mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Cross-class copies being expensive is actually a trait of the microarchitecture, but as I haven't yet seen an example of a microarchitecture where they're cheap it seems best to just enable this by default, covering the non-mcpu build case. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217674 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			596 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			596 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements a TargetTransformInfo analysis pass specific to the
 | |
| /// ARM target machine. It uses the target's detailed information to provide
 | |
| /// more precise answers to certain TTI queries, while letting the target
 | |
| /// independent and default TTI implementations handle the rest.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARM.h"
 | |
| #include "ARMTargetMachine.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/CostTable.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "armtti"
 | |
| 
 | |
| // Declare the pass initialization routine locally as target-specific passes
 | |
| // don't have a target-wide initialization entry point, and so we rely on the
 | |
| // pass constructor initialization.
 | |
| namespace llvm {
 | |
| void initializeARMTTIPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ARMTTI final : public ImmutablePass, public TargetTransformInfo {
 | |
|   const ARMBaseTargetMachine *TM;
 | |
|   const ARMSubtarget *ST;
 | |
|   const ARMTargetLowering *TLI;
 | |
| 
 | |
|   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
 | |
|   /// are set if the result needs to be inserted and/or extracted from vectors.
 | |
|   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
 | |
| 
 | |
| public:
 | |
|   ARMTTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
 | |
|     llvm_unreachable("This pass cannot be directly constructed");
 | |
|   }
 | |
| 
 | |
|   ARMTTI(const ARMBaseTargetMachine *TM)
 | |
|       : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
 | |
|         TLI(TM->getSubtargetImpl()->getTargetLowering()) {
 | |
|     initializeARMTTIPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void initializePass() override {
 | |
|     pushTTIStack(this);
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     TargetTransformInfo::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   /// Pass identification.
 | |
|   static char ID;
 | |
| 
 | |
|   /// Provide necessary pointer adjustments for the two base classes.
 | |
|   void *getAdjustedAnalysisPointer(const void *ID) override {
 | |
|     if (ID == &TargetTransformInfo::ID)
 | |
|       return (TargetTransformInfo*)this;
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   /// \name Scalar TTI Implementations
 | |
|   /// @{
 | |
|   using TargetTransformInfo::getIntImmCost;
 | |
|   unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
| 
 | |
|   /// \name Vector TTI Implementations
 | |
|   /// @{
 | |
| 
 | |
|   unsigned getNumberOfRegisters(bool Vector) const override {
 | |
|     if (Vector) {
 | |
|       if (ST->hasNEON())
 | |
|         return 16;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     if (ST->isThumb1Only())
 | |
|       return 8;
 | |
|     return 13;
 | |
|   }
 | |
| 
 | |
|   unsigned getRegisterBitWidth(bool Vector) const override {
 | |
|     if (Vector) {
 | |
|       if (ST->hasNEON())
 | |
|         return 128;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     return 32;
 | |
|   }
 | |
| 
 | |
|   unsigned getMaxInterleaveFactor() const override {
 | |
|     // These are out of order CPUs:
 | |
|     if (ST->isCortexA15() || ST->isSwift())
 | |
|       return 2;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
 | |
|                           int Index, Type *SubTp) const override;
 | |
| 
 | |
|   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
 | |
|                             Type *Src) const override;
 | |
| 
 | |
|   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                               Type *CondTy) const override;
 | |
| 
 | |
|   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                               unsigned Index) const override;
 | |
| 
 | |
|   unsigned getAddressComputationCost(Type *Val,
 | |
|                                      bool IsComplex) const override;
 | |
| 
 | |
|   unsigned getArithmeticInstrCost(
 | |
|       unsigned Opcode, Type *Ty, OperandValueKind Op1Info = OK_AnyValue,
 | |
|       OperandValueKind Op2Info = OK_AnyValue,
 | |
|       OperandValueProperties Opd1PropInfo = OP_None,
 | |
|       OperandValueProperties Opd2PropInfo = OP_None) const override;
 | |
| 
 | |
|   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | |
|                            unsigned AddressSpace) const override;
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
 | |
|                    "ARM Target Transform Info", true, true, false)
 | |
| char ARMTTI::ID = 0;
 | |
| 
 | |
| ImmutablePass *
 | |
| llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
 | |
|   return new ARMTTI(TM);
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned Bits = Ty->getPrimitiveSizeInBits();
 | |
|   if (Bits == 0 || Bits > 32)
 | |
|     return 4;
 | |
| 
 | |
|   int32_t SImmVal = Imm.getSExtValue();
 | |
|   uint32_t ZImmVal = Imm.getZExtValue();
 | |
|   if (!ST->isThumb()) {
 | |
|     if ((SImmVal >= 0 && SImmVal < 65536) ||
 | |
|         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
 | |
|         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
 | |
|       return 1;
 | |
|     return ST->hasV6T2Ops() ? 2 : 3;
 | |
|   }
 | |
|   if (ST->isThumb2()) {
 | |
|     if ((SImmVal >= 0 && SImmVal < 65536) ||
 | |
|         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
 | |
|         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
 | |
|       return 1;
 | |
|     return ST->hasV6T2Ops() ? 2 : 3;
 | |
|   }
 | |
|   // Thumb1.
 | |
|   if (SImmVal >= 0 && SImmVal < 256)
 | |
|     return 1;
 | |
|   if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
 | |
|     return 2;
 | |
|   // Load from constantpool.
 | |
|   return 3;
 | |
| }
 | |
| 
 | |
| unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
 | |
|                                   Type *Src) const {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // Single to/from double precision conversions.
 | |
|   static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = {
 | |
|     // Vector fptrunc/fpext conversions.
 | |
|     { ISD::FP_ROUND,   MVT::v2f64, 2 },
 | |
|     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
 | |
|     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
 | |
|   };
 | |
| 
 | |
|   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
 | |
|                                           ISD == ISD::FP_EXTEND)) {
 | |
|     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | |
|     int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second);
 | |
|     if (Idx != -1)
 | |
|       return LT.first * NEONFltDblTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(Src);
 | |
|   EVT DstTy = TLI->getValueType(Dst);
 | |
| 
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   // Some arithmetic, load and store operations have specific instructions
 | |
|   // to cast up/down their types automatically at no extra cost.
 | |
|   // TODO: Get these tables to know at least what the related operations are.
 | |
|   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|   NEONVectorConversionTbl[] = {
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
 | |
| 
 | |
|     // The number of vmovl instructions for the extension.
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
 | |
| 
 | |
|     // Operations that we legalize using splitting.
 | |
|     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
 | |
| 
 | |
|     // Vector float <-> i32 conversions.
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
 | |
| 
 | |
|     // Vector double <-> i32 conversions.
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
 | |
|   };
 | |
| 
 | |
|   if (SrcTy.isVector() && ST->hasNEON()) {
 | |
|     int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
 | |
|                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT());
 | |
|     if (Idx != -1)
 | |
|       return NEONVectorConversionTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   // Scalar float to integer conversions.
 | |
|   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|   NEONFloatConversionTbl[] = {
 | |
|     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
 | |
|     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
 | |
|   };
 | |
|   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
 | |
|     int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
 | |
|                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT());
 | |
|     if (Idx != -1)
 | |
|         return NEONFloatConversionTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   // Scalar integer to float conversions.
 | |
|   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|   NEONIntegerConversionTbl[] = {
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
 | |
|     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
 | |
|   };
 | |
| 
 | |
|   if (SrcTy.isInteger() && ST->hasNEON()) {
 | |
|     int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD,
 | |
|                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT());
 | |
|     if (Idx != -1)
 | |
|       return NEONIntegerConversionTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   // Scalar integer conversion costs.
 | |
|   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|   ARMIntegerConversionTbl[] = {
 | |
|     // i16 -> i64 requires two dependent operations.
 | |
|     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
 | |
| 
 | |
|     // Truncates on i64 are assumed to be free.
 | |
|     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
 | |
|     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
 | |
|   };
 | |
| 
 | |
|   if (SrcTy.isInteger()) {
 | |
|     int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
 | |
|                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT());
 | |
|     if (Idx != -1)
 | |
|       return ARMIntegerConversionTbl[Idx].Cost;
 | |
|   }
 | |
| 
 | |
|   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                     unsigned Index) const {
 | |
|   // Penalize inserting into an D-subregister. We end up with a three times
 | |
|   // lower estimated throughput on swift.
 | |
|   if (ST->isSwift() &&
 | |
|       Opcode == Instruction::InsertElement &&
 | |
|       ValTy->isVectorTy() &&
 | |
|       ValTy->getScalarSizeInBits() <= 32)
 | |
|     return 3;
 | |
| 
 | |
|   // Cross-class copies are expensive on many microarchitectures,
 | |
|   // so assume they are expensive by default.
 | |
|   if ((Opcode == Instruction::InsertElement ||
 | |
|        Opcode == Instruction::ExtractElement) &&
 | |
|       ValTy->getVectorElementType()->isIntegerTy())
 | |
|     return 3;
 | |
| 
 | |
|   return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
 | |
| }
 | |
| 
 | |
| unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                     Type *CondTy) const {
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   // On NEON a a vector select gets lowered to vbsl.
 | |
|   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
 | |
|     // Lowering of some vector selects is currently far from perfect.
 | |
|     static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|     NEONVectorSelectTbl[] = {
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
 | |
|       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
 | |
|     };
 | |
| 
 | |
|     EVT SelCondTy = TLI->getValueType(CondTy);
 | |
|     EVT SelValTy = TLI->getValueType(ValTy);
 | |
|     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
 | |
|       int Idx = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
 | |
|                                        SelCondTy.getSimpleVT(),
 | |
|                                        SelValTy.getSimpleVT());
 | |
|       if (Idx != -1)
 | |
|         return NEONVectorSelectTbl[Idx].Cost;
 | |
|     }
 | |
| 
 | |
|     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | |
|     return LT.first;
 | |
|   }
 | |
| 
 | |
|   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | |
| }
 | |
| 
 | |
| unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   unsigned NumVectorInstToHideOverhead = 10;
 | |
| 
 | |
|   if (Ty->isVectorTy() && IsComplex)
 | |
|     return NumVectorInstToHideOverhead;
 | |
| 
 | |
|   // In many cases the address computation is not merged into the instruction
 | |
|   // addressing mode.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
 | |
|                                 Type *SubTp) const {
 | |
|   // We only handle costs of reverse and alternate shuffles for now.
 | |
|   if (Kind != SK_Reverse && Kind != SK_Alternate)
 | |
|     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| 
 | |
|   if (Kind == SK_Reverse) {
 | |
|     static const CostTblEntry<MVT::SimpleValueType> NEONShuffleTbl[] = {
 | |
|         // Reverse shuffle cost one instruction if we are shuffling within a
 | |
|         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
 | |
| 
 | |
|     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
 | |
| 
 | |
|     int Idx = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
 | |
|     if (Idx == -1)
 | |
|       return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| 
 | |
|     return LT.first * NEONShuffleTbl[Idx].Cost;
 | |
|   }
 | |
|   if (Kind == SK_Alternate) {
 | |
|     static const CostTblEntry<MVT::SimpleValueType> NEONAltShuffleTbl[] = {
 | |
|         // Alt shuffle cost table for ARM. Cost is the number of instructions
 | |
|         // required to create the shuffled vector.
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
 | |
| 
 | |
|         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
 | |
| 
 | |
|     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
 | |
|     int Idx =
 | |
|         CostTableLookup(NEONAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
 | |
|     if (Idx == -1)
 | |
|       return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
|     return LT.first * NEONAltShuffleTbl[Idx].Cost;
 | |
|   }
 | |
|   return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | |
| }
 | |
| 
 | |
| unsigned ARMTTI::getArithmeticInstrCost(
 | |
|     unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
 | |
|     OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
 | |
|     OperandValueProperties Opd2PropInfo) const {
 | |
| 
 | |
|   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
 | |
| 
 | |
|   const unsigned FunctionCallDivCost = 20;
 | |
|   const unsigned ReciprocalDivCost = 10;
 | |
|   static const CostTblEntry<MVT::SimpleValueType> CostTbl[] = {
 | |
|     // Division.
 | |
|     // These costs are somewhat random. Choose a cost of 20 to indicate that
 | |
|     // vectorizing devision (added function call) is going to be very expensive.
 | |
|     // Double registers types.
 | |
|     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
 | |
|     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
 | |
|     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
 | |
|     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
 | |
|     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
 | |
|     // Quad register types.
 | |
|     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
 | |
|     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
 | |
|     // Multiplication.
 | |
|   };
 | |
| 
 | |
|   int Idx = -1;
 | |
| 
 | |
|   if (ST->hasNEON())
 | |
|     Idx = CostTableLookup(CostTbl, ISDOpcode, LT.second);
 | |
| 
 | |
|   if (Idx != -1)
 | |
|     return LT.first * CostTbl[Idx].Cost;
 | |
| 
 | |
|   unsigned Cost = TargetTransformInfo::getArithmeticInstrCost(
 | |
|       Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
 | |
| 
 | |
|   // This is somewhat of a hack. The problem that we are facing is that SROA
 | |
|   // creates a sequence of shift, and, or instructions to construct values.
 | |
|   // These sequences are recognized by the ISel and have zero-cost. Not so for
 | |
|   // the vectorized code. Because we have support for v2i64 but not i64 those
 | |
|   // sequences look particularly beneficial to vectorize.
 | |
|   // To work around this we increase the cost of v2i64 operations to make them
 | |
|   // seem less beneficial.
 | |
|   if (LT.second == MVT::v2i64 &&
 | |
|       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
 | |
|     Cost += 4;
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned ARMTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | |
|                                  unsigned AddressSpace) const {
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | |
| 
 | |
|   if (Src->isVectorTy() && Alignment != 16 &&
 | |
|       Src->getVectorElementType()->isDoubleTy()) {
 | |
|     // Unaligned loads/stores are extremely inefficient.
 | |
|     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
 | |
|     return LT.first * 4;
 | |
|   }
 | |
|   return LT.first;
 | |
| }
 |