit-permutation-based instruction"
 | |
|                     " selection for:    ");
 | |
|     DEBUG(N->dump(CurDAG));
 | |
| 
 | |
|     // Fill it RLAmt and set HasZeros.
 | |
|     computeRotationAmounts();
 | |
| 
 | |
|     if (!HasZeros)
 | |
|       return Select(N, false);
 | |
| 
 | |
|     // We currently have two techniques for handling results with zeros: early
 | |
|     // masking (the default) and late masking. Late masking is sometimes more
 | |
|     // efficient, but because the structure of the bit groups is different, it
 | |
|     // is hard to tell without generating both and comparing the results. With
 | |
|     // late masking, we ignore zeros in the resulting value when inserting each
 | |
|     // set of bit groups, and then mask in the zeros at the end. With early
 | |
|     // masking, we only insert the non-zero parts of the result at every step.
 | |
| 
 | |
|     unsigned InstCnt, InstCntLateMask;
 | |
|     DEBUG(dbgs() << "\tEarly masking:\n");
 | |
|     SDNode *RN = Select(N, false, &InstCnt);
 | |
|     DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
 | |
| 
 | |
|     DEBUG(dbgs() << "\tLate masking:\n");
 | |
|     SDNode *RNLM = Select(N, true, &InstCntLateMask);
 | |
|     DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
 | |
|                     " instructions\n");
 | |
| 
 | |
|     if (InstCnt <= InstCntLateMask) {
 | |
|       DEBUG(dbgs() << "\tUsing early-masking for isel\n");
 | |
|       return RN;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "\tUsing late-masking for isel\n");
 | |
|     return RNLM;
 | |
|   }
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
 | |
|   if (N->getValueType(0) != MVT::i32 &&
 | |
|       N->getValueType(0) != MVT::i64)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!UseBitPermRewriter)
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::ROTL:
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRL:
 | |
|   case ISD::AND:
 | |
|   case ISD::OR: {
 | |
|     BitPermutationSelector BPS(CurDAG);
 | |
|     return BPS.Select(N);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SelectCC - Select a comparison of the specified values with the specified
 | |
| /// condition code, returning the CR# of the expression.
 | |
| SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
 | |
|                                     ISD::CondCode CC, SDLoc dl) {
 | |
|   // Always select the LHS.
 | |
|   unsigned Opc;
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     unsigned Imm;
 | |
|     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|       if (isInt32Immediate(RHS, Imm)) {
 | |
|         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | |
|         if (isUInt<16>(Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF, dl)),
 | |
|                          0);
 | |
|         // If this is a 16-bit signed immediate, fold it.
 | |
|         if (isInt<16>((int)Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF, dl)),
 | |
|                          0);
 | |
| 
 | |
|         // For non-equality comparisons, the default code would materialize the
 | |
|         // constant, then compare against it, like this:
 | |
|         //   lis r2, 4660
 | |
|         //   ori r2, r2, 22136
 | |
|         //   cmpw cr0, r3, r2
 | |
|         // Since we are just comparing for equality, we can emit this instead:
 | |
|         //   xoris r0,r3,0x1234
 | |
|         //   cmplwi cr0,r0,0x5678
 | |
|         //   beq cr0,L6
 | |
|         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
 | |
|                                            getI32Imm(Imm >> 16, dl)), 0);
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
 | |
|                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
 | |
|       }
 | |
|       Opc = PPC::CMPLW;
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | |
|                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
 | |
|       Opc = PPC::CMPLW;
 | |
|     } else {
 | |
|       short SImm;
 | |
|       if (isIntS16Immediate(RHS, SImm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | |
|                                               getI32Imm((int)SImm & 0xFFFF,
 | |
|                                                         dl)),
 | |
|                          0);
 | |
|       Opc = PPC::CMPW;
 | |
|     }
 | |
|   } else if (LHS.getValueType() == MVT::i64) {
 | |
|     uint64_t Imm;
 | |
|     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|       if (isInt64Immediate(RHS.getNode(), Imm)) {
 | |
|         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | |
|         if (isUInt<16>(Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF, dl)),
 | |
|                          0);
 | |
|         // If this is a 16-bit signed immediate, fold it.
 | |
|         if (isInt<16>(Imm))
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | |
|                                                 getI32Imm(Imm & 0xFFFF, dl)),
 | |
|                          0);
 | |
| 
 | |
|         // For non-equality comparisons, the default code would materialize the
 | |
|         // constant, then compare against it, like this:
 | |
|         //   lis r2, 4660
 | |
|         //   ori r2, r2, 22136
 | |
|         //   cmpd cr0, r3, r2
 | |
|         // Since we are just comparing for equality, we can emit this instead:
 | |
|         //   xoris r0,r3,0x1234
 | |
|         //   cmpldi cr0,r0,0x5678
 | |
|         //   beq cr0,L6
 | |
|         if (isUInt<32>(Imm)) {
 | |
|           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
 | |
|                                              getI64Imm(Imm >> 16, dl)), 0);
 | |
|           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
 | |
|                                                 getI64Imm(Imm & 0xFFFF, dl)),
 | |
|                          0);
 | |
|         }
 | |
|       }
 | |
|       Opc = PPC::CMPLD;
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | |
|                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
 | |
|       Opc = PPC::CMPLD;
 | |
|     } else {
 | |
|       short SImm;
 | |
|       if (isIntS16Immediate(RHS, SImm))
 | |
|         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | |
|                                               getI64Imm(SImm & 0xFFFF, dl)),
 | |
|                          0);
 | |
|       Opc = PPC::CMPD;
 | |
|     }
 | |
|   } else if (LHS.getValueType() == MVT::f32) {
 | |
|     Opc = PPC::FCMPUS;
 | |
|   } else {
 | |
|     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
 | |
|     Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
 | |
|   }
 | |
|   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
 | |
| }
 | |
| 
 | |
| static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETOGE:
 | |
|     llvm_unreachable("Should be lowered by legalize!");
 | |
|   default: llvm_unreachable("Unknown condition!");
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETEQ:  return PPC::PRED_EQ;
 | |
|   case ISD::SETUNE:
 | |
|   case ISD::SETNE:  return PPC::PRED_NE;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETLT:  return PPC::PRED_LT;
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  return PPC::PRED_LE;
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:  return PPC::PRED_GT;
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  return PPC::PRED_GE;
 | |
|   case ISD::SETO:   return PPC::PRED_NU;
 | |
|   case ISD::SETUO:  return PPC::PRED_UN;
 | |
|     // These two are invalid for floating point.  Assume we have int.
 | |
|   case ISD::SETULT: return PPC::PRED_LT;
 | |
|   case ISD::SETUGT: return PPC::PRED_GT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCRIdxForSetCC - Return the index of the condition register field
 | |
| /// associated with the SetCC condition, and whether or not the field is
 | |
| /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
 | |
|   Invert = false;
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown condition!");
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
 | |
|   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
 | |
|   case ISD::SETUNE:
 | |
|   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
 | |
|   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETONE:
 | |
|     llvm_unreachable("Invalid branch code: should be expanded by legalize");
 | |
|   // These are invalid for floating point.  Assume integer.
 | |
|   case ISD::SETULT: return 0;
 | |
|   case ISD::SETUGT: return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getVCmpInst: return the vector compare instruction for the specified
 | |
| // vector type and condition code. Since this is for altivec specific code,
 | |
| // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
 | |
| static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
 | |
|                                 bool HasVSX, bool &Swap, bool &Negate) {
 | |
|   Swap = false;
 | |
|   Negate = false;
 | |
| 
 | |
|   if (VecVT.isFloatingPoint()) {
 | |
|     /* Handle some cases by swapping input operands.  */
 | |
|     switch (CC) {
 | |
|       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
 | |
|       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
 | |
|       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
 | |
|       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
 | |
|       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
 | |
|       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
 | |
|       default: break;
 | |
|     }
 | |
|     /* Handle some cases by negating the result.  */
 | |
|     switch (CC) {
 | |
|       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
 | |
|       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
 | |
|       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
 | |
|       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
 | |
|       default: break;
 | |
|     }
 | |
|     /* We have instructions implementing the remaining cases.  */
 | |
|     switch (CC) {
 | |
|       case ISD::SETEQ:
 | |
|       case ISD::SETOEQ:
 | |
|         if (VecVT == MVT::v4f32)
 | |
|           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
 | |
|         else if (VecVT == MVT::v2f64)
 | |
|           return PPC::XVCMPEQDP;
 | |
|         break;
 | |
|       case ISD::SETGT:
 | |
|       case ISD::SETOGT:
 | |
|         if (VecVT == MVT::v4f32)
 | |
|           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
 | |
|         else if (VecVT == MVT::v2f64)
 | |
|           return PPC::XVCMPGTDP;
 | |
|         break;
 | |
|       case ISD::SETGE:
 | |
|       case ISD::SETOGE:
 | |
|         if (VecVT == MVT::v4f32)
 | |
|           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
 | |
|         else if (VecVT == MVT::v2f64)
 | |
|           return PPC::XVCMPGEDP;
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|     llvm_unreachable("Invalid floating-point vector compare condition");
 | |
|   } else {
 | |
|     /* Handle some cases by swapping input operands.  */
 | |
|     switch (CC) {
 | |
|       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
 | |
|       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
 | |
|       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
 | |
|       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
 | |
|       default: break;
 | |
|     }
 | |
|     /* Handle some cases by negating the result.  */
 | |
|     switch (CC) {
 | |
|       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
 | |
|       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
 | |
|       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
 | |
|       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
 | |
|       default: break;
 | |
|     }
 | |
|     /* We have instructions implementing the remaining cases.  */
 | |
|     switch (CC) {
 | |
|       case ISD::SETEQ:
 | |
|       case ISD::SETUEQ:
 | |
|         if (VecVT == MVT::v16i8)
 | |
|           return PPC::VCMPEQUB;
 | |
|         else if (VecVT == MVT::v8i16)
 | |
|           return PPC::VCMPEQUH;
 | |
|         else if (VecVT == MVT::v4i32)
 | |
|           return PPC::VCMPEQUW;
 | |
|         else if (VecVT == MVT::v2i64)
 | |
|           return PPC::VCMPEQUD;
 | |
|         break;
 | |
|       case ISD::SETGT:
 | |
|         if (VecVT == MVT::v16i8)
 | |
|           return PPC::VCMPGTSB;
 | |
|         else if (VecVT == MVT::v8i16)
 | |
|           return PPC::VCMPGTSH;
 | |
|         else if (VecVT == MVT::v4i32)
 | |
|           return PPC::VCMPGTSW;
 | |
|         else if (VecVT == MVT::v2i64)
 | |
|           return PPC::VCMPGTSD;
 | |
|         break;
 | |
|       case ISD::SETUGT:
 | |
|         if (VecVT == MVT::v16i8)
 | |
|           return PPC::VCMPGTUB;
 | |
|         else if (VecVT == MVT::v8i16)
 | |
|           return PPC::VCMPGTUH;
 | |
|         else if (VecVT == MVT::v4i32)
 | |
|           return PPC::VCMPGTUW;
 | |
|         else if (VecVT == MVT::v2i64)
 | |
|           return PPC::VCMPGTUD;
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|     llvm_unreachable("Invalid integer vector compare condition");
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
|   unsigned Imm;
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | |
|   EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = (PtrVT == MVT::i64);
 | |
| 
 | |
|   if (!PPCSubTarget->useCRBits() &&
 | |
|       isInt32Immediate(N->getOperand(1), Imm)) {
 | |
|     // We can codegen setcc op, imm very efficiently compared to a brcond.
 | |
|     // Check for those cases here.
 | |
|     // setcc op, 0
 | |
|     if (Imm == 0) {
 | |
|       SDValue Op = N->getOperand(0);
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ: {
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
 | |
|         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
 | |
|                           getI32Imm(31, dl) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|       }
 | |
|       case ISD::SETNE: {
 | |
|         if (isPPC64) break;
 | |
|         SDValue AD =
 | |
|           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                          Op, getI32Imm(~0U, dl)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
 | |
|                                     AD.getValue(1));
 | |
|       }
 | |
|       case ISD::SETLT: {
 | |
|         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
 | |
|                           getI32Imm(31, dl) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|       }
 | |
|       case ISD::SETGT: {
 | |
|         SDValue T =
 | |
|           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
 | |
|         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
 | |
|         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
 | |
|                           getI32Imm(31, dl) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|       }
 | |
|       }
 | |
|     } else if (Imm == ~0U) {        // setcc op, -1
 | |
|       SDValue Op = N->getOperand(0);
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:
 | |
|         if (isPPC64) break;
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                             Op, getI32Imm(1, dl)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | |
|                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
 | |
|                                                              MVT::i32,
 | |
|                                                              getI32Imm(0, dl)),
 | |
|                                       0), Op.getValue(1));
 | |
|       case ISD::SETNE: {
 | |
|         if (isPPC64) break;
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
 | |
|         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                             Op, getI32Imm(~0U, dl));
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
 | |
|                                     Op, SDValue(AD, 1));
 | |
|       }
 | |
|       case ISD::SETLT: {
 | |
|         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
 | |
|                                                     getI32Imm(1, dl)), 0);
 | |
|         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
 | |
|                                                     Op), 0);
 | |
|         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
 | |
|                           getI32Imm(31, dl) };
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|       }
 | |
|       case ISD::SETGT: {
 | |
|         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
 | |
|                           getI32Imm(31, dl) };
 | |
|         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
 | |
|                                     getI32Imm(1, dl));
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
| 
 | |
|   // Altivec Vector compare instructions do not set any CR register by default and
 | |
|   // vector compare operations return the same type as the operands.
 | |
|   if (LHS.getValueType().isVector()) {
 | |
|     if (PPCSubTarget->hasQPX())
 | |
|       return nullptr;
 | |
| 
 | |
|     EVT VecVT = LHS.getValueType();
 | |
|     bool Swap, Negate;
 | |
|     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
 | |
|                                         PPCSubTarget->hasVSX(), Swap, Negate);
 | |
|     if (Swap)
 | |
|       std::swap(LHS, RHS);
 | |
| 
 | |
|     if (Negate) {
 | |
|       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
 | |
|       return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
 | |
|                                                               PPC::VNOR,
 | |
|                                   VecVT, VCmp, VCmp);
 | |
|     }
 | |
| 
 | |
|     return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   if (PPCSubTarget->useCRBits())
 | |
|     return nullptr;
 | |
| 
 | |
|   bool Inv;
 | |
|   unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | |
|   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
 | |
|   SDValue IntCR;
 | |
| 
 | |
|   // Force the ccreg into CR7.
 | |
|   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | |
| 
 | |
|   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
 | |
|   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
 | |
|                                InFlag).getValue(1);
 | |
| 
 | |
|   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
 | |
|                                          CCReg), 0);
 | |
| 
 | |
|   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
 | |
|                       getI32Imm(31, dl), getI32Imm(31, dl) };
 | |
|   if (!Inv)
 | |
|     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
| 
 | |
|   // Get the specified bit.
 | |
|   SDValue Tmp =
 | |
|     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | |
|   return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
 | |
| }
 | |
| 
 | |
| SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
 | |
|   // Transfer memoperands.
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
 | |
|   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Select - Convert the specified operand from a target-independent to a
 | |
| // target-specific node if it hasn't already been changed.
 | |
| SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
|   if (N->isMachineOpcode()) {
 | |
|     N->setNodeId(-1);
 | |
|     return nullptr;   // Already selected.
 | |
|   }
 | |
| 
 | |
|   // In case any misguided DAG-level optimizations form an ADD with a
 | |
|   // TargetConstant operand, crash here instead of miscompiling (by selecting
 | |
|   // an r+r add instead of some kind of r+i add).
 | |
|   if (N->getOpcode() == ISD::ADD &&
 | |
|       N->getOperand(1).getOpcode() == ISD::TargetConstant)
 | |
|     llvm_unreachable("Invalid ADD with TargetConstant operand");
 | |
| 
 | |
|   // Try matching complex bit permutations before doing anything else.
 | |
|   if (SDNode *NN = SelectBitPermutation(N))
 | |
|     return NN;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
| 
 | |
|   case ISD::Constant: {
 | |
|     if (N->getValueType(0) == MVT::i64)
 | |
|       return SelectInt64(CurDAG, N);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::SETCC: {
 | |
|     SDNode *SN = SelectSETCC(N);
 | |
|     if (SN)
 | |
|       return SN;
 | |
|     break;
 | |
|   }
 | |
|   case PPCISD::GlobalBaseReg:
 | |
|     return getGlobalBaseReg();
 | |
| 
 | |
|   case ISD::FrameIndex:
 | |
|     return getFrameIndex(N, N);
 | |
| 
 | |
|   case PPCISD::MFOCRF: {
 | |
|     SDValue InFlag = N->getOperand(1);
 | |
|     return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
 | |
|                                   N->getOperand(0), InFlag);
 | |
|   }
 | |
| 
 | |
|   case PPCISD::READ_TIME_BASE: {
 | |
|     return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
 | |
|                                   MVT::Other, N->getOperand(0));
 | |
|   }
 | |
| 
 | |
|   case PPCISD::SRA_ADDZE: {
 | |
|     SDValue N0 = N->getOperand(0);
 | |
|     SDValue ShiftAmt =
 | |
|       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
 | |
|                                   getConstantIntValue(), dl,
 | |
|                                   N->getValueType(0));
 | |
|     if (N->getValueType(0) == MVT::i64) {
 | |
|       SDNode *Op =
 | |
|         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
 | |
|                                N0, ShiftAmt);
 | |
|       return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
 | |
|                                   SDValue(Op, 0), SDValue(Op, 1));
 | |
|     } else {
 | |
|       assert(N->getValueType(0) == MVT::i32 &&
 | |
|              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
 | |
|       SDNode *Op =
 | |
|         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
 | |
|                                N0, ShiftAmt);
 | |
|       return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | |
|                                   SDValue(Op, 0), SDValue(Op, 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case ISD::LOAD: {
 | |
|     // Handle preincrement loads.
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     EVT LoadedVT = LD->getMemoryVT();
 | |
| 
 | |
|     // Normal loads are handled by code generated from the .td file.
 | |
|     if (LD->getAddressingMode() != ISD::PRE_INC)
 | |
|       break;
 | |
| 
 | |
|     SDValue Offset = LD->getOffset();
 | |
|     if (Offset.getOpcode() == ISD::TargetConstant ||
 | |
|         Offset.getOpcode() == ISD::TargetGlobalAddress) {
 | |
| 
 | |
|       unsigned Opcode;
 | |
|       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|       if (LD->getValueType(0) != MVT::i64) {
 | |
|         // Handle PPC32 integer and normal FP loads.
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::f64: Opcode = PPC::LFDU; break;
 | |
|           case MVT::f32: Opcode = PPC::LFSU; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZU; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZU; break;
 | |
|         }
 | |
|       } else {
 | |
|         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::i64: Opcode = PPC::LDU; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZU8; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZU8; break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Base = LD->getBasePtr();
 | |
|       SDValue Ops[] = { Offset, Base, Chain };
 | |
|       return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
 | |
|                                       LD->getValueType(0),
 | |
|                                       PPCLowering->getPointerTy(),
 | |
|                                       MVT::Other, Ops));
 | |
|     } else {
 | |
|       unsigned Opcode;
 | |
|       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|       if (LD->getValueType(0) != MVT::i64) {
 | |
|         // Handle PPC32 integer and normal FP loads.
 | |
|         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
 | |
|           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
 | |
|           case MVT::f64: Opcode = PPC::LFDUX; break;
 | |
|           case MVT::f32: Opcode = PPC::LFSUX; break;
 | |
|           case MVT::i32: Opcode = PPC::LWZUX; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZUX; break;
 | |
|         }
 | |
|       } else {
 | |
|         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | |
|         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
 | |
|                "Invalid sext update load");
 | |
|         switch (LoadedVT.getSimpleVT().SimpleTy) {
 | |
|           default: llvm_unreachable("Invalid PPC load type!");
 | |
|           case MVT::i64: Opcode = PPC::LDUX; break;
 | |
|           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
 | |
|           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
 | |
|           case MVT::i1:
 | |
|           case MVT::i8:  Opcode = PPC::LBZUX8; break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Base = LD->getBasePtr();
 | |
|       SDValue Ops[] = { Base, Offset, Chain };
 | |
|       return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
 | |
|                                       LD->getValueType(0),
 | |
|                                       PPCLowering->getPointerTy(),
 | |
|                                       MVT::Other, Ops));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case ISD::AND: {
 | |
|     unsigned Imm, Imm2, SH, MB, ME;
 | |
|     uint64_t Imm64;
 | |
| 
 | |
|     // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | |
|     // with a mask, emit rlwinm
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
 | |
|       SDValue Val = N->getOperand(0).getOperand(0);
 | |
|       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
 | |
|                         getI32Imm(ME, dl) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|     }
 | |
|     // If this is just a masked value where the input is not handled above, and
 | |
|     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         isRunOfOnes(Imm, MB, ME) &&
 | |
|         N->getOperand(0).getOpcode() != ISD::ROTL) {
 | |
|       SDValue Val = N->getOperand(0);
 | |
|       SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
 | |
|                         getI32Imm(ME, dl) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|     }
 | |
|     // If this is a 64-bit zero-extension mask, emit rldicl.
 | |
|     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
 | |
|         isMask_64(Imm64)) {
 | |
|       SDValue Val = N->getOperand(0);
 | |
|       MB = 64 - countTrailingOnes(Imm64);
 | |
|       SH = 0;
 | |
| 
 | |
|       // If the operand is a logical right shift, we can fold it into this
 | |
|       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
 | |
|       // for n <= mb. The right shift is really a left rotate followed by a
 | |
|       // mask, and this mask is a more-restrictive sub-mask of the mask implied
 | |
|       // by the shift.
 | |
|       if (Val.getOpcode() == ISD::SRL &&
 | |
|           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
 | |
|         assert(Imm < 64 && "Illegal shift amount");
 | |
|         Val = Val.getOperand(0);
 | |
|         SH = 64 - Imm;
 | |
|       }
 | |
| 
 | |
|       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
 | |
|     }
 | |
|     // AND X, 0 -> 0, not "rlwinm 32".
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
 | |
|       ReplaceUses(SDValue(N, 0), N->getOperand(1));
 | |
|       return nullptr;
 | |
|     }
 | |
|     // ISD::OR doesn't get all the bitfield insertion fun.
 | |
|     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | |
|     if (isInt32Immediate(N->getOperand(1), Imm) &&
 | |
|         N->getOperand(0).getOpcode() == ISD::OR &&
 | |
|         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
 | |
|       unsigned MB, ME;
 | |
|       Imm = ~(Imm^Imm2);
 | |
|       if (isRunOfOnes(Imm, MB, ME)) {
 | |
|         SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                             N->getOperand(0).getOperand(1),
 | |
|                             getI32Imm(0, dl), getI32Imm(MB, dl),
 | |
|                             getI32Imm(ME, dl) };
 | |
|         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::OR: {
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       if (SDNode *I = SelectBitfieldInsert(N))
 | |
|         return I;
 | |
| 
 | |
|     short Imm;
 | |
|     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
 | |
|         isIntS16Immediate(N->getOperand(1), Imm)) {
 | |
|       APInt LHSKnownZero, LHSKnownOne;
 | |
|       CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
 | |
| 
 | |
|       // If this is equivalent to an add, then we can fold it with the
 | |
|       // FrameIndex calculation.
 | |
|       if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
 | |
|         return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ADD: {
 | |
|     short Imm;
 | |
|     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
 | |
|         isIntS16Immediate(N->getOperand(1), Imm))
 | |
|       return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SHL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                           getI32Imm(SH, dl), getI32Imm(MB, dl),
 | |
|                           getI32Imm(ME, dl) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SRL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | |
|       SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | |
|                           getI32Imm(SH, dl), getI32Imm(MB, dl),
 | |
|                           getI32Imm(ME, dl) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | |
|     }
 | |
| 
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   // FIXME: Remove this once the ANDI glue bug is fixed:
 | |
|   case PPCISD::ANDIo_1_EQ_BIT:
 | |
|   case PPCISD::ANDIo_1_GT_BIT: {
 | |
|     if (!ANDIGlueBug)
 | |
|       break;
 | |
| 
 | |
|     EVT InVT = N->getOperand(0).getValueType();
 | |
|     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
 | |
|            "Invalid input type for ANDIo_1_EQ_BIT");
 | |
| 
 | |
|     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
 | |
|     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
 | |
|                                         N->getOperand(0),
 | |
|                                         CurDAG->getTargetConstant(1, dl, InVT)),
 | |
|                  0);
 | |
|     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
 | |
|     SDValue SRIdxVal =
 | |
|       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
 | |
|                                 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
 | |
| 
 | |
|     return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
 | |
|                                 CR0Reg, SRIdxVal,
 | |
|                                 SDValue(AndI.getNode(), 1) /* glue */);
 | |
|   }
 | |
|   case ISD::SELECT_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | |
|     EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | |
|     bool isPPC64 = (PtrVT == MVT::i64);
 | |
| 
 | |
|     // If this is a select of i1 operands, we'll pattern match it.
 | |
|     if (PPCSubTarget->useCRBits() &&
 | |
|         N->getOperand(0).getValueType() == MVT::i1)
 | |
|       break;
 | |
| 
 | |
|     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | |
|     if (!isPPC64)
 | |
|       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | |
|         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | |
|           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | |
|             if (N1C->isNullValue() && N3C->isNullValue() &&
 | |
|                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
 | |
|                 // FIXME: Implement this optzn for PPC64.
 | |
|                 N->getValueType(0) == MVT::i32) {
 | |
|               SDNode *Tmp =
 | |
|                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | |
|                                        N->getOperand(0), getI32Imm(~0U, dl));
 | |
|               return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | |
|                                           SDValue(Tmp, 0), N->getOperand(0),
 | |
|                                           SDValue(Tmp, 1));
 | |
|             }
 | |
| 
 | |
|     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
 | |
| 
 | |
|     if (N->getValueType(0) == MVT::i1) {
 | |
|       // An i1 select is: (c & t) | (!c & f).
 | |
|       bool Inv;
 | |
|       unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | |
| 
 | |
|       unsigned SRI;
 | |
|       switch (Idx) {
 | |
|       default: llvm_unreachable("Invalid CC index");
 | |
|       case 0: SRI = PPC::sub_lt; break;
 | |
|       case 1: SRI = PPC::sub_gt; break;
 | |
|       case 2: SRI = PPC::sub_eq; break;
 | |
|       case 3: SRI = PPC::sub_un; break;
 | |
|       }
 | |
| 
 | |
|       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
 | |
| 
 | |
|       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
 | |
|                                               CCBit, CCBit), 0);
 | |
|       SDValue C =    Inv ? NotCCBit : CCBit,
 | |
|               NotC = Inv ? CCBit    : NotCCBit;
 | |
| 
 | |
|       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
 | |
|                                            C, N->getOperand(2)), 0);
 | |
|       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
 | |
|                                               NotC, N->getOperand(3)), 0);
 | |
| 
 | |
|       return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
 | |
|     }
 | |
| 
 | |
|     unsigned BROpc = getPredicateForSetCC(CC);
 | |
| 
 | |
|     unsigned SelectCCOp;
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       SelectCCOp = PPC::SELECT_CC_I4;
 | |
|     else if (N->getValueType(0) == MVT::i64)
 | |
|       SelectCCOp = PPC::SELECT_CC_I8;
 | |
|     else if (N->getValueType(0) == MVT::f32)
 | |
|       if (PPCSubTarget->hasP8Vector())
 | |
|         SelectCCOp = PPC::SELECT_CC_VSSRC;
 | |
|       else
 | |
|         SelectCCOp = PPC::SELECT_CC_F4;
 | |
|     else if (N->getValueType(0) == MVT::f64)
 | |
|       if (PPCSubTarget->hasVSX())
 | |
|         SelectCCOp = PPC::SELECT_CC_VSFRC;
 | |
|       else
 | |
|         SelectCCOp = PPC::SELECT_CC_F8;
 | |
|     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
 | |
|       SelectCCOp = PPC::SELECT_CC_QFRC;
 | |
|     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
 | |
|       SelectCCOp = PPC::SELECT_CC_QSRC;
 | |
|     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
 | |
|       SelectCCOp = PPC::SELECT_CC_QBRC;
 | |
|     else if (N->getValueType(0) == MVT::v2f64 ||
 | |
|              N->getValueType(0) == MVT::v2i64)
 | |
|       SelectCCOp = PPC::SELECT_CC_VSRC;
 | |
|     else
 | |
|       SelectCCOp = PPC::SELECT_CC_VRRC;
 | |
| 
 | |
|     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
 | |
|                         getI32Imm(BROpc, dl) };
 | |
|     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
 | |
|   }
 | |
|   case ISD::VSELECT:
 | |
|     if (PPCSubTarget->hasVSX()) {
 | |
|       SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
 | |
|                                   N->getValueType(0) == MVT::v2i64)) {
 | |
|       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | |
|       
 | |
|       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
 | |
|               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
 | |
|       unsigned DM[2];
 | |
| 
 | |
|       for (int i = 0; i < 2; ++i)
 | |
|         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
 | |
|           DM[i] = 0;
 | |
|         else
 | |
|           DM[i] = 1;
 | |
| 
 | |
|       // For little endian, we must swap the input operands and adjust
 | |
|       // the mask elements (reverse and invert them).
 | |
|       if (PPCSubTarget->isLittleEndian()) {
 | |
|         std::swap(Op1, Op2);
 | |
|         unsigned tmp = DM[0];
 | |
|         DM[0] = 1 - DM[1];
 | |
|         DM[1] = 1 - tmp;
 | |
|       }
 | |
| 
 | |
|       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
 | |
|                                               MVT::i32);
 | |
| 
 | |
|       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
 | |
|           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
 | |
|           isa<LoadSDNode>(Op1.getOperand(0))) {
 | |
|         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
 | |
|         SDValue Base, Offset;
 | |
| 
 | |
|         if (LD->isUnindexed() &&
 | |
|             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
 | |
|           SDValue Chain = LD->getChain();
 | |
|           SDValue Ops[] = { Base, Offset, Chain };
 | |
|           return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
 | |
|                                       N->getValueType(0), Ops);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       SDValue Ops[] = { Op1, Op2, DMV };
 | |
|       return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case PPCISD::BDNZ:
 | |
|   case PPCISD::BDZ: {
 | |
|     bool IsPPC64 = PPCSubTarget->isPPC64();
 | |
|     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
 | |
|     return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
 | |
|                                    (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                                    (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
 | |
|                                 MVT::Other, Ops);
 | |
|   }
 | |
|   case PPCISD::COND_BRANCH: {
 | |
|     // Op #0 is the Chain.
 | |
|     // Op #1 is the PPC::PRED_* number.
 | |
|     // Op #2 is the CR#
 | |
|     // Op #3 is the Dest MBB
 | |
|     // Op #4 is the Flag.
 | |
|     // Prevent PPC::PRED_* from being selected into LI.
 | |
|     SDValue Pred =
 | |
|       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(), dl);
 | |
|     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
 | |
|       N->getOperand(0), N->getOperand(4) };
 | |
|     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | |
|     unsigned PCC = getPredicateForSetCC(CC);
 | |
| 
 | |
|     if (N->getOperand(2).getValueType() == MVT::i1) {
 | |
|       unsigned Opc;
 | |
|       bool Swap;
 | |
|       switch (PCC) {
 | |
|       default: llvm_unreachable("Unexpected Boolean-operand predicate");
 | |
|       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
 | |
|       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
 | |
|       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
 | |
|       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
 | |
|       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
 | |
|       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
 | |
|       }
 | |
| 
 | |
|       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
 | |
|                                              N->getOperand(Swap ? 3 : 2),
 | |
|                                              N->getOperand(Swap ? 2 : 3)), 0);
 | |
|       return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
 | |
|                                   BitComp, N->getOperand(4), N->getOperand(0));
 | |
|     }
 | |
| 
 | |
|     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
 | |
|     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
 | |
|                         N->getOperand(4), N->getOperand(0) };
 | |
|     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
 | |
|   }
 | |
|   case ISD::BRIND: {
 | |
|     // FIXME: Should custom lower this.
 | |
|     SDValue Chain = N->getOperand(0);
 | |
|     SDValue Target = N->getOperand(1);
 | |
|     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
 | |
|     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
 | |
|     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
 | |
|                                            Chain), 0);
 | |
|     return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
 | |
|   }
 | |
|   case PPCISD::TOC_ENTRY: {
 | |
|     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
 | |
|             "Only supported for 64-bit ABI and 32-bit SVR4");
 | |
|     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
 | |
|       SDValue GA = N->getOperand(0);
 | |
|       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
 | |
|                                       MVT::i32, GA, N->getOperand(1)));
 | |
|     }
 | |
| 
 | |
|     // For medium and large code model, we generate two instructions as
 | |
|     // described below.  Otherwise we allow SelectCodeCommon to handle this,
 | |
|     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
 | |
|     CodeModel::Model CModel = TM.getCodeModel();
 | |
|     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
 | |
|       break;
 | |
| 
 | |
|     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
 | |
|     // If it is an externally defined symbol, a symbol with common linkage,
 | |
|     // a non-local function address, or a jump table address, or if we are
 | |
|     // generating code for large code model, we generate:
 | |
|     //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
 | |
|     // Otherwise we generate:
 | |
|     //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
 | |
|     SDValue GA = N->getOperand(0);
 | |
|     SDValue TOCbase = N->getOperand(1);
 | |
|     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
 | |
|                                          TOCbase, GA);
 | |
| 
 | |
|     if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
 | |
|         CModel == CodeModel::Large)
 | |
|       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
 | |
|                                       MVT::i64, GA, SDValue(Tmp, 0)));
 | |
| 
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
 | |
|       const GlobalValue *GValue = G->getGlobal();
 | |
|       if ((GValue->getType()->getElementType()->isFunctionTy() &&
 | |
|            (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
 | |
|           GValue->isDeclaration() || GValue->hasCommonLinkage() ||
 | |
|           GValue->hasAvailableExternallyLinkage())
 | |
|         return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
 | |
|                                         MVT::i64, GA, SDValue(Tmp, 0)));
 | |
|     }
 | |
| 
 | |
|     return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
 | |
|                                   SDValue(Tmp, 0), GA);
 | |
|   }
 | |
|   case PPCISD::PPC32_PICGOT: {
 | |
|     // Generate a PIC-safe GOT reference.
 | |
|     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
 | |
|       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
 | |
|     return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(),  MVT::i32);
 | |
|   }
 | |
|   case PPCISD::VADD_SPLAT: {
 | |
|     // This expands into one of three sequences, depending on whether
 | |
|     // the first operand is odd or even, positive or negative.
 | |
|     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
 | |
|            isa<ConstantSDNode>(N->getOperand(1)) &&
 | |
|            "Invalid operand on VADD_SPLAT!");
 | |
| 
 | |
|     int Elt     = N->getConstantOperandVal(0);
 | |
|     int EltSize = N->getConstantOperandVal(1);
 | |
|     unsigned Opc1, Opc2, Opc3;
 | |
|     EVT VT;
 | |
| 
 | |
|     if (EltSize == 1) {
 | |
|       Opc1 = PPC::VSPLTISB;
 | |
|       Opc2 = PPC::VADDUBM;
 | |
|       Opc3 = PPC::VSUBUBM;
 | |
|       VT = MVT::v16i8;
 | |
|     } else if (EltSize == 2) {
 | |
|       Opc1 = PPC::VSPLTISH;
 | |
|       Opc2 = PPC::VADDUHM;
 | |
|       Opc3 = PPC::VSUBUHM;
 | |
|       VT = MVT::v8i16;
 | |
|     } else {
 | |
|       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
 | |
|       Opc1 = PPC::VSPLTISW;
 | |
|       Opc2 = PPC::VADDUWM;
 | |
|       Opc3 = PPC::VSUBUWM;
 | |
|       VT = MVT::v4i32;
 | |
|     }
 | |
| 
 | |
|     if ((Elt & 1) == 0) {
 | |
|       // Elt is even, in the range [-32,-18] + [16,30].
 | |
|       //
 | |
|       // Convert: VADD_SPLAT elt, size
 | |
|       // Into:    tmp = VSPLTIS[BHW] elt
 | |
|       //          VADDU[BHW]M tmp, tmp
 | |
|       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
 | |
|       SDValue EltVal = getI32Imm(Elt >> 1, dl);
 | |
|       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       SDValue TmpVal = SDValue(Tmp, 0);
 | |
|       return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
 | |
| 
 | |
|     } else if (Elt > 0) {
 | |
|       // Elt is odd and positive, in the range [17,31].
 | |
|       //
 | |
|       // Convert: VADD_SPLAT elt, size
 | |
|       // Into:    tmp1 = VSPLTIS[BHW] elt-16
 | |
|       //          tmp2 = VSPLTIS[BHW] -16
 | |
|       //          VSUBU[BHW]M tmp1, tmp2
 | |
|       SDValue EltVal = getI32Imm(Elt - 16, dl);
 | |
|       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       EltVal = getI32Imm(-16, dl);
 | |
|       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
 | |
|                                     SDValue(Tmp2, 0));
 | |
| 
 | |
|     } else {
 | |
|       // Elt is odd and negative, in the range [-31,-17].
 | |
|       //
 | |
|       // Convert: VADD_SPLAT elt, size
 | |
|       // Into:    tmp1 = VSPLTIS[BHW] elt+16
 | |
|       //          tmp2 = VSPLTIS[BHW] -16
 | |
|       //          VADDU[BHW]M tmp1, tmp2
 | |
|       SDValue EltVal = getI32Imm(Elt + 16, dl);
 | |
|       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       EltVal = getI32Imm(-16, dl);
 | |
|       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | |
|       return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
 | |
|                                     SDValue(Tmp2, 0));
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return SelectCode(N);
 | |
| }
 | |
| 
 | |
| // If the target supports the cmpb instruction, do the idiom recognition here.
 | |
| // We don't do this as a DAG combine because we don't want to do it as nodes
 | |
| // are being combined (because we might miss part of the eventual idiom). We
 | |
| // don't want to do it during instruction selection because we want to reuse
 | |
| // the logic for lowering the masking operations already part of the
 | |
| // instruction selector.
 | |
| SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   assert(N->getOpcode() == ISD::OR &&
 | |
|          "Only OR nodes are supported for CMPB");
 | |
| 
 | |
|   SDValue Res;
 | |
|   if (!PPCSubTarget->hasCMPB())
 | |
|     return Res;
 | |
| 
 | |
|   if (N->getValueType(0) != MVT::i32 &&
 | |
|       N->getValueType(0) != MVT::i64)
 | |
|     return Res;
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   SDValue RHS, LHS;
 | |
|   bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
 | |
|   uint64_t Mask = 0, Alt = 0;
 | |
| 
 | |
|   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
 | |
|                                uint64_t &Mask, uint64_t &Alt,
 | |
|                                SDValue &LHS, SDValue &RHS) {
 | |
|     if (O.getOpcode() != ISD::SELECT_CC)
 | |
|       return false;
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
 | |
| 
 | |
|     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
 | |
|         !isa<ConstantSDNode>(O.getOperand(3)))
 | |
|       return false;
 | |
| 
 | |
|     uint64_t PM = O.getConstantOperandVal(2);
 | |
|     uint64_t PAlt = O.getConstantOperandVal(3);
 | |
|     for (b = 0; b < 8; ++b) {
 | |
|       uint64_t Mask = UINT64_C(0xFF) << (8*b);
 | |
|       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (b == 8)
 | |
|       return false;
 | |
|     Mask |= PM;
 | |
|     Alt  |= PAlt;
 | |
| 
 | |
|     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
 | |
|         O.getConstantOperandVal(1) != 0) {
 | |
|       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
 | |
|       if (Op0.getOpcode() == ISD::TRUNCATE)
 | |
|         Op0 = Op0.getOperand(0);
 | |
|       if (Op1.getOpcode() == ISD::TRUNCATE)
 | |
|         Op1 = Op1.getOperand(0);
 | |
| 
 | |
|       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
 | |
|           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
 | |
|           isa<ConstantSDNode>(Op0.getOperand(1))) {
 | |
| 
 | |
|         unsigned Bits = Op0.getValueType().getSizeInBits();
 | |
|         if (b != Bits/8-1)
 | |
|           return false;
 | |
|         if (Op0.getConstantOperandVal(1) != Bits-8)
 | |
|           return false;
 | |
| 
 | |
|         LHS = Op0.getOperand(0);
 | |
|         RHS = Op1.getOperand(0);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // When we have small integers (i16 to be specific), the form present
 | |
|       // post-legalization uses SETULT in the SELECT_CC for the
 | |
|       // higher-order byte, depending on the fact that the
 | |
|       // even-higher-order bytes are known to all be zero, for example:
 | |
|       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
 | |
|       // (so when the second byte is the same, because all higher-order
 | |
|       // bits from bytes 3 and 4 are known to be zero, the result of the
 | |
|       // xor can be at most 255)
 | |
|       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
 | |
|           isa<ConstantSDNode>(O.getOperand(1))) {
 | |
| 
 | |
|         uint64_t ULim = O.getConstantOperandVal(1);
 | |
|         if (ULim != (UINT64_C(1) << b*8))
 | |
|           return false;
 | |
| 
 | |
|         // Now we need to make sure that the upper bytes are known to be
 | |
|         // zero.
 | |
|         unsigned Bits = Op0.getValueType().getSizeInBits();
 | |
|         if (!CurDAG->MaskedValueIsZero(Op0,
 | |
|               APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
 | |
|           return false;
 | |
|         
 | |
|         LHS = Op0.getOperand(0);
 | |
|         RHS = Op0.getOperand(1);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (CC != ISD::SETEQ)
 | |
|       return false;
 | |
| 
 | |
|     SDValue Op = O.getOperand(0);
 | |
|     if (Op.getOpcode() == ISD::AND) {
 | |
|       if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|         return false;
 | |
|       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
 | |
|         return false;
 | |
| 
 | |
|       SDValue XOR = Op.getOperand(0);
 | |
|       if (XOR.getOpcode() == ISD::TRUNCATE)
 | |
|         XOR = XOR.getOperand(0);
 | |
|       if (XOR.getOpcode() != ISD::XOR)
 | |
|         return false;
 | |
| 
 | |
|       LHS = XOR.getOperand(0);
 | |
|       RHS = XOR.getOperand(1);
 | |
|       return true;
 | |
|     } else if (Op.getOpcode() == ISD::SRL) {
 | |
|       if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|         return false;
 | |
|       unsigned Bits = Op.getValueType().getSizeInBits();
 | |
|       if (b != Bits/8-1)
 | |
|         return false;
 | |
|       if (Op.getConstantOperandVal(1) != Bits-8)
 | |
|         return false;
 | |
| 
 | |
|       SDValue XOR = Op.getOperand(0);
 | |
|       if (XOR.getOpcode() == ISD::TRUNCATE)
 | |
|         XOR = XOR.getOperand(0);
 | |
|       if (XOR.getOpcode() != ISD::XOR)
 | |
|         return false;
 | |
| 
 | |
|       LHS = XOR.getOperand(0);
 | |
|       RHS = XOR.getOperand(1);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
 | |
|   while (!Queue.empty()) {
 | |
|     SDValue V = Queue.pop_back_val();
 | |
| 
 | |
|     for (const SDValue &O : V.getNode()->ops()) {
 | |
|       unsigned b;
 | |
|       uint64_t M = 0, A = 0;
 | |
|       SDValue OLHS, ORHS;
 | |
|       if (O.getOpcode() == ISD::OR) {
 | |
|         Queue.push_back(O);
 | |
|       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
 | |
|         if (!LHS) {
 | |
|           LHS = OLHS;
 | |
|           RHS = ORHS;
 | |
|           BytesFound[b] = true;
 | |
|           Mask |= M;
 | |
|           Alt  |= A;
 | |
|         } else if ((LHS == ORHS && RHS == OLHS) ||
 | |
|                    (RHS == ORHS && LHS == OLHS)) {
 | |
|           BytesFound[b] = true;
 | |
|           Mask |= M;
 | |
|           Alt  |= A;
 | |
|         } else {
 | |
|           return Res;
 | |
|         }
 | |
|       } else {
 | |
|         return Res;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned LastB = 0, BCnt = 0;
 | |
|   for (unsigned i = 0; i < 8; ++i)
 | |
|     if (BytesFound[LastB]) {
 | |
|       ++BCnt;
 | |
|       LastB = i;
 | |
|     }
 | |
| 
 | |
|   if (!LastB || BCnt < 2)
 | |
|     return Res;
 | |
| 
 | |
|   // Because we'll be zero-extending the output anyway if don't have a specific
 | |
|   // value for each input byte (via the Mask), we can 'anyext' the inputs.
 | |
|   if (LHS.getValueType() != VT) {
 | |
|     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
 | |
|     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
 | |
|   }
 | |
| 
 | |
|   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
 | |
| 
 | |
|   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
 | |
|   if (NonTrivialMask && !Alt) {
 | |
|     // Res = Mask & CMPB
 | |
|     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
 | |
|                           CurDAG->getConstant(Mask, dl, VT));
 | |
|   } else if (Alt) {
 | |
|     // Res = (CMPB & Mask) | (~CMPB & Alt)
 | |
|     // Which, as suggested here:
 | |
|     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
 | |
|     // can be written as:
 | |
|     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
 | |
|     // useful because the (Alt ^ Mask) can be pre-computed.
 | |
|     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
 | |
|                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
 | |
|     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
 | |
|                           CurDAG->getConstant(Alt, dl, VT));
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // When CR bit registers are enabled, an extension of an i1 variable to a i32
 | |
| // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
 | |
| // involves constant materialization of a 0 or a 1 or both. If the result of
 | |
| // the extension is then operated upon by some operator that can be constant
 | |
| // folded with a constant 0 or 1, and that constant can be materialized using
 | |
| // only one instruction (like a zero or one), then we should fold in those
 | |
| // operations with the select.
 | |
| void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
 | |
|   if (!PPCSubTarget->useCRBits())
 | |
|     return;
 | |
| 
 | |
|   if (N->getOpcode() != ISD::ZERO_EXTEND &&
 | |
|       N->getOpcode() != ISD::SIGN_EXTEND &&
 | |
|       N->getOpcode() != ISD::ANY_EXTEND)
 | |
|     return;
 | |
| 
 | |
|   if (N->getOperand(0).getValueType() != MVT::i1)
 | |
|     return;
 | |
| 
 | |
|   if (!N->hasOneUse())
 | |
|     return;
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue Cond = N->getOperand(0);
 | |
|   SDValue ConstTrue =
 | |
|     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
 | |
|   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
 | |
| 
 | |
|   do {
 | |
|     SDNode *User = *N->use_begin();
 | |
|     if (User->getNumOperands() != 2)
 | |
|       break;
 | |
| 
 | |
|     auto TryFold = [this, N, User, dl](SDValue Val) {
 | |
|       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
 | |
|       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
 | |
|       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
 | |
| 
 | |
|       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
 | |
|                                             User->getValueType(0),
 | |
|                                             O0.getNode(), O1.getNode());
 | |
|     };
 | |
| 
 | |
|     SDValue TrueRes = TryFold(ConstTrue);
 | |
|     if (!TrueRes)
 | |
|       break;
 | |
|     SDValue FalseRes = TryFold(ConstFalse);
 | |
|     if (!FalseRes)
 | |
|       break;
 | |
| 
 | |
|     // For us to materialize these using one instruction, we must be able to
 | |
|     // represent them as signed 16-bit integers.
 | |
|     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
 | |
|              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
 | |
|     if (!isInt<16>(True) || !isInt<16>(False))
 | |
|       break;
 | |
| 
 | |
|     // We can replace User with a new SELECT node, and try again to see if we
 | |
|     // can fold the select with its user.
 | |
|     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
 | |
|     N = User;
 | |
|     ConstTrue = TrueRes;
 | |
|     ConstFalse = FalseRes;
 | |
|   } while (N->hasOneUse());
 | |
| }
 | |
| 
 | |
| void PPCDAGToDAGISel::PreprocessISelDAG() {
 | |
|   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | |
|   ++Position;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   while (Position != CurDAG->allnodes_begin()) {
 | |
|     SDNode *N = --Position;
 | |
|     if (N->use_empty())
 | |
|       continue;
 | |
| 
 | |
|     SDValue Res;
 | |
|     switch (N->getOpcode()) {
 | |
|     default: break;
 | |
|     case ISD::OR:
 | |
|       Res = combineToCMPB(N);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!Res)
 | |
|       foldBoolExts(Res, N);
 | |
| 
 | |
|     if (Res) {
 | |
|       DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
 | |
|       DEBUG(N->dump(CurDAG));
 | |
|       DEBUG(dbgs() << "\nNew: ");
 | |
|       DEBUG(Res.getNode()->dump(CurDAG));
 | |
|       DEBUG(dbgs() << "\n");
 | |
| 
 | |
|       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MadeChange)
 | |
|     CurDAG->RemoveDeadNodes();
 | |
| }
 | |
| 
 | |
| /// PostprocessISelDAG - Perform some late peephole optimizations
 | |
| /// on the DAG representation.
 | |
| void PPCDAGToDAGISel::PostprocessISelDAG() {
 | |
| 
 | |
|   // Skip peepholes at -O0.
 | |
|   if (TM.getOptLevel() == CodeGenOpt::None)
 | |
|     return;
 | |
| 
 | |
|   PeepholePPC64();
 | |
|   PeepholeCROps();
 | |
|   PeepholePPC64ZExt();
 | |
| }
 | |
| 
 | |
| // Check if all users of this node will become isel where the second operand
 | |
| // is the constant zero. If this is so, and if we can negate the condition,
 | |
| // then we can flip the true and false operands. This will allow the zero to
 | |
| // be folded with the isel so that we don't need to materialize a register
 | |
| // containing zero.
 | |
| bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
 | |
|   // If we're not using isel, then this does not matter.
 | |
|   if (!PPCSubTarget->hasISEL())
 | |
|     return false;
 | |
| 
 | |
|   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     SDNode *User = *UI;
 | |
|     if (!User->isMachineOpcode())
 | |
|       return false;
 | |
|     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
 | |
|         User->getMachineOpcode() != PPC::SELECT_I8)
 | |
|       return false;
 | |
| 
 | |
|     SDNode *Op2 = User->getOperand(2).getNode();
 | |
|     if (!Op2->isMachineOpcode())
 | |
|       return false;
 | |
| 
 | |
|     if (Op2->getMachineOpcode() != PPC::LI &&
 | |
|         Op2->getMachineOpcode() != PPC::LI8)
 | |
|       return false;
 | |
| 
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
 | |
|     if (!C)
 | |
|       return false;
 | |
| 
 | |
|     if (!C->isNullValue())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
 | |
|   SmallVector<SDNode *, 4> ToReplace;
 | |
|   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     SDNode *User = *UI;
 | |
|     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
 | |
|             User->getMachineOpcode() == PPC::SELECT_I8) &&
 | |
|            "Must have all select users");
 | |
|     ToReplace.push_back(User);
 | |
|   }
 | |
| 
 | |
|   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
 | |
|        UE = ToReplace.end(); UI != UE; ++UI) {
 | |
|     SDNode *User = *UI;
 | |
|     SDNode *ResNode =
 | |
|       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
 | |
|                              User->getValueType(0), User->getOperand(0),
 | |
|                              User->getOperand(2),
 | |
|                              User->getOperand(1));
 | |
| 
 | |
|       DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
 | |
|       DEBUG(User->dump(CurDAG));
 | |
|       DEBUG(dbgs() << "\nNew: ");
 | |
|       DEBUG(ResNode->dump(CurDAG));
 | |
|       DEBUG(dbgs() << "\n");
 | |
| 
 | |
|       ReplaceUses(User, ResNode);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PPCDAGToDAGISel::PeepholeCROps() {
 | |
|   bool IsModified;
 | |
|   do {
 | |
|     IsModified = false;
 | |
|     for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | |
|          E = CurDAG->allnodes_end(); I != E; ++I) {
 | |
|       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
 | |
|       if (!MachineNode || MachineNode->use_empty())
 | |
|         continue;
 | |
|       SDNode *ResNode = MachineNode;
 | |
| 
 | |
|       bool Op1Set   = false, Op1Unset = false,
 | |
|            Op1Not   = false,
 | |
|            Op2Set   = false, Op2Unset = false,
 | |
|            Op2Not   = false;
 | |
| 
 | |
|       unsigned Opcode = MachineNode->getMachineOpcode();
 | |
|       switch (Opcode) {
 | |
|       default: break;
 | |
|       case PPC::CRAND:
 | |
|       case PPC::CRNAND:
 | |
|       case PPC::CROR:
 | |
|       case PPC::CRXOR:
 | |
|       case PPC::CRNOR:
 | |
|       case PPC::CREQV:
 | |
|       case PPC::CRANDC:
 | |
|       case PPC::CRORC: {
 | |
|         SDValue Op = MachineNode->getOperand(1);
 | |
|         if (Op.isMachineOpcode()) {
 | |
|           if (Op.getMachineOpcode() == PPC::CRSET)
 | |
|             Op2Set = true;
 | |
|           else if (Op.getMachineOpcode() == PPC::CRUNSET)
 | |
|             Op2Unset = true;
 | |
|           else if (Op.getMachineOpcode() == PPC::CRNOR &&
 | |
|                    Op.getOperand(0) == Op.getOperand(1))
 | |
|             Op2Not = true;
 | |
|         }
 | |
|         }  // fallthrough
 | |
|       case PPC::BC:
 | |
|       case PPC::BCn:
 | |
|       case PPC::SELECT_I4:
 | |
|       case PPC::SELECT_I8:
 | |
|       case PPC::SELECT_F4:
 | |
|       case PPC::SELECT_F8:
 | |
|       case PPC::SELECT_QFRC:
 | |
|       case PPC::SELECT_QSRC:
 | |
|       case PPC::SELECT_QBRC:
 | |
|       case PPC::SELECT_VRRC:
 | |
|       case PPC::SELECT_VSFRC:
 | |
|       case PPC::SELECT_VSSRC:
 | |
|       case PPC::SELECT_VSRC: {
 | |
|         SDValue Op = MachineNode->getOperand(0);
 | |
|         if (Op.isMachineOpcode()) {
 | |
|           if (Op.getMachineOpcode() == PPC::CRSET)
 | |
|             Op1Set = true;
 | |
|           else if (Op.getMachineOpcode() == PPC::CRUNSET)
 | |
|             Op1Unset = true;
 | |
|           else if (Op.getMachineOpcode() == PPC::CRNOR &&
 | |
|                    Op.getOperand(0) == Op.getOperand(1))
 | |
|             Op1Not = true;
 | |
|         }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       bool SelectSwap = false;
 | |
|       switch (Opcode) {
 | |
|       default: break;
 | |
|       case PPC::CRAND:
 | |
|         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | |
|           // x & x = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Set)
 | |
|           // 1 & y = y
 | |
|           ResNode = MachineNode->getOperand(1).getNode();
 | |
|         else if (Op2Set)
 | |
|           // x & 1 = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Unset || Op2Unset)
 | |
|           // x & 0 = 0 & y = 0
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Not)
 | |
|           // ~x & y = andc(y, x)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(0).
 | |
|                                              getOperand(0));
 | |
|         else if (Op2Not)
 | |
|           // x & ~y = andc(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1).
 | |
|                                              getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::CRNAND:
 | |
|         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | |
|           // nand(x, x) -> nor(x, x)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(0));
 | |
|         else if (Op1Set)
 | |
|           // nand(1, y) -> nor(y, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Set)
 | |
|           // nand(x, 1) -> nor(x, x)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(0));
 | |
|         else if (Op1Unset || Op2Unset)
 | |
|           // nand(x, 0) = nand(0, y) = 1
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Not)
 | |
|           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Not)
 | |
|           // nand(x, ~y) = ~x | y = orc(y, x)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::CROR:
 | |
|         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | |
|           // x | x = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Set || Op2Set)
 | |
|           // x | 1 = 1 | y = 1
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Unset)
 | |
|           // 0 | y = y
 | |
|           ResNode = MachineNode->getOperand(1).getNode();
 | |
|         else if (Op2Unset)
 | |
|           // x | 0 = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Not)
 | |
|           // ~x | y = orc(y, x)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(0).
 | |
|                                              getOperand(0));
 | |
|         else if (Op2Not)
 | |
|           // x | ~y = orc(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1).
 | |
|                                              getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::CRXOR:
 | |
|         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | |
|           // xor(x, x) = 0
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Set)
 | |
|           // xor(1, y) -> nor(y, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Set)
 | |
|           // xor(x, 1) -> nor(x, x)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(0));
 | |
|         else if (Op1Unset)
 | |
|           // xor(0, y) = y
 | |
|           ResNode = MachineNode->getOperand(1).getNode();
 | |
|         else if (Op2Unset)
 | |
|           // xor(x, 0) = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Not)
 | |
|           // xor(~x, y) = eqv(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Not)
 | |
|           // xor(x, ~y) = eqv(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1).
 | |
|                                              getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::CRNOR:
 | |
|         if (Op1Set || Op2Set)
 | |
|           // nor(1, y) -> 0
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Unset)
 | |
|           // nor(0, y) = ~y -> nor(y, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Unset)
 | |
|           // nor(x, 0) = ~x
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(0));
 | |
|         else if (Op1Not)
 | |
|           // nor(~x, y) = andc(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Not)
 | |
|           // nor(x, ~y) = andc(y, x)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::CREQV:
 | |
|         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | |
|           // eqv(x, x) = 1
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Set)
 | |
|           // eqv(1, y) = y
 | |
|           ResNode = MachineNode->getOperand(1).getNode();
 | |
|         else if (Op2Set)
 | |
|           // eqv(x, 1) = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Unset)
 | |
|           // eqv(0, y) = ~y -> nor(y, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Unset)
 | |
|           // eqv(x, 0) = ~x
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(0));
 | |
|         else if (Op1Not)
 | |
|           // eqv(~x, y) = xor(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Not)
 | |
|           // eqv(x, ~y) = xor(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1).
 | |
|                                              getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::CRANDC:
 | |
|         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | |
|           // andc(x, x) = 0
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Set)
 | |
|           // andc(1, y) = ~y
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op1Unset || Op2Set)
 | |
|           // andc(0, y) = andc(x, 1) = 0
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op2Unset)
 | |
|           // andc(x, 0) = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Not)
 | |
|           // andc(~x, y) = ~(x | y) = nor(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Not)
 | |
|           // andc(x, ~y) = x & y
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1).
 | |
|                                              getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(0)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::CRORC:
 | |
|         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | |
|           // orc(x, x) = 1
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op1Set || Op2Unset)
 | |
|           // orc(1, y) = orc(x, 0) = 1
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | |
|                                            MVT::i1);
 | |
|         else if (Op2Set)
 | |
|           // orc(x, 1) = x
 | |
|           ResNode = MachineNode->getOperand(0).getNode();
 | |
|         else if (Op1Unset)
 | |
|           // orc(0, y) = ~y
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op1Not)
 | |
|           // orc(~x, y) = ~(x & y) = nand(x, y)
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0).
 | |
|                                                       getOperand(0),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         else if (Op2Not)
 | |
|           // orc(x, ~y) = x | y
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(0),
 | |
|                                            MachineNode->getOperand(1).
 | |
|                                              getOperand(0));
 | |
|         else if (AllUsersSelectZero(MachineNode))
 | |
|           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | |
|                                            MVT::i1, MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(0)),
 | |
|           SelectSwap = true;
 | |
|         break;
 | |
|       case PPC::SELECT_I4:
 | |
|       case PPC::SELECT_I8:
 | |
|       case PPC::SELECT_F4:
 | |
|       case PPC::SELECT_F8:
 | |
|       case PPC::SELECT_QFRC:
 | |
|       case PPC::SELECT_QSRC:
 | |
|       case PPC::SELECT_QBRC:
 | |
|       case PPC::SELECT_VRRC:
 | |
|       case PPC::SELECT_VSFRC:
 | |
|       case PPC::SELECT_VSSRC:
 | |
|       case PPC::SELECT_VSRC:
 | |
|         if (Op1Set)
 | |
|           ResNode = MachineNode->getOperand(1).getNode();
 | |
|         else if (Op1Unset)
 | |
|           ResNode = MachineNode->getOperand(2).getNode();
 | |
|         else if (Op1Not)
 | |
|           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
 | |
|                                            SDLoc(MachineNode),
 | |
|                                            MachineNode->getValueType(0),
 | |
|                                            MachineNode->getOperand(0).
 | |
|                                              getOperand(0),
 | |
|                                            MachineNode->getOperand(2),
 | |
|                                            MachineNode->getOperand(1));
 | |
|         break;
 | |
|       case PPC::BC:
 | |
|       case PPC::BCn:
 | |
|         if (Op1Not)
 | |
|           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
 | |
|                                                                PPC::BC,
 | |
|                                            SDLoc(MachineNode),
 | |
|                                            MVT::Other,
 | |
|                                            MachineNode->getOperand(0).
 | |
|                                              getOperand(0),
 | |
|                                            MachineNode->getOperand(1),
 | |
|                                            MachineNode->getOperand(2));
 | |
|         // FIXME: Handle Op1Set, Op1Unset here too.
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If we're inverting this node because it is used only by selects that
 | |
|       // we'd like to swap, then swap the selects before the node replacement.
 | |
|       if (SelectSwap)
 | |
|         SwapAllSelectUsers(MachineNode);
 | |
| 
 | |
|       if (ResNode != MachineNode) {
 | |
|         DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
 | |
|         DEBUG(MachineNode->dump(CurDAG));
 | |
|         DEBUG(dbgs() << "\nNew: ");
 | |
|         DEBUG(ResNode->dump(CurDAG));
 | |
|         DEBUG(dbgs() << "\n");
 | |
| 
 | |
|         ReplaceUses(MachineNode, ResNode);
 | |
|         IsModified = true;
 | |
|       }
 | |
|     }
 | |
|     if (IsModified)
 | |
|       CurDAG->RemoveDeadNodes();
 | |
|   } while (IsModified);
 | |
| }
 | |
| 
 | |
| // Gather the set of 32-bit operations that are known to have their
 | |
| // higher-order 32 bits zero, where ToPromote contains all such operations.
 | |
| static bool PeepholePPC64ZExtGather(SDValue Op32,
 | |
|                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
 | |
|   if (!Op32.isMachineOpcode())
 | |
|     return false;
 | |
| 
 | |
|   // First, check for the "frontier" instructions (those that will clear the
 | |
|   // higher-order 32 bits.
 | |
| 
 | |
|   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
 | |
|   // around. If it does not, then these instructions will clear the
 | |
|   // higher-order bits.
 | |
|   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
 | |
|        Op32.getMachineOpcode() == PPC::RLWNM) &&
 | |
|       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // SLW and SRW always clear the higher-order bits.
 | |
|   if (Op32.getMachineOpcode() == PPC::SLW ||
 | |
|       Op32.getMachineOpcode() == PPC::SRW) {
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For LI and LIS, we need the immediate to be positive (so that it is not
 | |
|   // sign extended).
 | |
|   if (Op32.getMachineOpcode() == PPC::LI ||
 | |
|       Op32.getMachineOpcode() == PPC::LIS) {
 | |
|     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
 | |
|       return false;
 | |
| 
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // LHBRX and LWBRX always clear the higher-order bits.
 | |
|   if (Op32.getMachineOpcode() == PPC::LHBRX ||
 | |
|       Op32.getMachineOpcode() == PPC::LWBRX) {
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
 | |
|   if (Op32.getMachineOpcode() == PPC::CNTLZW) {
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Next, check for those instructions we can look through.
 | |
| 
 | |
|   // Assuming the mask does not wrap around, then the higher-order bits are
 | |
|   // taken directly from the first operand.
 | |
|   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
 | |
|       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
 | |
|     SmallPtrSet<SDNode *, 16> ToPromote1;
 | |
|     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
 | |
|       return false;
 | |
| 
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For OR, the higher-order bits are zero if that is true for both operands.
 | |
|   // For SELECT_I4, the same is true (but the relevant operand numbers are
 | |
|   // shifted by 1).
 | |
|   if (Op32.getMachineOpcode() == PPC::OR ||
 | |
|       Op32.getMachineOpcode() == PPC::SELECT_I4) {
 | |
|     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
 | |
|     SmallPtrSet<SDNode *, 16> ToPromote1;
 | |
|     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
 | |
|       return false;
 | |
|     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
 | |
|       return false;
 | |
| 
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For ORI and ORIS, we need the higher-order bits of the first operand to be
 | |
|   // zero, and also for the constant to be positive (so that it is not sign
 | |
|   // extended).
 | |
|   if (Op32.getMachineOpcode() == PPC::ORI ||
 | |
|       Op32.getMachineOpcode() == PPC::ORIS) {
 | |
|     SmallPtrSet<SDNode *, 16> ToPromote1;
 | |
|     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
 | |
|       return false;
 | |
|     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
 | |
|       return false;
 | |
| 
 | |
|     ToPromote.insert(Op32.getNode());
 | |
|     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The higher-order bits of AND are zero if that is true for at least one of
 | |
|   // the operands.
 | |
|   if (Op32.getMachineOpcode() == PPC::AND) {
 | |
|     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
 | |
|     bool Op0OK =
 | |
|       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
 | |
|     bool Op1OK =
 | |
|       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
 | |
|     if (!Op0OK && !Op1OK)
 | |
|       return false;
 | |
| 
 | |
|     ToPromote.insert(Op32.getNode());
 | |
| 
 | |
|     if (Op0OK)
 | |
|       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | |
| 
 | |
|     if (Op1OK)
 | |
|       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
 | |
|   // of the first operand, or if the second operand is positive (so that it is
 | |
|   // not sign extended).
 | |
|   if (Op32.getMachineOpcode() == PPC::ANDIo ||
 | |
|       Op32.getMachineOpcode() == PPC::ANDISo) {
 | |
|     SmallPtrSet<SDNode *, 16> ToPromote1;
 | |
|     bool Op0OK =
 | |
|       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
 | |
|     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
 | |
|     if (!Op0OK && !Op1OK)
 | |
|       return false;
 | |
| 
 | |
|     ToPromote.insert(Op32.getNode());
 | |
| 
 | |
|     if (Op0OK)
 | |
|       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void PPCDAGToDAGISel::PeepholePPC64ZExt() {
 | |
|   if (!PPCSubTarget->isPPC64())
 | |
|     return;
 | |
| 
 | |
|   // When we zero-extend from i32 to i64, we use a pattern like this:
 | |
|   // def : Pat<(i64 (zext i32:$in)),
 | |
|   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
 | |
|   //                   0, 32)>;
 | |
|   // There are several 32-bit shift/rotate instructions, however, that will
 | |
|   // clear the higher-order bits of their output, rendering the RLDICL
 | |
|   // unnecessary. When that happens, we remove it here, and redefine the
 | |
|   // relevant 32-bit operation to be a 64-bit operation.
 | |
| 
 | |
|   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | |
|   ++Position;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   while (Position != CurDAG->allnodes_begin()) {
 | |
|     SDNode *N = --Position;
 | |
|     // Skip dead nodes and any non-machine opcodes.
 | |
|     if (N->use_empty() || !N->isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     if (N->getMachineOpcode() != PPC::RLDICL)
 | |
|       continue;
 | |
| 
 | |
|     if (N->getConstantOperandVal(1) != 0 ||
 | |
|         N->getConstantOperandVal(2) != 32)
 | |
|       continue;
 | |
| 
 | |
|     SDValue ISR = N->getOperand(0);
 | |
|     if (!ISR.isMachineOpcode() ||
 | |
|         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
 | |
|       continue;
 | |
| 
 | |
|     if (!ISR.hasOneUse())
 | |
|       continue;
 | |
| 
 | |
|     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
 | |
|       continue;
 | |
| 
 | |
|     SDValue IDef = ISR.getOperand(0);
 | |
|     if (!IDef.isMachineOpcode() ||
 | |
|         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
 | |
|       continue;
 | |
| 
 | |
|     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
 | |
|     // can get rid of it.
 | |
| 
 | |
|     SDValue Op32 = ISR->getOperand(1);
 | |
|     if (!Op32.isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     // There are some 32-bit instructions that always clear the high-order 32
 | |
|     // bits, there are also some instructions (like AND) that we can look
 | |
|     // through.
 | |
|     SmallPtrSet<SDNode *, 16> ToPromote;
 | |
|     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
 | |
|       continue;
 | |
| 
 | |
|     // If the ToPromote set contains nodes that have uses outside of the set
 | |
|     // (except for the original INSERT_SUBREG), then abort the transformation.
 | |
|     bool OutsideUse = false;
 | |
|     for (SDNode *PN : ToPromote) {
 | |
|       for (SDNode *UN : PN->uses()) {
 | |
|         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
 | |
|           OutsideUse = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (OutsideUse)
 | |
|         break;
 | |
|     }
 | |
|     if (OutsideUse)
 | |
|       continue;
 | |
| 
 | |
|     MadeChange = true;
 | |
| 
 | |
|     // We now know that this zero extension can be removed by promoting to
 | |
|     // nodes in ToPromote to 64-bit operations, where for operations in the
 | |
|     // frontier of the set, we need to insert INSERT_SUBREGs for their
 | |
|     // operands.
 | |
|     for (SDNode *PN : ToPromote) {
 | |
|       unsigned NewOpcode;
 | |
|       switch (PN->getMachineOpcode()) {
 | |
|       default:
 | |
|         llvm_unreachable("Don't know the 64-bit variant of this instruction");
 | |
|       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
 | |
|       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
 | |
|       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
 | |
|       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
 | |
|       case PPC::LI:        NewOpcode = PPC::LI8; break;
 | |
|       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
 | |
|       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
 | |
|       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
 | |
|       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
 | |
|       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
 | |
|       case PPC::OR:        NewOpcode = PPC::OR8; break;
 | |
|       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
 | |
|       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
 | |
|       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
 | |
|       case PPC::AND:       NewOpcode = PPC::AND8; break;
 | |
|       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
 | |
|       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
 | |
|       }
 | |
| 
 | |
|       // Note: During the replacement process, the nodes will be in an
 | |
|       // inconsistent state (some instructions will have operands with values
 | |
|       // of the wrong type). Once done, however, everything should be right
 | |
|       // again.
 | |
| 
 | |
|       SmallVector<SDValue, 4> Ops;
 | |
|       for (const SDValue &V : PN->ops()) {
 | |
|         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
 | |
|             !isa<ConstantSDNode>(V)) {
 | |
|           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
 | |
|           SDNode *ReplOp =
 | |
|             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
 | |
|                                    ISR.getNode()->getVTList(), ReplOpOps);
 | |
|           Ops.push_back(SDValue(ReplOp, 0));
 | |
|         } else {
 | |
|           Ops.push_back(V);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Because all to-be-promoted nodes only have users that are other
 | |
|       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
 | |
|       // the i32 result value type with i64.
 | |
| 
 | |
|       SmallVector<EVT, 2> NewVTs;
 | |
|       SDVTList VTs = PN->getVTList();
 | |
|       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
 | |
|         if (VTs.VTs[i] == MVT::i32)
 | |
|           NewVTs.push_back(MVT::i64);
 | |
|         else
 | |
|           NewVTs.push_back(VTs.VTs[i]);
 | |
| 
 | |
|       DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
 | |
|       DEBUG(PN->dump(CurDAG));
 | |
| 
 | |
|       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
 | |
| 
 | |
|       DEBUG(dbgs() << "\nNew: ");
 | |
|       DEBUG(PN->dump(CurDAG));
 | |
|       DEBUG(dbgs() << "\n");
 | |
|     }
 | |
| 
 | |
|     // Now we replace the original zero extend and its associated INSERT_SUBREG
 | |
|     // with the value feeding the INSERT_SUBREG (which has now been promoted to
 | |
|     // return an i64).
 | |
| 
 | |
|     DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
 | |
|     DEBUG(N->dump(CurDAG));
 | |
|     DEBUG(dbgs() << "\nNew: ");
 | |
|     DEBUG(Op32.getNode()->dump(CurDAG));
 | |
|     DEBUG(dbgs() << "\n");
 | |
| 
 | |
|     ReplaceUses(N, Op32.getNode());
 | |
|   }
 | |
| 
 | |
|   if (MadeChange)
 | |
|     CurDAG->RemoveDeadNodes();
 | |
| }
 | |
| 
 | |
| void PPCDAGToDAGISel::PeepholePPC64() {
 | |
|   // These optimizations are currently supported only for 64-bit SVR4.
 | |
|   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
 | |
|     return;
 | |
| 
 | |
|   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | |
|   ++Position;
 | |
| 
 | |
|   while (Position != CurDAG->allnodes_begin()) {
 | |
|     SDNode *N = --Position;
 | |
|     // Skip dead nodes and any non-machine opcodes.
 | |
|     if (N->use_empty() || !N->isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned FirstOp;
 | |
|     unsigned StorageOpcode = N->getMachineOpcode();
 | |
| 
 | |
|     switch (StorageOpcode) {
 | |
|     default: continue;
 | |
| 
 | |
|     case PPC::LBZ:
 | |
|     case PPC::LBZ8:
 | |
|     case PPC::LD:
 | |
|     case PPC::LFD:
 | |
|     case PPC::LFS:
 | |
|     case PPC::LHA:
 | |
|     case PPC::LHA8:
 | |
|     case PPC::LHZ:
 | |
|     case PPC::LHZ8:
 | |
|     case PPC::LWA:
 | |
|     case PPC::LWZ:
 | |
|     case PPC::LWZ8:
 | |
|       FirstOp = 0;
 | |
|       break;
 | |
| 
 | |
|     case PPC::STB:
 | |
|     case PPC::STB8:
 | |
|     case PPC::STD:
 | |
|     case PPC::STFD:
 | |
|     case PPC::STFS:
 | |
|     case PPC::STH:
 | |
|     case PPC::STH8:
 | |
|     case PPC::STW:
 | |
|     case PPC::STW8:
 | |
|       FirstOp = 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is a load or store with a zero offset, we may be able to
 | |
|     // fold an add-immediate into the memory operation.
 | |
|     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
 | |
|         N->getConstantOperandVal(FirstOp) != 0)
 | |
|       continue;
 | |
| 
 | |
|     SDValue Base = N->getOperand(FirstOp + 1);
 | |
|     if (!Base.isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Flags = 0;
 | |
|     bool ReplaceFlags = true;
 | |
| 
 | |
|     // When the feeding operation is an add-immediate of some sort,
 | |
|     // determine whether we need to add relocation information to the
 | |
|     // target flags on the immediate operand when we fold it into the
 | |
|     // load instruction.
 | |
|     //
 | |
|     // For something like ADDItocL, the relocation information is
 | |
|     // inferred from the opcode; when we process it in the AsmPrinter,
 | |
|     // we add the necessary relocation there.  A load, though, can receive
 | |
|     // relocation from various flavors of ADDIxxx, so we need to carry
 | |
|     // the relocation information in the target flags.
 | |
|     switch (Base.getMachineOpcode()) {
 | |
|     default: continue;
 | |
| 
 | |
|     case PPC::ADDI8:
 | |
|     case PPC::ADDI:
 | |
|       // In some cases (such as TLS) the relocation information
 | |
|       // is already in place on the operand, so copying the operand
 | |
|       // is sufficient.
 | |
|       ReplaceFlags = false;
 | |
|       // For these cases, the immediate may not be divisible by 4, in
 | |
|       // which case the fold is illegal for DS-form instructions.  (The
 | |
|       // other cases provide aligned addresses and are always safe.)
 | |
|       if ((StorageOpcode == PPC::LWA ||
 | |
|            StorageOpcode == PPC::LD  ||
 | |
|            StorageOpcode == PPC::STD) &&
 | |
|           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
 | |
|            Base.getConstantOperandVal(1) % 4 != 0))
 | |
|         continue;
 | |
|       break;
 | |
|     case PPC::ADDIdtprelL:
 | |
|       Flags = PPCII::MO_DTPREL_LO;
 | |
|       break;
 | |
|     case PPC::ADDItlsldL:
 | |
|       Flags = PPCII::MO_TLSLD_LO;
 | |
|       break;
 | |
|     case PPC::ADDItocL:
 | |
|       Flags = PPCII::MO_TOC_LO;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We found an opportunity.  Reverse the operands from the add
 | |
|     // immediate and substitute them into the load or store.  If
 | |
|     // needed, update the target flags for the immediate operand to
 | |
|     // reflect the necessary relocation information.
 | |
|     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
 | |
|     DEBUG(Base->dump(CurDAG));
 | |
|     DEBUG(dbgs() << "\nN: ");
 | |
|     DEBUG(N->dump(CurDAG));
 | |
|     DEBUG(dbgs() << "\n");
 | |
| 
 | |
|     SDValue ImmOpnd = Base.getOperand(1);
 | |
| 
 | |
|     // If the relocation information isn't already present on the
 | |
|     // immediate operand, add it now.
 | |
|     if (ReplaceFlags) {
 | |
|       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
 | |
|         SDLoc dl(GA);
 | |
|         const GlobalValue *GV = GA->getGlobal();
 | |
|         // We can't perform this optimization for data whose alignment
 | |
|         // is insufficient for the instruction encoding.
 | |
|         if (GV->getAlignment() < 4 &&
 | |
|             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
 | |
|              StorageOpcode == PPC::LWA)) {
 | |
|           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
 | |
|           continue;
 | |
|         }
 | |
|         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
 | |
|       } else if (ConstantPoolSDNode *CP =
 | |
|                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
 | |
|         const Constant *C = CP->getConstVal();
 | |
|         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
 | |
|                                                 CP->getAlignment(),
 | |
|                                                 0, Flags);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (FirstOp == 1) // Store
 | |
|       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
 | |
|                                        Base.getOperand(0), N->getOperand(3));
 | |
|     else // Load
 | |
|       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
 | |
|                                        N->getOperand(2));
 | |
| 
 | |
|     // The add-immediate may now be dead, in which case remove it.
 | |
|     if (Base.getNode()->use_empty())
 | |
|       CurDAG->RemoveDeadNode(Base.getNode());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createPPCISelDag - This pass converts a legalized DAG into a
 | |
| /// PowerPC-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | |
|   return new PPCDAGToDAGISel(TM);
 | |
| }
 | |
| 
 | |
| static void initializePassOnce(PassRegistry &Registry) {
 | |
|   const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
 | |
|   PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
 | |
|                               nullptr, false, false);
 | |
|   Registry.registerPass(*PI, true);
 | |
| }
 | |
| 
 | |
| void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
 | |
|   CALL_ONCE_INITIALIZATION(initializePassOnce);
 | |
| }
 | |
| 
 |