mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224612 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1878 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1878 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the Hexagon implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "HexagonInstrInfo.h"
 | |
| #include "Hexagon.h"
 | |
| #include "HexagonRegisterInfo.h"
 | |
| #include "HexagonSubtarget.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/CodeGen/DFAPacketizer.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "hexagon-instrinfo"
 | |
| 
 | |
| #define GET_INSTRINFO_CTOR_DTOR
 | |
| #define GET_INSTRMAP_INFO
 | |
| #include "HexagonGenInstrInfo.inc"
 | |
| #include "HexagonGenDFAPacketizer.inc"
 | |
| 
 | |
| ///
 | |
| /// Constants for Hexagon instructions.
 | |
| ///
 | |
| const int Hexagon_MEMW_OFFSET_MAX = 4095;
 | |
| const int Hexagon_MEMW_OFFSET_MIN = -4096;
 | |
| const int Hexagon_MEMD_OFFSET_MAX = 8191;
 | |
| const int Hexagon_MEMD_OFFSET_MIN = -8192;
 | |
| const int Hexagon_MEMH_OFFSET_MAX = 2047;
 | |
| const int Hexagon_MEMH_OFFSET_MIN = -2048;
 | |
| const int Hexagon_MEMB_OFFSET_MAX = 1023;
 | |
| const int Hexagon_MEMB_OFFSET_MIN = -1024;
 | |
| const int Hexagon_ADDI_OFFSET_MAX = 32767;
 | |
| const int Hexagon_ADDI_OFFSET_MIN = -32768;
 | |
| const int Hexagon_MEMD_AUTOINC_MAX = 56;
 | |
| const int Hexagon_MEMD_AUTOINC_MIN = -64;
 | |
| const int Hexagon_MEMW_AUTOINC_MAX = 28;
 | |
| const int Hexagon_MEMW_AUTOINC_MIN = -32;
 | |
| const int Hexagon_MEMH_AUTOINC_MAX = 14;
 | |
| const int Hexagon_MEMH_AUTOINC_MIN = -16;
 | |
| const int Hexagon_MEMB_AUTOINC_MAX = 7;
 | |
| const int Hexagon_MEMB_AUTOINC_MIN = -8;
 | |
| 
 | |
| // Pin the vtable to this file.
 | |
| void HexagonInstrInfo::anchor() {}
 | |
| 
 | |
| HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
 | |
|   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
 | |
|     RI(ST), Subtarget(ST) {
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isLoadFromStackSlot - If the specified machine instruction is a direct
 | |
| /// load from a stack slot, return the virtual or physical register number of
 | |
| /// the destination along with the FrameIndex of the loaded stack slot.  If
 | |
| /// not, return 0.  This predicate must return 0 if the instruction has
 | |
| /// any side effects other than loading from the stack slot.
 | |
| unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                              int &FrameIndex) const {
 | |
| 
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case Hexagon::LDriw:
 | |
|   case Hexagon::LDrid:
 | |
|   case Hexagon::LDrih:
 | |
|   case Hexagon::LDrib:
 | |
|   case Hexagon::LDriub:
 | |
|     if (MI->getOperand(2).isFI() &&
 | |
|         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
 | |
|       FrameIndex = MI->getOperand(2).getIndex();
 | |
|       return MI->getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isStoreToStackSlot - If the specified machine instruction is a direct
 | |
| /// store to a stack slot, return the virtual or physical register number of
 | |
| /// the source reg along with the FrameIndex of the loaded stack slot.  If
 | |
| /// not, return 0.  This predicate must return 0 if the instruction has
 | |
| /// any side effects other than storing to the stack slot.
 | |
| unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | |
|                                             int &FrameIndex) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case Hexagon::STriw:
 | |
|   case Hexagon::STrid:
 | |
|   case Hexagon::STrih:
 | |
|   case Hexagon::STrib:
 | |
|     if (MI->getOperand(2).isFI() &&
 | |
|         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
 | |
|       FrameIndex = MI->getOperand(0).getIndex();
 | |
|       return MI->getOperand(2).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned
 | |
| HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
 | |
|                              MachineBasicBlock *FBB,
 | |
|                              const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                              DebugLoc DL) const{
 | |
| 
 | |
|     int BOpc   = Hexagon::J2_jump;
 | |
|     int BccOpc = Hexagon::J2_jumpt;
 | |
| 
 | |
|     assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
| 
 | |
|     int regPos = 0;
 | |
|     // Check if ReverseBranchCondition has asked to reverse this branch
 | |
|     // If we want to reverse the branch an odd number of times, we want
 | |
|     // JMP_f.
 | |
|     if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
 | |
|       BccOpc = Hexagon::J2_jumpf;
 | |
|       regPos = 1;
 | |
|     }
 | |
| 
 | |
|     if (!FBB) {
 | |
|       if (Cond.empty()) {
 | |
|         // Due to a bug in TailMerging/CFG Optimization, we need to add a
 | |
|         // special case handling of a predicated jump followed by an
 | |
|         // unconditional jump. If not, Tail Merging and CFG Optimization go
 | |
|         // into an infinite loop.
 | |
|         MachineBasicBlock *NewTBB, *NewFBB;
 | |
|         SmallVector<MachineOperand, 4> Cond;
 | |
|         MachineInstr *Term = MBB.getFirstTerminator();
 | |
|         if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
 | |
|                                                  false)) {
 | |
|           MachineBasicBlock *NextBB =
 | |
|             std::next(MachineFunction::iterator(&MBB));
 | |
|           if (NewTBB == NextBB) {
 | |
|             ReverseBranchCondition(Cond);
 | |
|             RemoveBranch(MBB);
 | |
|             return InsertBranch(MBB, TBB, nullptr, Cond, DL);
 | |
|           }
 | |
|         }
 | |
|         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
 | |
|       } else {
 | |
|         BuildMI(&MBB, DL,
 | |
|                 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
 | |
|       }
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
 | |
|     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
 | |
| 
 | |
|     return 2;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
 | |
|                                      MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  bool AllowModify) const {
 | |
|   TBB = nullptr;
 | |
|   FBB = nullptr;
 | |
| 
 | |
|   // If the block has no terminators, it just falls into the block after it.
 | |
|   MachineBasicBlock::instr_iterator I = MBB.instr_end();
 | |
|   if (I == MBB.instr_begin())
 | |
|     return false;
 | |
| 
 | |
|   // A basic block may looks like this:
 | |
|   //
 | |
|   //  [   insn
 | |
|   //     EH_LABEL
 | |
|   //      insn
 | |
|   //      insn
 | |
|   //      insn
 | |
|   //     EH_LABEL
 | |
|   //      insn     ]
 | |
|   //
 | |
|   // It has two succs but does not have a terminator
 | |
|   // Don't know how to handle it.
 | |
|   do {
 | |
|     --I;
 | |
|     if (I->isEHLabel())
 | |
|       return true;
 | |
|   } while (I != MBB.instr_begin());
 | |
| 
 | |
|   I = MBB.instr_end();
 | |
|   --I;
 | |
| 
 | |
|   while (I->isDebugValue()) {
 | |
|     if (I == MBB.instr_begin())
 | |
|       return false;
 | |
|     --I;
 | |
|   }
 | |
| 
 | |
|   // Delete the JMP if it's equivalent to a fall-through.
 | |
|   if (AllowModify && I->getOpcode() == Hexagon::J2_jump &&
 | |
|       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
 | |
|     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
 | |
|     I->eraseFromParent();
 | |
|     I = MBB.instr_end();
 | |
|     if (I == MBB.instr_begin())
 | |
|       return false;
 | |
|     --I;
 | |
|   }
 | |
|   if (!isUnpredicatedTerminator(I))
 | |
|     return false;
 | |
| 
 | |
|   // Get the last instruction in the block.
 | |
|   MachineInstr *LastInst = I;
 | |
|   MachineInstr *SecondLastInst = nullptr;
 | |
|   // Find one more terminator if present.
 | |
|   do {
 | |
|     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
 | |
|       if (!SecondLastInst)
 | |
|         SecondLastInst = I;
 | |
|       else
 | |
|         // This is a third branch.
 | |
|         return true;
 | |
|     }
 | |
|     if (I == MBB.instr_begin())
 | |
|       break;
 | |
|     --I;
 | |
|   } while(I);
 | |
| 
 | |
|   int LastOpcode = LastInst->getOpcode();
 | |
| 
 | |
|   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
 | |
|   bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
 | |
| 
 | |
|   // If there is only one terminator instruction, process it.
 | |
|   if (LastInst && !SecondLastInst) {
 | |
|     if (LastOpcode == Hexagon::J2_jump) {
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       return false;
 | |
|     }
 | |
|     if (LastOpcode == Hexagon::ENDLOOP0) {
 | |
|       TBB = LastInst->getOperand(0).getMBB();
 | |
|       Cond.push_back(LastInst->getOperand(0));
 | |
|       return false;
 | |
|     }
 | |
|     if (LastOpcodeHasJMP_c) {
 | |
|       TBB = LastInst->getOperand(1).getMBB();
 | |
|       if (LastOpcodeHasNot) {
 | |
|         Cond.push_back(MachineOperand::CreateImm(0));
 | |
|       }
 | |
|       Cond.push_back(LastInst->getOperand(0));
 | |
|       return false;
 | |
|     }
 | |
|     // Otherwise, don't know what this is.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int SecLastOpcode = SecondLastInst->getOpcode();
 | |
| 
 | |
|   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
 | |
|   bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
 | |
|   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
 | |
|     TBB =  SecondLastInst->getOperand(1).getMBB();
 | |
|     if (SecLastOpcodeHasNot)
 | |
|       Cond.push_back(MachineOperand::CreateImm(0));
 | |
|     Cond.push_back(SecondLastInst->getOperand(0));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
 | |
|   // executed, so remove it.
 | |
|   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     I = LastInst;
 | |
|     if (AllowModify)
 | |
|       I->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the block ends with an ENDLOOP, and JMP, handle it.
 | |
|   if (SecLastOpcode == Hexagon::ENDLOOP0 &&
 | |
|       LastOpcode == Hexagon::J2_jump) {
 | |
|     TBB = SecondLastInst->getOperand(0).getMBB();
 | |
|     Cond.push_back(SecondLastInst->getOperand(0));
 | |
|     FBB = LastInst->getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, can't handle this.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   int BOpc   = Hexagon::J2_jump;
 | |
|   int BccOpc = Hexagon::J2_jumpt;
 | |
|   int BccOpcNot = Hexagon::J2_jumpf;
 | |
| 
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   if (I == MBB.begin()) return 0;
 | |
|   --I;
 | |
|   if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
 | |
|       I->getOpcode() != BccOpcNot)
 | |
|     return 0;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
| 
 | |
|   I = MBB.end();
 | |
| 
 | |
|   if (I == MBB.begin()) return 1;
 | |
|   --I;
 | |
|   if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
 | |
|     return 1;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief For a comparison instruction, return the source registers in
 | |
| /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
 | |
| /// compares against in CmpValue. Return true if the comparison instruction
 | |
| /// can be analyzed.
 | |
| bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
 | |
|                                       unsigned &SrcReg, unsigned &SrcReg2,
 | |
|                                       int &Mask, int &Value) const {
 | |
|   unsigned Opc = MI->getOpcode();
 | |
| 
 | |
|   // Set mask and the first source register.
 | |
|   switch (Opc) {
 | |
|     case Hexagon::C2_cmpeqp:
 | |
|     case Hexagon::C2_cmpeqi:
 | |
|     case Hexagon::C2_cmpeq:
 | |
|     case Hexagon::C2_cmpgtp:
 | |
|     case Hexagon::C2_cmpgtup:
 | |
|     case Hexagon::C2_cmpgtui:
 | |
|     case Hexagon::C2_cmpgtu:
 | |
|     case Hexagon::C2_cmpgti:
 | |
|     case Hexagon::C2_cmpgt:
 | |
|       SrcReg = MI->getOperand(1).getReg();
 | |
|       Mask = ~0;
 | |
|       break;
 | |
|     case Hexagon::CMPbEQri_V4:
 | |
|     case Hexagon::CMPbEQrr_sbsb_V4:
 | |
|     case Hexagon::CMPbEQrr_ubub_V4:
 | |
|     case Hexagon::CMPbGTUri_V4:
 | |
|     case Hexagon::CMPbGTUrr_V4:
 | |
|     case Hexagon::CMPbGTrr_V4:
 | |
|       SrcReg = MI->getOperand(1).getReg();
 | |
|       Mask = 0xFF;
 | |
|       break;
 | |
|     case Hexagon::CMPhEQri_V4:
 | |
|     case Hexagon::CMPhEQrr_shl_V4:
 | |
|     case Hexagon::CMPhEQrr_xor_V4:
 | |
|     case Hexagon::CMPhGTUri_V4:
 | |
|     case Hexagon::CMPhGTUrr_V4:
 | |
|     case Hexagon::CMPhGTrr_shl_V4:
 | |
|       SrcReg = MI->getOperand(1).getReg();
 | |
|       Mask = 0xFFFF;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Set the value/second source register.
 | |
|   switch (Opc) {
 | |
|     case Hexagon::C2_cmpeqp:
 | |
|     case Hexagon::C2_cmpeq:
 | |
|     case Hexagon::C2_cmpgtp:
 | |
|     case Hexagon::C2_cmpgtup:
 | |
|     case Hexagon::C2_cmpgtu:
 | |
|     case Hexagon::C2_cmpgt:
 | |
|     case Hexagon::CMPbEQrr_sbsb_V4:
 | |
|     case Hexagon::CMPbEQrr_ubub_V4:
 | |
|     case Hexagon::CMPbGTUrr_V4:
 | |
|     case Hexagon::CMPbGTrr_V4:
 | |
|     case Hexagon::CMPhEQrr_shl_V4:
 | |
|     case Hexagon::CMPhEQrr_xor_V4:
 | |
|     case Hexagon::CMPhGTUrr_V4:
 | |
|     case Hexagon::CMPhGTrr_shl_V4:
 | |
|       SrcReg2 = MI->getOperand(2).getReg();
 | |
|       return true;
 | |
| 
 | |
|     case Hexagon::C2_cmpeqi:
 | |
|     case Hexagon::C2_cmpgtui:
 | |
|     case Hexagon::C2_cmpgti:
 | |
|     case Hexagon::CMPbEQri_V4:
 | |
|     case Hexagon::CMPbGTUri_V4:
 | |
|     case Hexagon::CMPhEQri_V4:
 | |
|     case Hexagon::CMPhGTUri_V4:
 | |
|       SrcReg2 = 0;
 | |
|       Value = MI->getOperand(2).getImm();
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator I, DebugLoc DL,
 | |
|                                  unsigned DestReg, unsigned SrcReg,
 | |
|                                  bool KillSrc) const {
 | |
|   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
 | |
|     // Map Pd = Ps to Pd = or(Ps, Ps).
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::C2_or),
 | |
|             DestReg).addReg(SrcReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
 | |
|       Hexagon::IntRegsRegClass.contains(SrcReg)) {
 | |
|     // We can have an overlap between single and double reg: r1:0 = r0.
 | |
|     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
 | |
|         // r1:0 = r0
 | |
|         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
 | |
|                 Hexagon::subreg_hireg))).addImm(0);
 | |
|     } else {
 | |
|         // r1:0 = r1 or no overlap.
 | |
|         BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
 | |
|                 Hexagon::subreg_loreg))).addReg(SrcReg);
 | |
|         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
 | |
|                 Hexagon::subreg_hireg))).addImm(0);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
 | |
|       Hexagon::IntRegsRegClass.contains(SrcReg)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
 | |
|       Hexagon::IntRegsRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
 | |
|       addReg(SrcReg, getKillRegState(KillSrc));
 | |
|     return;
 | |
|   }
 | |
|   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
 | |
|       Hexagon::PredRegsRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
 | |
|       addReg(SrcReg, getKillRegState(KillSrc));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unimplemented");
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonInstrInfo::
 | |
| storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | |
|                     unsigned SrcReg, bool isKill, int FI,
 | |
|                     const TargetRegisterClass *RC,
 | |
|                     const TargetRegisterInfo *TRI) const {
 | |
| 
 | |
|   DebugLoc DL = MBB.findDebugLoc(I);
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   unsigned Align = MFI.getObjectAlignment(FI);
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(
 | |
|                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
 | |
|                       MachineMemOperand::MOStore,
 | |
|                       MFI.getObjectSize(FI),
 | |
|                       Align);
 | |
| 
 | |
|   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::STriw))
 | |
|           .addFrameIndex(FI).addImm(0)
 | |
|           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
 | |
|   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::STrid))
 | |
|           .addFrameIndex(FI).addImm(0)
 | |
|           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
 | |
|   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
 | |
|           .addFrameIndex(FI).addImm(0)
 | |
|           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
 | |
|   } else {
 | |
|     llvm_unreachable("Unimplemented");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonInstrInfo::storeRegToAddr(
 | |
|                                  MachineFunction &MF, unsigned SrcReg,
 | |
|                                  bool isKill,
 | |
|                                  SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  SmallVectorImpl<MachineInstr*> &NewMIs) const
 | |
| {
 | |
|   llvm_unreachable("Unimplemented");
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonInstrInfo::
 | |
| loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | |
|                      unsigned DestReg, int FI,
 | |
|                      const TargetRegisterClass *RC,
 | |
|                      const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL = MBB.findDebugLoc(I);
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   unsigned Align = MFI.getObjectAlignment(FI);
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(
 | |
|                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
 | |
|                       MachineMemOperand::MOLoad,
 | |
|                       MFI.getObjectSize(FI),
 | |
|                       Align);
 | |
|   if (RC == &Hexagon::IntRegsRegClass) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
 | |
|           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
 | |
|   } else if (RC == &Hexagon::DoubleRegsRegClass) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
 | |
|           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
 | |
|   } else if (RC == &Hexagon::PredRegsRegClass) {
 | |
|     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
 | |
|           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
 | |
|   } else {
 | |
|     llvm_unreachable("Can't store this register to stack slot");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
 | |
|                                         SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                         const TargetRegisterClass *RC,
 | |
|                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   llvm_unreachable("Unimplemented");
 | |
| }
 | |
| 
 | |
| 
 | |
| MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                                     MachineInstr* MI,
 | |
|                                           const SmallVectorImpl<unsigned> &Ops,
 | |
|                                                     int FI) const {
 | |
|   // Hexagon_TODO: Implement.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | |
|   const TargetRegisterClass *TRC;
 | |
|   if (VT == MVT::i1) {
 | |
|     TRC = &Hexagon::PredRegsRegClass;
 | |
|   } else if (VT == MVT::i32 || VT == MVT::f32) {
 | |
|     TRC = &Hexagon::IntRegsRegClass;
 | |
|   } else if (VT == MVT::i64 || VT == MVT::f64) {
 | |
|     TRC = &Hexagon::DoubleRegsRegClass;
 | |
|   } else {
 | |
|     llvm_unreachable("Cannot handle this register class");
 | |
|   }
 | |
| 
 | |
|   unsigned NewReg = RegInfo.createVirtualRegister(TRC);
 | |
|   return NewReg;
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
 | |
|   // Constant extenders are allowed only for V4 and above.
 | |
|   if (!Subtarget.hasV4TOps())
 | |
|     return false;
 | |
| 
 | |
|   const MCInstrDesc &MID = MI->getDesc();
 | |
|   const uint64_t F = MID.TSFlags;
 | |
|   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
 | |
|     return true;
 | |
| 
 | |
|   // TODO: This is largely obsolete now. Will need to be removed
 | |
|   // in consecutive patches.
 | |
|   switch(MI->getOpcode()) {
 | |
|     // TFR_FI Remains a special case.
 | |
|     case Hexagon::TFR_FI:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
|   return  false;
 | |
| }
 | |
| 
 | |
| // This returns true in two cases:
 | |
| // - The OP code itself indicates that this is an extended instruction.
 | |
| // - One of MOs has been marked with HMOTF_ConstExtended flag.
 | |
| bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
 | |
|   // First check if this is permanently extended op code.
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
|   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
 | |
|     return true;
 | |
|   // Use MO operand flags to determine if one of MI's operands
 | |
|   // has HMOTF_ConstExtended flag set.
 | |
|   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
 | |
|        E = MI->operands_end(); I != E; ++I) {
 | |
|     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
 | |
|       return true;
 | |
|   }
 | |
|   return  false;
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
 | |
|   return MI->getDesc().isBranch();
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
 | |
|   if (isNewValueJump(MI))
 | |
|     return true;
 | |
| 
 | |
|   if (isNewValueStore(MI))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
 | |
|   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
 | |
|   bool isPred = MI->getDesc().isPredicable();
 | |
| 
 | |
|   if (!isPred)
 | |
|     return false;
 | |
| 
 | |
|   const int Opc = MI->getOpcode();
 | |
| 
 | |
|   switch(Opc) {
 | |
|   case Hexagon::A2_tfrsi:
 | |
|     return isInt<12>(MI->getOperand(1).getImm());
 | |
| 
 | |
|   case Hexagon::STrid:
 | |
|   case Hexagon::STrid_indexed:
 | |
|     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
 | |
| 
 | |
|   case Hexagon::STriw:
 | |
|   case Hexagon::STriw_indexed:
 | |
|   case Hexagon::STriw_nv_V4:
 | |
|     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
 | |
| 
 | |
|   case Hexagon::STrih:
 | |
|   case Hexagon::STrih_indexed:
 | |
|   case Hexagon::STrih_nv_V4:
 | |
|     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
 | |
| 
 | |
|   case Hexagon::STrib:
 | |
|   case Hexagon::STrib_indexed:
 | |
|   case Hexagon::STrib_nv_V4:
 | |
|     return isUInt<6>(MI->getOperand(1).getImm());
 | |
| 
 | |
|   case Hexagon::LDrid:
 | |
|   case Hexagon::LDrid_indexed:
 | |
|     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
 | |
| 
 | |
|   case Hexagon::LDriw:
 | |
|   case Hexagon::LDriw_indexed:
 | |
|     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
 | |
| 
 | |
|   case Hexagon::LDrih:
 | |
|   case Hexagon::LDriuh:
 | |
|   case Hexagon::LDrih_indexed:
 | |
|   case Hexagon::LDriuh_indexed:
 | |
|     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
 | |
| 
 | |
|   case Hexagon::LDrib:
 | |
|   case Hexagon::LDriub:
 | |
|   case Hexagon::LDrib_indexed:
 | |
|   case Hexagon::LDriub_indexed:
 | |
|     return isUInt<6>(MI->getOperand(2).getImm());
 | |
| 
 | |
|   case Hexagon::POST_LDrid:
 | |
|     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
 | |
| 
 | |
|   case Hexagon::POST_LDriw:
 | |
|     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
 | |
| 
 | |
|   case Hexagon::POST_LDrih:
 | |
|   case Hexagon::POST_LDriuh:
 | |
|     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
 | |
| 
 | |
|   case Hexagon::POST_LDrib:
 | |
|   case Hexagon::POST_LDriub:
 | |
|     return isInt<4>(MI->getOperand(3).getImm());
 | |
| 
 | |
|   case Hexagon::STrib_imm_V4:
 | |
|   case Hexagon::STrih_imm_V4:
 | |
|   case Hexagon::STriw_imm_V4:
 | |
|     return (isUInt<6>(MI->getOperand(1).getImm()) &&
 | |
|             isInt<6>(MI->getOperand(2).getImm()));
 | |
| 
 | |
|   case Hexagon::ADD_ri:
 | |
|     return isInt<8>(MI->getOperand(2).getImm());
 | |
| 
 | |
|   case Hexagon::A2_aslh:
 | |
|   case Hexagon::A2_asrh:
 | |
|   case Hexagon::A2_sxtb:
 | |
|   case Hexagon::A2_sxth:
 | |
|   case Hexagon::A2_zxtb:
 | |
|   case Hexagon::A2_zxth:
 | |
|     return Subtarget.hasV4TOps();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // This function performs the following inversiones:
 | |
| //
 | |
| //  cPt    ---> cNotPt
 | |
| //  cNotPt ---> cPt
 | |
| //
 | |
| unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
 | |
|   int InvPredOpcode;
 | |
|   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
 | |
|                                         : Hexagon::getTruePredOpcode(Opc);
 | |
|   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
 | |
|     return InvPredOpcode;
 | |
| 
 | |
|   switch(Opc) {
 | |
|     default: llvm_unreachable("Unexpected predicated instruction");
 | |
|     case Hexagon::C2_ccombinewt:
 | |
|       return Hexagon::C2_ccombinewf;
 | |
|     case Hexagon::C2_ccombinewf:
 | |
|       return Hexagon::C2_ccombinewt;
 | |
| 
 | |
|       // Dealloc_return.
 | |
|     case Hexagon::DEALLOC_RET_cPt_V4:
 | |
|       return Hexagon::DEALLOC_RET_cNotPt_V4;
 | |
|     case Hexagon::DEALLOC_RET_cNotPt_V4:
 | |
|       return Hexagon::DEALLOC_RET_cPt_V4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // New Value Store instructions.
 | |
| bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
| 
 | |
|   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
 | |
|   const uint64_t F = get(Opcode).TSFlags;
 | |
| 
 | |
|   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
 | |
| }
 | |
| 
 | |
| int HexagonInstrInfo::
 | |
| getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
 | |
|   enum Hexagon::PredSense inPredSense;
 | |
|   inPredSense = invertPredicate ? Hexagon::PredSense_false :
 | |
|                                   Hexagon::PredSense_true;
 | |
|   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
 | |
|   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
 | |
|     return CondOpcode;
 | |
| 
 | |
|   // This switch case will be removed once all the instructions have been
 | |
|   // modified to use relation maps.
 | |
|   switch(Opc) {
 | |
|   case Hexagon::TFRI_f:
 | |
|     return !invertPredicate ? Hexagon::TFRI_cPt_f :
 | |
|                               Hexagon::TFRI_cNotPt_f;
 | |
|   case Hexagon::A2_combinew:
 | |
|     return !invertPredicate ? Hexagon::C2_ccombinewt :
 | |
|                               Hexagon::C2_ccombinewf;
 | |
| 
 | |
|   // Word.
 | |
|   case Hexagon::STriw_f:
 | |
|     return !invertPredicate ? Hexagon::STriw_cPt :
 | |
|                               Hexagon::STriw_cNotPt;
 | |
|   case Hexagon::STriw_indexed_f:
 | |
|     return !invertPredicate ? Hexagon::STriw_indexed_cPt :
 | |
|                               Hexagon::STriw_indexed_cNotPt;
 | |
| 
 | |
|   // DEALLOC_RETURN.
 | |
|   case Hexagon::DEALLOC_RET_V4:
 | |
|     return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
 | |
|                               Hexagon::DEALLOC_RET_cNotPt_V4;
 | |
|   }
 | |
|   llvm_unreachable("Unexpected predicable instruction");
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonInstrInfo::
 | |
| PredicateInstruction(MachineInstr *MI,
 | |
|                      const SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   int Opc = MI->getOpcode();
 | |
|   assert (isPredicable(MI) && "Expected predicable instruction");
 | |
|   bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
 | |
|                      (Cond[0].getImm() == 0));
 | |
| 
 | |
|   // This will change MI's opcode to its predicate version.
 | |
|   // However, its operand list is still the old one, i.e. the
 | |
|   // non-predicate one.
 | |
|   MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
 | |
| 
 | |
|   int oper = -1;
 | |
|   unsigned int GAIdx = 0;
 | |
| 
 | |
|   // Indicates whether the current MI has a GlobalAddress operand
 | |
|   bool hasGAOpnd = false;
 | |
|   std::vector<MachineOperand> tmpOpnds;
 | |
| 
 | |
|   // Indicates whether we need to shift operands to right.
 | |
|   bool needShift = true;
 | |
| 
 | |
|   // The predicate is ALWAYS the FIRST input operand !!!
 | |
|   if (MI->getNumOperands() == 0) {
 | |
|     // The non-predicate version of MI does not take any operands,
 | |
|     // i.e. no outs and no ins. In this condition, the predicate
 | |
|     // operand will be directly placed at Operands[0]. No operand
 | |
|     // shift is needed.
 | |
|     // Example: BARRIER
 | |
|     needShift = false;
 | |
|     oper = -1;
 | |
|   }
 | |
|   else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
 | |
|            && MI->getOperand(MI->getNumOperands()-1).isDef()
 | |
|            && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
 | |
|     // The non-predicate version of MI does not have any input operands.
 | |
|     // In this condition, we extend the length of Operands[] by one and
 | |
|     // copy the original last operand to the newly allocated slot.
 | |
|     // At this moment, it is just a place holder. Later, we will put
 | |
|     // predicate operand directly into it. No operand shift is needed.
 | |
|     // Example: r0=BARRIER (this is a faked insn used here for illustration)
 | |
|     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
 | |
|     needShift = false;
 | |
|     oper = MI->getNumOperands() - 2;
 | |
|   }
 | |
|   else {
 | |
|     // We need to right shift all input operands by one. Duplicate the
 | |
|     // last operand into the newly allocated slot.
 | |
|     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
 | |
|   }
 | |
| 
 | |
|   if (needShift)
 | |
|   {
 | |
|     // Operands[ MI->getNumOperands() - 2 ] has been copied into
 | |
|     // Operands[ MI->getNumOperands() - 1 ], so we start from
 | |
|     // Operands[ MI->getNumOperands() - 3 ].
 | |
|     // oper is a signed int.
 | |
|     // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
 | |
|     for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
 | |
|     {
 | |
|       MachineOperand &MO = MI->getOperand(oper);
 | |
| 
 | |
|       // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
 | |
|       // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
 | |
|       //               /\~
 | |
|       //              /||\~
 | |
|       //               ||
 | |
|       //        Predicate Operand here
 | |
|       if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
 | |
|         break;
 | |
|       }
 | |
|       if (MO.isReg()) {
 | |
|         MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
 | |
|                                                 MO.isImplicit(), MO.isKill(),
 | |
|                                                 MO.isDead(), MO.isUndef(),
 | |
|                                                 MO.isDebug());
 | |
|       }
 | |
|       else if (MO.isImm()) {
 | |
|         MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
 | |
|       }
 | |
|       else if (MO.isGlobal()) {
 | |
|         // MI can not have more than one GlobalAddress operand.
 | |
|         assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
 | |
| 
 | |
|         // There is no member function called "ChangeToGlobalAddress" in the
 | |
|         // MachineOperand class (not like "ChangeToRegister" and
 | |
|         // "ChangeToImmediate"). So we have to remove them from Operands[] list
 | |
|         // first, and then add them back after we have inserted the predicate
 | |
|         // operand. tmpOpnds[] is to remember these operands before we remove
 | |
|         // them.
 | |
|         tmpOpnds.push_back(MO);
 | |
| 
 | |
|         // Operands[oper] is a GlobalAddress operand;
 | |
|         // Operands[oper+1] has been copied into Operands[oper+2];
 | |
|         hasGAOpnd = true;
 | |
|         GAIdx = oper;
 | |
|         continue;
 | |
|       }
 | |
|       else {
 | |
|         assert(false && "Unexpected operand type");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int regPos = invertJump ? 1 : 0;
 | |
|   MachineOperand PredMO = Cond[regPos];
 | |
| 
 | |
|   // [oper] now points to the last explicit Def. Predicate operand must be
 | |
|   // located at [oper+1]. See diagram above.
 | |
|   // This assumes that the predicate is always the first operand,
 | |
|   // i.e. Operands[0+numResults], in the set of inputs
 | |
|   // It is better to have an assert here to check this. But I don't know how
 | |
|   // to write this assert because findFirstPredOperandIdx() would return -1
 | |
|   if (oper < -1) oper = -1;
 | |
| 
 | |
|   MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
 | |
|                                           PredMO.isImplicit(), false,
 | |
|                                           PredMO.isDead(), PredMO.isUndef(),
 | |
|                                           PredMO.isDebug());
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
 | |
|   RegInfo.clearKillFlags(PredMO.getReg());
 | |
| 
 | |
|   if (hasGAOpnd)
 | |
|   {
 | |
|     unsigned int i;
 | |
| 
 | |
|     // Operands[GAIdx] is the original GlobalAddress operand, which is
 | |
|     // already copied into tmpOpnds[0].
 | |
|     // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
 | |
|     // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
 | |
|     // so we start from [GAIdx+2]
 | |
|     for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
 | |
|       tmpOpnds.push_back(MI->getOperand(i));
 | |
| 
 | |
|     // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
 | |
|     // It is very important that we always remove from the end of Operands[]
 | |
|     // MI->getNumOperands() is at least 2 if program goes to here.
 | |
|     for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
 | |
|       MI->RemoveOperand(i);
 | |
| 
 | |
|     for (i = 0; i < tmpOpnds.size(); ++i)
 | |
|       MI->addOperand(tmpOpnds[i]);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| HexagonInstrInfo::
 | |
| isProfitableToIfCvt(MachineBasicBlock &MBB,
 | |
|                     unsigned NumCycles,
 | |
|                     unsigned ExtraPredCycles,
 | |
|                     const BranchProbability &Probability) const {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| HexagonInstrInfo::
 | |
| isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | |
|                     unsigned NumTCycles,
 | |
|                     unsigned ExtraTCycles,
 | |
|                     MachineBasicBlock &FMBB,
 | |
|                     unsigned NumFCycles,
 | |
|                     unsigned ExtraFCycles,
 | |
|                     const BranchProbability &Probability) const {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Returns true if an instruction is predicated irrespective of the predicate
 | |
| // sense. For example, all of the following will return true.
 | |
| // if (p0) R1 = add(R2, R3)
 | |
| // if (!p0) R1 = add(R2, R3)
 | |
| // if (p0.new) R1 = add(R2, R3)
 | |
| // if (!p0.new) R1 = add(R2, R3)
 | |
| bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
| 
 | |
|   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
 | |
|   const uint64_t F = get(Opcode).TSFlags;
 | |
| 
 | |
|   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
| 
 | |
|   assert(isPredicated(MI));
 | |
|   return (!((F >> HexagonII::PredicatedFalsePos) &
 | |
|             HexagonII::PredicatedFalseMask));
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
 | |
|   const uint64_t F = get(Opcode).TSFlags;
 | |
| 
 | |
|   // Make sure that the instruction is predicated.
 | |
|   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
 | |
|   return (!((F >> HexagonII::PredicatedFalsePos) &
 | |
|             HexagonII::PredicatedFalseMask));
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
| 
 | |
|   assert(isPredicated(MI));
 | |
|   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
 | |
|   const uint64_t F = get(Opcode).TSFlags;
 | |
| 
 | |
|   assert(isPredicated(Opcode));
 | |
|   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
 | |
| }
 | |
| 
 | |
| // Returns true, if a ST insn can be promoted to a new-value store.
 | |
| bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
 | |
|   const HexagonRegisterInfo& QRI = getRegisterInfo();
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
| 
 | |
|   return ((F >> HexagonII::mayNVStorePos) &
 | |
|            HexagonII::mayNVStoreMask &
 | |
|            QRI.Subtarget.hasV4TOps());
 | |
| }
 | |
| 
 | |
| bool
 | |
| HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
 | |
|                                    std::vector<MachineOperand> &Pred) const {
 | |
|   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
 | |
|     MachineOperand MO = MI->getOperand(oper);
 | |
|     if (MO.isReg() && MO.isDef()) {
 | |
|       const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
 | |
|       if (RC == &Hexagon::PredRegsRegClass) {
 | |
|         Pred.push_back(MO);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| HexagonInstrInfo::
 | |
| SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
 | |
|                   const SmallVectorImpl<MachineOperand> &Pred2) const {
 | |
|   // TODO: Fix this
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // We indicate that we want to reverse the branch by
 | |
| // inserting a 0 at the beginning of the Cond vector.
 | |
| //
 | |
| bool HexagonInstrInfo::
 | |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
 | |
|     Cond.erase(Cond.begin());
 | |
|   } else {
 | |
|     Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonInstrInfo::
 | |
| isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
 | |
|                           const BranchProbability &Probability) const {
 | |
|   return (NumInstrs <= 4);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: return false;
 | |
|   case Hexagon::DEALLOC_RET_V4 :
 | |
|   case Hexagon::DEALLOC_RET_cPt_V4 :
 | |
|   case Hexagon::DEALLOC_RET_cNotPt_V4 :
 | |
|   case Hexagon::DEALLOC_RET_cdnPnt_V4 :
 | |
|   case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
 | |
|   case Hexagon::DEALLOC_RET_cdnPt_V4 :
 | |
|   case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
 | |
|    return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonInstrInfo::
 | |
| isValidOffset(const int Opcode, const int Offset) const {
 | |
|   // This function is to check whether the "Offset" is in the correct range of
 | |
|   // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
 | |
|   // inserted to calculate the final address. Due to this reason, the function
 | |
|   // assumes that the "Offset" has correct alignment.
 | |
|   // We used to assert if the offset was not properly aligned, however,
 | |
|   // there are cases where a misaligned pointer recast can cause this
 | |
|   // problem, and we need to allow for it. The front end warns of such
 | |
|   // misaligns with respect to load size.
 | |
| 
 | |
|   switch(Opcode) {
 | |
| 
 | |
|   case Hexagon::LDriw:
 | |
|   case Hexagon::LDriw_indexed:
 | |
|   case Hexagon::LDriw_f:
 | |
|   case Hexagon::STriw_indexed:
 | |
|   case Hexagon::STriw:
 | |
|   case Hexagon::STriw_f:
 | |
|     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
 | |
|       (Offset <= Hexagon_MEMW_OFFSET_MAX);
 | |
| 
 | |
|   case Hexagon::LDrid:
 | |
|   case Hexagon::LDrid_indexed:
 | |
|   case Hexagon::LDrid_f:
 | |
|   case Hexagon::STrid:
 | |
|   case Hexagon::STrid_indexed:
 | |
|   case Hexagon::STrid_f:
 | |
|     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
 | |
|       (Offset <= Hexagon_MEMD_OFFSET_MAX);
 | |
| 
 | |
|   case Hexagon::LDrih:
 | |
|   case Hexagon::LDriuh:
 | |
|   case Hexagon::STrih:
 | |
|     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
 | |
|       (Offset <= Hexagon_MEMH_OFFSET_MAX);
 | |
| 
 | |
|   case Hexagon::LDrib:
 | |
|   case Hexagon::STrib:
 | |
|   case Hexagon::LDriub:
 | |
|     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
 | |
|       (Offset <= Hexagon_MEMB_OFFSET_MAX);
 | |
| 
 | |
|   case Hexagon::ADD_ri:
 | |
|   case Hexagon::TFR_FI:
 | |
|     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
 | |
|       (Offset <= Hexagon_ADDI_OFFSET_MAX);
 | |
| 
 | |
|   case Hexagon::MemOPw_ADDi_V4 :
 | |
|   case Hexagon::MemOPw_SUBi_V4 :
 | |
|   case Hexagon::MemOPw_ADDr_V4 :
 | |
|   case Hexagon::MemOPw_SUBr_V4 :
 | |
|   case Hexagon::MemOPw_ANDr_V4 :
 | |
|   case Hexagon::MemOPw_ORr_V4 :
 | |
|     return (0 <= Offset && Offset <= 255);
 | |
| 
 | |
|   case Hexagon::MemOPh_ADDi_V4 :
 | |
|   case Hexagon::MemOPh_SUBi_V4 :
 | |
|   case Hexagon::MemOPh_ADDr_V4 :
 | |
|   case Hexagon::MemOPh_SUBr_V4 :
 | |
|   case Hexagon::MemOPh_ANDr_V4 :
 | |
|   case Hexagon::MemOPh_ORr_V4 :
 | |
|     return (0 <= Offset && Offset <= 127);
 | |
| 
 | |
|   case Hexagon::MemOPb_ADDi_V4 :
 | |
|   case Hexagon::MemOPb_SUBi_V4 :
 | |
|   case Hexagon::MemOPb_ADDr_V4 :
 | |
|   case Hexagon::MemOPb_SUBr_V4 :
 | |
|   case Hexagon::MemOPb_ANDr_V4 :
 | |
|   case Hexagon::MemOPb_ORr_V4 :
 | |
|     return (0 <= Offset && Offset <= 63);
 | |
| 
 | |
|   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
 | |
|   // any size. Later pass knows how to handle it.
 | |
|   case Hexagon::STriw_pred:
 | |
|   case Hexagon::LDriw_pred:
 | |
|     return true;
 | |
| 
 | |
|   case Hexagon::J2_loop0i:
 | |
|     return isUInt<10>(Offset);
 | |
| 
 | |
|   // INLINEASM is very special.
 | |
|   case Hexagon::INLINEASM:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("No offset range is defined for this opcode. "
 | |
|                    "Please define it in the above switch statement!");
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // Check if the Offset is a valid auto-inc imm by Load/Store Type.
 | |
| //
 | |
| bool HexagonInstrInfo::
 | |
| isValidAutoIncImm(const EVT VT, const int Offset) const {
 | |
| 
 | |
|   if (VT == MVT::i64) {
 | |
|       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
 | |
|               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
 | |
|               (Offset & 0x7) == 0);
 | |
|   }
 | |
|   if (VT == MVT::i32) {
 | |
|       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
 | |
|               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
 | |
|               (Offset & 0x3) == 0);
 | |
|   }
 | |
|   if (VT == MVT::i16) {
 | |
|       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
 | |
|               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
 | |
|               (Offset & 0x1) == 0);
 | |
|   }
 | |
|   if (VT == MVT::i8) {
 | |
|       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
 | |
|               Offset <= Hexagon_MEMB_AUTOINC_MAX);
 | |
|   }
 | |
|   llvm_unreachable("Not an auto-inc opc!");
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonInstrInfo::
 | |
| isMemOp(const MachineInstr *MI) const {
 | |
| //  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
 | |
| 
 | |
|   switch (MI->getOpcode())
 | |
|   {
 | |
|     default: return false;
 | |
|     case Hexagon::MemOPw_ADDi_V4 :
 | |
|     case Hexagon::MemOPw_SUBi_V4 :
 | |
|     case Hexagon::MemOPw_ADDr_V4 :
 | |
|     case Hexagon::MemOPw_SUBr_V4 :
 | |
|     case Hexagon::MemOPw_ANDr_V4 :
 | |
|     case Hexagon::MemOPw_ORr_V4 :
 | |
|     case Hexagon::MemOPh_ADDi_V4 :
 | |
|     case Hexagon::MemOPh_SUBi_V4 :
 | |
|     case Hexagon::MemOPh_ADDr_V4 :
 | |
|     case Hexagon::MemOPh_SUBr_V4 :
 | |
|     case Hexagon::MemOPh_ANDr_V4 :
 | |
|     case Hexagon::MemOPh_ORr_V4 :
 | |
|     case Hexagon::MemOPb_ADDi_V4 :
 | |
|     case Hexagon::MemOPb_SUBi_V4 :
 | |
|     case Hexagon::MemOPb_ADDr_V4 :
 | |
|     case Hexagon::MemOPb_SUBr_V4 :
 | |
|     case Hexagon::MemOPb_ANDr_V4 :
 | |
|     case Hexagon::MemOPb_ORr_V4 :
 | |
|     case Hexagon::MemOPb_SETBITi_V4:
 | |
|     case Hexagon::MemOPh_SETBITi_V4:
 | |
|     case Hexagon::MemOPw_SETBITi_V4:
 | |
|     case Hexagon::MemOPb_CLRBITi_V4:
 | |
|     case Hexagon::MemOPh_CLRBITi_V4:
 | |
|     case Hexagon::MemOPw_CLRBITi_V4:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonInstrInfo::
 | |
| isSpillPredRegOp(const MachineInstr *MI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|     default: return false;
 | |
|     case Hexagon::STriw_pred :
 | |
|     case Hexagon::LDriw_pred :
 | |
|       return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|     default: return false;
 | |
|     case Hexagon::C2_cmpeq:
 | |
|     case Hexagon::C2_cmpeqi:
 | |
|     case Hexagon::C2_cmpgt:
 | |
|     case Hexagon::C2_cmpgti:
 | |
|     case Hexagon::C2_cmpgtu:
 | |
|     case Hexagon::C2_cmpgtui:
 | |
|       return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::
 | |
| isConditionalTransfer (const MachineInstr *MI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|     default: return false;
 | |
|     case Hexagon::A2_tfrt:
 | |
|     case Hexagon::A2_tfrf:
 | |
|     case Hexagon::C2_cmoveit:
 | |
|     case Hexagon::C2_cmoveif:
 | |
|     case Hexagon::A2_tfrtnew:
 | |
|     case Hexagon::A2_tfrfnew:
 | |
|     case Hexagon::C2_cmovenewit:
 | |
|     case Hexagon::C2_cmovenewif:
 | |
|       return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
 | |
|   switch (MI->getOpcode())
 | |
|   {
 | |
|     default: return false;
 | |
|     case Hexagon::A2_paddf:
 | |
|     case Hexagon::A2_paddfnew:
 | |
|     case Hexagon::A2_paddt:
 | |
|     case Hexagon::A2_paddtnew:
 | |
|     case Hexagon::A2_pandf:
 | |
|     case Hexagon::A2_pandfnew:
 | |
|     case Hexagon::A2_pandt:
 | |
|     case Hexagon::A2_pandtnew:
 | |
|     case Hexagon::A4_paslhf:
 | |
|     case Hexagon::A4_paslhfnew:
 | |
|     case Hexagon::A4_paslht:
 | |
|     case Hexagon::A4_paslhtnew:
 | |
|     case Hexagon::A4_pasrhf:
 | |
|     case Hexagon::A4_pasrhfnew:
 | |
|     case Hexagon::A4_pasrht:
 | |
|     case Hexagon::A4_pasrhtnew:
 | |
|     case Hexagon::A2_porf:
 | |
|     case Hexagon::A2_porfnew:
 | |
|     case Hexagon::A2_port:
 | |
|     case Hexagon::A2_portnew:
 | |
|     case Hexagon::A2_psubf:
 | |
|     case Hexagon::A2_psubfnew:
 | |
|     case Hexagon::A2_psubt:
 | |
|     case Hexagon::A2_psubtnew:
 | |
|     case Hexagon::A2_pxorf:
 | |
|     case Hexagon::A2_pxorfnew:
 | |
|     case Hexagon::A2_pxort:
 | |
|     case Hexagon::A2_pxortnew:
 | |
|     case Hexagon::A4_psxthf:
 | |
|     case Hexagon::A4_psxthfnew:
 | |
|     case Hexagon::A4_psxtht:
 | |
|     case Hexagon::A4_psxthtnew:
 | |
|     case Hexagon::A4_psxtbf:
 | |
|     case Hexagon::A4_psxtbfnew:
 | |
|     case Hexagon::A4_psxtbt:
 | |
|     case Hexagon::A4_psxtbtnew:
 | |
|     case Hexagon::A4_pzxtbf:
 | |
|     case Hexagon::A4_pzxtbfnew:
 | |
|     case Hexagon::A4_pzxtbt:
 | |
|     case Hexagon::A4_pzxtbtnew:
 | |
|     case Hexagon::A4_pzxthf:
 | |
|     case Hexagon::A4_pzxthfnew:
 | |
|     case Hexagon::A4_pzxtht:
 | |
|     case Hexagon::A4_pzxthtnew:
 | |
|     case Hexagon::ADD_ri_cPt:
 | |
|     case Hexagon::ADD_ri_cNotPt:
 | |
|     case Hexagon::C2_ccombinewt:
 | |
|     case Hexagon::C2_ccombinewf:
 | |
|       return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::
 | |
| isConditionalLoad (const MachineInstr* MI) const {
 | |
|   const HexagonRegisterInfo& QRI = getRegisterInfo();
 | |
|   switch (MI->getOpcode())
 | |
|   {
 | |
|     default: return false;
 | |
|     case Hexagon::LDrid_cPt :
 | |
|     case Hexagon::LDrid_cNotPt :
 | |
|     case Hexagon::LDrid_indexed_cPt :
 | |
|     case Hexagon::LDrid_indexed_cNotPt :
 | |
|     case Hexagon::LDriw_cPt :
 | |
|     case Hexagon::LDriw_cNotPt :
 | |
|     case Hexagon::LDriw_indexed_cPt :
 | |
|     case Hexagon::LDriw_indexed_cNotPt :
 | |
|     case Hexagon::LDrih_cPt :
 | |
|     case Hexagon::LDrih_cNotPt :
 | |
|     case Hexagon::LDrih_indexed_cPt :
 | |
|     case Hexagon::LDrih_indexed_cNotPt :
 | |
|     case Hexagon::LDrib_cPt :
 | |
|     case Hexagon::LDrib_cNotPt :
 | |
|     case Hexagon::LDrib_indexed_cPt :
 | |
|     case Hexagon::LDrib_indexed_cNotPt :
 | |
|     case Hexagon::LDriuh_cPt :
 | |
|     case Hexagon::LDriuh_cNotPt :
 | |
|     case Hexagon::LDriuh_indexed_cPt :
 | |
|     case Hexagon::LDriuh_indexed_cNotPt :
 | |
|     case Hexagon::LDriub_cPt :
 | |
|     case Hexagon::LDriub_cNotPt :
 | |
|     case Hexagon::LDriub_indexed_cPt :
 | |
|     case Hexagon::LDriub_indexed_cNotPt :
 | |
|       return true;
 | |
|     case Hexagon::POST_LDrid_cPt :
 | |
|     case Hexagon::POST_LDrid_cNotPt :
 | |
|     case Hexagon::POST_LDriw_cPt :
 | |
|     case Hexagon::POST_LDriw_cNotPt :
 | |
|     case Hexagon::POST_LDrih_cPt :
 | |
|     case Hexagon::POST_LDrih_cNotPt :
 | |
|     case Hexagon::POST_LDrib_cPt :
 | |
|     case Hexagon::POST_LDrib_cNotPt :
 | |
|     case Hexagon::POST_LDriuh_cPt :
 | |
|     case Hexagon::POST_LDriuh_cNotPt :
 | |
|     case Hexagon::POST_LDriub_cPt :
 | |
|     case Hexagon::POST_LDriub_cNotPt :
 | |
|       return QRI.Subtarget.hasV4TOps();
 | |
|     case Hexagon::LDrid_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::LDrib_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::LDriub_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::LDrih_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::LDriuh_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::LDriw_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
 | |
|       return QRI.Subtarget.hasV4TOps();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns true if an instruction is a conditional store.
 | |
| //
 | |
| // Note: It doesn't include conditional new-value stores as they can't be
 | |
| // converted to .new predicate.
 | |
| //
 | |
| //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
 | |
| //                ^           ^
 | |
| //               /             \ (not OK. it will cause new-value store to be
 | |
| //              /               X conditional on p0.new while R2 producer is
 | |
| //             /                 \ on p0)
 | |
| //            /                   \.
 | |
| //     p.new store                 p.old NV store
 | |
| // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
 | |
| //            ^                  ^
 | |
| //             \                /
 | |
| //              \              /
 | |
| //               \            /
 | |
| //                 p.old store
 | |
| //             [if (p0)memw(R0+#0)=R2]
 | |
| //
 | |
| // The above diagram shows the steps involoved in the conversion of a predicated
 | |
| // store instruction to its .new predicated new-value form.
 | |
| //
 | |
| // The following set of instructions further explains the scenario where
 | |
| // conditional new-value store becomes invalid when promoted to .new predicate
 | |
| // form.
 | |
| //
 | |
| // { 1) if (p0) r0 = add(r1, r2)
 | |
| //   2) p0 = cmp.eq(r3, #0) }
 | |
| //
 | |
| //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
 | |
| // the first two instructions because in instr 1, r0 is conditional on old value
 | |
| // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
 | |
| // is not valid for new-value stores.
 | |
| bool HexagonInstrInfo::
 | |
| isConditionalStore (const MachineInstr* MI) const {
 | |
|   const HexagonRegisterInfo& QRI = getRegisterInfo();
 | |
|   switch (MI->getOpcode())
 | |
|   {
 | |
|     default: return false;
 | |
|     case Hexagon::STrib_imm_cPt_V4 :
 | |
|     case Hexagon::STrib_imm_cNotPt_V4 :
 | |
|     case Hexagon::STrib_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::STrib_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::STrib_cPt :
 | |
|     case Hexagon::STrib_cNotPt :
 | |
|     case Hexagon::POST_STbri_cPt :
 | |
|     case Hexagon::POST_STbri_cNotPt :
 | |
|     case Hexagon::STrid_indexed_cPt :
 | |
|     case Hexagon::STrid_indexed_cNotPt :
 | |
|     case Hexagon::STrid_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::POST_STdri_cPt :
 | |
|     case Hexagon::POST_STdri_cNotPt :
 | |
|     case Hexagon::STrih_cPt :
 | |
|     case Hexagon::STrih_cNotPt :
 | |
|     case Hexagon::STrih_indexed_cPt :
 | |
|     case Hexagon::STrih_indexed_cNotPt :
 | |
|     case Hexagon::STrih_imm_cPt_V4 :
 | |
|     case Hexagon::STrih_imm_cNotPt_V4 :
 | |
|     case Hexagon::STrih_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::STrih_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::POST_SThri_cPt :
 | |
|     case Hexagon::POST_SThri_cNotPt :
 | |
|     case Hexagon::STriw_cPt :
 | |
|     case Hexagon::STriw_cNotPt :
 | |
|     case Hexagon::STriw_indexed_cPt :
 | |
|     case Hexagon::STriw_indexed_cNotPt :
 | |
|     case Hexagon::STriw_imm_cPt_V4 :
 | |
|     case Hexagon::STriw_imm_cNotPt_V4 :
 | |
|     case Hexagon::STriw_indexed_shl_cPt_V4 :
 | |
|     case Hexagon::STriw_indexed_shl_cNotPt_V4 :
 | |
|     case Hexagon::POST_STwri_cPt :
 | |
|     case Hexagon::POST_STwri_cNotPt :
 | |
|       return QRI.Subtarget.hasV4TOps();
 | |
| 
 | |
|     // V4 global address store before promoting to dot new.
 | |
|     case Hexagon::STd_GP_cPt_V4 :
 | |
|     case Hexagon::STd_GP_cNotPt_V4 :
 | |
|     case Hexagon::STb_GP_cPt_V4 :
 | |
|     case Hexagon::STb_GP_cNotPt_V4 :
 | |
|     case Hexagon::STh_GP_cPt_V4 :
 | |
|     case Hexagon::STh_GP_cNotPt_V4 :
 | |
|     case Hexagon::STw_GP_cPt_V4 :
 | |
|     case Hexagon::STw_GP_cNotPt_V4 :
 | |
|       return QRI.Subtarget.hasV4TOps();
 | |
| 
 | |
|     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
 | |
|     // from the "Conditional Store" list. Because a predicated new value store
 | |
|     // would NOT be promoted to a double dot new store. See diagram below:
 | |
|     // This function returns yes for those stores that are predicated but not
 | |
|     // yet promoted to predicate dot new instructions.
 | |
|     //
 | |
|     //                          +---------------------+
 | |
|     //                    /-----| if (p0) memw(..)=r0 |---------\~
 | |
|     //                   ||     +---------------------+         ||
 | |
|     //          promote  ||       /\       /\                   ||  promote
 | |
|     //                   ||      /||\     /||\                  ||
 | |
|     //                  \||/    demote     ||                  \||/
 | |
|     //                   \/       ||       ||                   \/
 | |
|     //       +-------------------------+   ||   +-------------------------+
 | |
|     //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
 | |
|     //       +-------------------------+   ||   +-------------------------+
 | |
|     //                        ||           ||         ||
 | |
|     //                        ||         demote      \||/
 | |
|     //                      promote        ||         \/ NOT possible
 | |
|     //                        ||           ||         /\~
 | |
|     //                       \||/          ||        /||\~
 | |
|     //                        \/           ||         ||
 | |
|     //                      +-----------------------------+
 | |
|     //                      | if (p0.new) memw(..)=r0.new |
 | |
|     //                      +-----------------------------+
 | |
|     //                           Double Dot New Store
 | |
|     //
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
 | |
|   if (isNewValue(MI) && isBranch(MI))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
 | |
|   return (getAddrMode(MI) == HexagonII::PostInc);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
|   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
 | |
| }
 | |
| 
 | |
| // Returns true, if any one of the operands is a dot new
 | |
| // insn, whether it is predicated dot new or register dot new.
 | |
| bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
 | |
|   return (isNewValueInst(MI) ||
 | |
|      (isPredicated(MI) && isPredicatedNew(MI)));
 | |
| }
 | |
| 
 | |
| // Returns the most basic instruction for the .new predicated instructions and
 | |
| // new-value stores.
 | |
| // For example, all of the following instructions will be converted back to the
 | |
| // same instruction:
 | |
| // 1) if (p0.new) memw(R0+#0) = R1.new  --->
 | |
| // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
 | |
| // 3) if (p0.new) memw(R0+#0) = R1      --->
 | |
| //
 | |
| 
 | |
| int HexagonInstrInfo::GetDotOldOp(const int opc) const {
 | |
|   int NewOp = opc;
 | |
|   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
 | |
|     NewOp = Hexagon::getPredOldOpcode(NewOp);
 | |
|     assert(NewOp >= 0 &&
 | |
|            "Couldn't change predicate new instruction to its old form.");
 | |
|   }
 | |
| 
 | |
|   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
 | |
|     NewOp = Hexagon::getNonNVStore(NewOp);
 | |
|     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
 | |
|   }
 | |
|   return NewOp;
 | |
| }
 | |
| 
 | |
| // Return the new value instruction for a given store.
 | |
| int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
 | |
|   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
 | |
|   if (NVOpcode >= 0) // Valid new-value store instruction.
 | |
|     return NVOpcode;
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown .new type");
 | |
|   // store new value byte
 | |
|   case Hexagon::STrib_shl_V4:
 | |
|     return Hexagon::STrib_shl_nv_V4;
 | |
| 
 | |
|   case Hexagon::STrih_shl_V4:
 | |
|     return Hexagon::STrih_shl_nv_V4;
 | |
| 
 | |
|   case Hexagon::STriw_f:
 | |
|     return Hexagon::STriw_nv_V4;
 | |
| 
 | |
|   case Hexagon::STriw_indexed_f:
 | |
|     return Hexagon::STriw_indexed_nv_V4;
 | |
| 
 | |
|   case Hexagon::STriw_shl_V4:
 | |
|     return Hexagon::STriw_shl_nv_V4;
 | |
| 
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Return .new predicate version for an instruction.
 | |
| int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
 | |
|                                       const MachineBranchProbabilityInfo
 | |
|                                       *MBPI) const {
 | |
| 
 | |
|   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
 | |
|   if (NewOpcode >= 0) // Valid predicate new instruction
 | |
|     return NewOpcode;
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown .new type");
 | |
|   // Condtional Jumps
 | |
|   case Hexagon::J2_jumpt:
 | |
|   case Hexagon::J2_jumpf:
 | |
|     return getDotNewPredJumpOp(MI, MBPI);
 | |
| 
 | |
|   case Hexagon::J2_jumprt:
 | |
|     return Hexagon::J2_jumptnewpt;
 | |
| 
 | |
|   case Hexagon::J2_jumprf:
 | |
|     return Hexagon::J2_jumprfnewpt;
 | |
| 
 | |
|   case Hexagon::JMPrett:
 | |
|     return Hexagon::J2_jumprtnewpt;
 | |
| 
 | |
|   case Hexagon::JMPretf:
 | |
|     return Hexagon::J2_jumprfnewpt;
 | |
| 
 | |
| 
 | |
|   // Conditional combine
 | |
|   case Hexagon::C2_ccombinewt:
 | |
|     return Hexagon::C2_ccombinewnewt;
 | |
|   case Hexagon::C2_ccombinewf:
 | |
|     return Hexagon::C2_ccombinewnewf;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
| 
 | |
|   return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
 | |
| }
 | |
| 
 | |
| /// immediateExtend - Changes the instruction in place to one using an immediate
 | |
| /// extender.
 | |
| void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
 | |
|   assert((isExtendable(MI)||isConstExtended(MI)) &&
 | |
|                                "Instruction must be extendable");
 | |
|   // Find which operand is extendable.
 | |
|   short ExtOpNum = getCExtOpNum(MI);
 | |
|   MachineOperand &MO = MI->getOperand(ExtOpNum);
 | |
|   // This needs to be something we understand.
 | |
|   assert((MO.isMBB() || MO.isImm()) &&
 | |
|          "Branch with unknown extendable field type");
 | |
|   // Mark given operand as extended.
 | |
|   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
 | |
| }
 | |
| 
 | |
| DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
 | |
|     const TargetSubtargetInfo &STI) const {
 | |
|   const InstrItineraryData *II = STI.getInstrItineraryData();
 | |
|   return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
 | |
|                                             const MachineBasicBlock *MBB,
 | |
|                                             const MachineFunction &MF) const {
 | |
|   // Debug info is never a scheduling boundary. It's necessary to be explicit
 | |
|   // due to the special treatment of IT instructions below, otherwise a
 | |
|   // dbg_value followed by an IT will result in the IT instruction being
 | |
|   // considered a scheduling hazard, which is wrong. It should be the actual
 | |
|   // instruction preceding the dbg_value instruction(s), just like it is
 | |
|   // when debug info is not present.
 | |
|   if (MI->isDebugValue())
 | |
|     return false;
 | |
| 
 | |
|   // Terminators and labels can't be scheduled around.
 | |
|   if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
 | |
| 
 | |
|   // Constant extenders are allowed only for V4 and above.
 | |
|   if (!Subtarget.hasV4TOps())
 | |
|     return false;
 | |
| 
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
|   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
 | |
|   if (isExtended) // Instruction must be extended.
 | |
|     return true;
 | |
| 
 | |
|   unsigned isExtendable = (F >> HexagonII::ExtendablePos)
 | |
|                           & HexagonII::ExtendableMask;
 | |
|   if (!isExtendable)
 | |
|     return false;
 | |
| 
 | |
|   short ExtOpNum = getCExtOpNum(MI);
 | |
|   const MachineOperand &MO = MI->getOperand(ExtOpNum);
 | |
|   // Use MO operand flags to determine if MO
 | |
|   // has the HMOTF_ConstExtended flag set.
 | |
|   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
 | |
|     return true;
 | |
|   // If this is a Machine BB address we are talking about, and it is
 | |
|   // not marked as extended, say so.
 | |
|   if (MO.isMBB())
 | |
|     return false;
 | |
| 
 | |
|   // We could be using an instruction with an extendable immediate and shoehorn
 | |
|   // a global address into it. If it is a global address it will be constant
 | |
|   // extended. We do this for COMBINE.
 | |
|   // We currently only handle isGlobal() because it is the only kind of
 | |
|   // object we are going to end up with here for now.
 | |
|   // In the future we probably should add isSymbol(), etc.
 | |
|   if (MO.isGlobal() || MO.isSymbol())
 | |
|     return true;
 | |
| 
 | |
|   // If the extendable operand is not 'Immediate' type, the instruction should
 | |
|   // have 'isExtended' flag set.
 | |
|   assert(MO.isImm() && "Extendable operand must be Immediate type");
 | |
| 
 | |
|   int MinValue = getMinValue(MI);
 | |
|   int MaxValue = getMaxValue(MI);
 | |
|   int ImmValue = MO.getImm();
 | |
| 
 | |
|   return (ImmValue < MinValue || ImmValue > MaxValue);
 | |
| }
 | |
| 
 | |
| // Returns the opcode to use when converting MI, which is a conditional jump,
 | |
| // into a conditional instruction which uses the .new value of the predicate.
 | |
| // We also use branch probabilities to add a hint to the jump.
 | |
| int
 | |
| HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
 | |
|                                   const
 | |
|                                   MachineBranchProbabilityInfo *MBPI) const {
 | |
| 
 | |
|   // We assume that block can have at most two successors.
 | |
|   bool taken = false;
 | |
|   MachineBasicBlock *Src = MI->getParent();
 | |
|   MachineOperand *BrTarget = &MI->getOperand(1);
 | |
|   MachineBasicBlock *Dst = BrTarget->getMBB();
 | |
| 
 | |
|   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
 | |
|   if (Prediction >= BranchProbability(1,2))
 | |
|     taken = true;
 | |
| 
 | |
|   switch (MI->getOpcode()) {
 | |
|   case Hexagon::J2_jumpt:
 | |
|     return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
 | |
|   case Hexagon::J2_jumpf:
 | |
|     return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected jump instruction.");
 | |
|   }
 | |
| }
 | |
| // Returns true if a particular operand is extendable for an instruction.
 | |
| bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
 | |
|                                          unsigned short OperandNum) const {
 | |
|   // Constant extenders are allowed only for V4 and above.
 | |
|   if (!Subtarget.hasV4TOps())
 | |
|     return false;
 | |
| 
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
| 
 | |
|   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
 | |
|           == OperandNum;
 | |
| }
 | |
| 
 | |
| // Returns Operand Index for the constant extended instruction.
 | |
| unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
|   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
 | |
| }
 | |
| 
 | |
| // Returns the min value that doesn't need to be extended.
 | |
| int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
|   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
 | |
|                     & HexagonII::ExtentSignedMask;
 | |
|   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
 | |
|                     & HexagonII::ExtentBitsMask;
 | |
| 
 | |
|   if (isSigned) // if value is signed
 | |
|     return -1U << (bits - 1);
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Returns the max value that doesn't need to be extended.
 | |
| int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
 | |
|   const uint64_t F = MI->getDesc().TSFlags;
 | |
|   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
 | |
|                     & HexagonII::ExtentSignedMask;
 | |
|   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
 | |
|                     & HexagonII::ExtentBitsMask;
 | |
| 
 | |
|   if (isSigned) // if value is signed
 | |
|     return ~(-1U << (bits - 1));
 | |
|   else
 | |
|     return ~(-1U << bits);
 | |
| }
 | |
| 
 | |
| // Returns true if an instruction can be converted into a non-extended
 | |
| // equivalent instruction.
 | |
| bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
 | |
| 
 | |
|   short NonExtOpcode;
 | |
|   // Check if the instruction has a register form that uses register in place
 | |
|   // of the extended operand, if so return that as the non-extended form.
 | |
|   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
 | |
|     return true;
 | |
| 
 | |
|   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
 | |
|     // Check addressing mode and retrieve non-ext equivalent instruction.
 | |
| 
 | |
|     switch (getAddrMode(MI)) {
 | |
|     case HexagonII::Absolute :
 | |
|       // Load/store with absolute addressing mode can be converted into
 | |
|       // base+offset mode.
 | |
|       NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
 | |
|       break;
 | |
|     case HexagonII::BaseImmOffset :
 | |
|       // Load/store with base+offset addressing mode can be converted into
 | |
|       // base+register offset addressing mode. However left shift operand should
 | |
|       // be set to 0.
 | |
|       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|     if (NonExtOpcode < 0)
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Returns opcode of the non-extended equivalent instruction.
 | |
| short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
 | |
| 
 | |
|   // Check if the instruction has a register form that uses register in place
 | |
|   // of the extended operand, if so return that as the non-extended form.
 | |
|   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
 | |
|     if (NonExtOpcode >= 0)
 | |
|       return NonExtOpcode;
 | |
| 
 | |
|   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
 | |
|     // Check addressing mode and retrieve non-ext equivalent instruction.
 | |
|     switch (getAddrMode(MI)) {
 | |
|     case HexagonII::Absolute :
 | |
|       return Hexagon::getBasedWithImmOffset(MI->getOpcode());
 | |
|     case HexagonII::BaseImmOffset :
 | |
|       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
 | |
|     default:
 | |
|       return -1;
 | |
|     }
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
 | |
|   return (Opcode == Hexagon::J2_jumpt) ||
 | |
|          (Opcode == Hexagon::J2_jumpf) ||
 | |
|          (Opcode == Hexagon::J2_jumptnewpt) ||
 | |
|          (Opcode == Hexagon::J2_jumpfnewpt) ||
 | |
|          (Opcode == Hexagon::J2_jumpt) ||
 | |
|          (Opcode == Hexagon::J2_jumpf);
 | |
| }
 | |
| 
 | |
| bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
 | |
|   return (Opcode == Hexagon::J2_jumpf) ||
 | |
|          (Opcode == Hexagon::J2_jumpfnewpt) ||
 | |
|          (Opcode == Hexagon::J2_jumpfnew);
 | |
| }
 |