mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224556 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1425 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1425 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a simple VLIW packetizer using DFA. The packetizer works on
 | |
| // machine basic blocks. For each instruction I in BB, the packetizer consults
 | |
| // the DFA to see if machine resources are available to execute I. If so, the
 | |
| // packetizer checks if I depends on any instruction J in the current packet.
 | |
| // If no dependency is found, I is added to current packet and machine resource
 | |
| // is marked as taken. If any dependency is found, a target API call is made to
 | |
| // prune the dependence.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "llvm/CodeGen/DFAPacketizer.h"
 | |
| #include "Hexagon.h"
 | |
| #include "HexagonMachineFunctionInfo.h"
 | |
| #include "HexagonRegisterInfo.h"
 | |
| #include "HexagonSubtarget.h"
 | |
| #include "HexagonTargetMachine.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LatencyPriorityQueue.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunctionAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <map>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "packets"
 | |
| 
 | |
| static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
 | |
|       cl::ZeroOrMore, cl::Hidden, cl::init(true),
 | |
|       cl::desc("Allow non-solo packetization of volatile memory references"));
 | |
| 
 | |
| namespace llvm {
 | |
|   void initializeHexagonPacketizerPass(PassRegistry&);
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   class HexagonPacketizer : public MachineFunctionPass {
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     HexagonPacketizer() : MachineFunctionPass(ID) {
 | |
|       initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineBranchProbabilityInfo>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     const char *getPassName() const override {
 | |
|       return "Hexagon Packetizer";
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &Fn) override;
 | |
|   };
 | |
|   char HexagonPacketizer::ID = 0;
 | |
| 
 | |
|   class HexagonPacketizerList : public VLIWPacketizerList {
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     // Has the instruction been promoted to a dot-new instruction.
 | |
|     bool PromotedToDotNew;
 | |
| 
 | |
|     // Has the instruction been glued to allocframe.
 | |
|     bool GlueAllocframeStore;
 | |
| 
 | |
|     // Has the feeder instruction been glued to new value jump.
 | |
|     bool GlueToNewValueJump;
 | |
| 
 | |
|     // Check if there is a dependence between some instruction already in this
 | |
|     // packet and this instruction.
 | |
|     bool Dependence;
 | |
| 
 | |
|     // Only check for dependence if there are resources available to
 | |
|     // schedule this instruction.
 | |
|     bool FoundSequentialDependence;
 | |
| 
 | |
|     /// \brief A handle to the branch probability pass.
 | |
|    const MachineBranchProbabilityInfo *MBPI;
 | |
| 
 | |
|    // Track MIs with ignored dependece.
 | |
|    std::vector<MachineInstr*> IgnoreDepMIs;
 | |
| 
 | |
|   public:
 | |
|     // Ctor.
 | |
|     HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
 | |
|                           const MachineBranchProbabilityInfo *MBPI);
 | |
| 
 | |
|     // initPacketizerState - initialize some internal flags.
 | |
|     void initPacketizerState() override;
 | |
| 
 | |
|     // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
 | |
|     bool ignorePseudoInstruction(MachineInstr *MI,
 | |
|                                  MachineBasicBlock *MBB) override;
 | |
| 
 | |
|     // isSoloInstruction - return true if instruction MI can not be packetized
 | |
|     // with any other instruction, which means that MI itself is a packet.
 | |
|     bool isSoloInstruction(MachineInstr *MI) override;
 | |
| 
 | |
|     // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
 | |
|     // together.
 | |
|     bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override;
 | |
| 
 | |
|     // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
 | |
|     // and SUJ.
 | |
|     bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override;
 | |
| 
 | |
|     MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override;
 | |
|   private:
 | |
|     bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
 | |
|     bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
 | |
|                          MachineBasicBlock::iterator &MII,
 | |
|                          const TargetRegisterClass* RC);
 | |
|     bool CanPromoteToDotNew(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
 | |
|                             const std::map<MachineInstr *, SUnit *> &MIToSUnit,
 | |
|                             MachineBasicBlock::iterator &MII,
 | |
|                             const TargetRegisterClass *RC);
 | |
|     bool
 | |
|     CanPromoteToNewValue(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
 | |
|                          const std::map<MachineInstr *, SUnit *> &MIToSUnit,
 | |
|                          MachineBasicBlock::iterator &MII);
 | |
|     bool CanPromoteToNewValueStore(
 | |
|         MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
 | |
|         const std::map<MachineInstr *, SUnit *> &MIToSUnit);
 | |
|     bool DemoteToDotOld(MachineInstr *MI);
 | |
|     bool ArePredicatesComplements(
 | |
|         MachineInstr *MI1, MachineInstr *MI2,
 | |
|         const std::map<MachineInstr *, SUnit *> &MIToSUnit);
 | |
|     bool RestrictingDepExistInPacket(MachineInstr *, unsigned,
 | |
|                                      const std::map<MachineInstr *, SUnit *> &);
 | |
|     bool isNewifiable(MachineInstr* MI);
 | |
|     bool isCondInst(MachineInstr* MI);
 | |
|     bool tryAllocateResourcesForConstExt(MachineInstr* MI);
 | |
|     bool canReserveResourcesForConstExt(MachineInstr *MI);
 | |
|     void reserveResourcesForConstExt(MachineInstr* MI);
 | |
|     bool isNewValueInst(MachineInstr* MI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
 | |
|                     false, false)
 | |
| 
 | |
| 
 | |
| // HexagonPacketizerList Ctor.
 | |
| HexagonPacketizerList::HexagonPacketizerList(
 | |
|     MachineFunction &MF, MachineLoopInfo &MLI,
 | |
|     const MachineBranchProbabilityInfo *MBPI)
 | |
|     : VLIWPacketizerList(MF, MLI, true) {
 | |
|   this->MBPI = MBPI;
 | |
| }
 | |
| 
 | |
| bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
 | |
|   const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
 | |
|   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | |
|   const MachineBranchProbabilityInfo *MBPI =
 | |
|     &getAnalysis<MachineBranchProbabilityInfo>();
 | |
|   // Instantiate the packetizer.
 | |
|   HexagonPacketizerList Packetizer(Fn, MLI, MBPI);
 | |
| 
 | |
|   // DFA state table should not be empty.
 | |
|   assert(Packetizer.getResourceTracker() && "Empty DFA table!");
 | |
| 
 | |
|   //
 | |
|   // Loop over all basic blocks and remove KILL pseudo-instructions
 | |
|   // These instructions confuse the dependence analysis. Consider:
 | |
|   // D0 = ...   (Insn 0)
 | |
|   // R0 = KILL R0, D0 (Insn 1)
 | |
|   // R0 = ... (Insn 2)
 | |
|   // Here, Insn 1 will result in the dependence graph not emitting an output
 | |
|   // dependence between Insn 0 and Insn 2. This can lead to incorrect
 | |
|   // packetization
 | |
|   //
 | |
|   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | |
|        MBB != MBBe; ++MBB) {
 | |
|     MachineBasicBlock::iterator End = MBB->end();
 | |
|     MachineBasicBlock::iterator MI = MBB->begin();
 | |
|     while (MI != End) {
 | |
|       if (MI->isKill()) {
 | |
|         MachineBasicBlock::iterator DeleteMI = MI;
 | |
|         ++MI;
 | |
|         MBB->erase(DeleteMI);
 | |
|         End = MBB->end();
 | |
|         continue;
 | |
|       }
 | |
|       ++MI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the basic blocks.
 | |
|   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | |
|        MBB != MBBe; ++MBB) {
 | |
|     // Find scheduling regions and schedule / packetize each region.
 | |
|     unsigned RemainingCount = MBB->size();
 | |
|     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
 | |
|         RegionEnd != MBB->begin();) {
 | |
|       // The next region starts above the previous region. Look backward in the
 | |
|       // instruction stream until we find the nearest boundary.
 | |
|       MachineBasicBlock::iterator I = RegionEnd;
 | |
|       for(;I != MBB->begin(); --I, --RemainingCount) {
 | |
|         if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
 | |
|           break;
 | |
|       }
 | |
|       I = MBB->begin();
 | |
| 
 | |
|       // Skip empty scheduling regions.
 | |
|       if (I == RegionEnd) {
 | |
|         RegionEnd = std::prev(RegionEnd);
 | |
|         --RemainingCount;
 | |
|         continue;
 | |
|       }
 | |
|       // Skip regions with one instruction.
 | |
|       if (I == std::prev(RegionEnd)) {
 | |
|         RegionEnd = std::prev(RegionEnd);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Packetizer.PacketizeMIs(MBB, I, RegionEnd);
 | |
|       RegionEnd = I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool IsIndirectCall(MachineInstr* MI) {
 | |
|   return ((MI->getOpcode() == Hexagon::J2_callr) ||
 | |
|           (MI->getOpcode() == Hexagon::CALLRv3));
 | |
| }
 | |
| 
 | |
| // Reserve resources for constant extender. Trigure an assertion if
 | |
| // reservation fail.
 | |
| void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   MachineFunction *MF = MI->getParent()->getParent();
 | |
|   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
 | |
|                                                   MI->getDebugLoc());
 | |
| 
 | |
|   if (ResourceTracker->canReserveResources(PseudoMI)) {
 | |
|     ResourceTracker->reserveResources(PseudoMI);
 | |
|     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
 | |
|   } else {
 | |
|     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
 | |
|     llvm_unreachable("can not reserve resources for constant extender.");
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
 | |
|          "Should only be called for constant extended instructions");
 | |
|   MachineFunction *MF = MI->getParent()->getParent();
 | |
|   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
 | |
|                                                   MI->getDebugLoc());
 | |
|   bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
 | |
|   MF->DeleteMachineInstr(PseudoMI);
 | |
|   return CanReserve;
 | |
| }
 | |
| 
 | |
| // Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
 | |
| // true, otherwise, return false.
 | |
| bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   MachineFunction *MF = MI->getParent()->getParent();
 | |
|   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
 | |
|                                                   MI->getDebugLoc());
 | |
| 
 | |
|   if (ResourceTracker->canReserveResources(PseudoMI)) {
 | |
|     ResourceTracker->reserveResources(PseudoMI);
 | |
|     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
 | |
|     return true;
 | |
|   } else {
 | |
|     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
 | |
|                                           SDep::Kind DepType,
 | |
|                                           unsigned DepReg) {
 | |
| 
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   const HexagonRegisterInfo *QRI =
 | |
|       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
 | |
| 
 | |
|   // Check for lr dependence
 | |
|   if (DepReg == QRI->getRARegister()) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (QII->isDeallocRet(MI)) {
 | |
|     if (DepReg == QRI->getFrameRegister() ||
 | |
|         DepReg == QRI->getStackRegister())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Check if this is a predicate dependence
 | |
|   const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
 | |
|   if (RC == &Hexagon::PredRegsRegClass) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Lastly check for an operand used in an indirect call
 | |
|   // If we had an attribute for checking if an instruction is an indirect call,
 | |
|   // then we could have avoided this relatively brittle implementation of
 | |
|   // IsIndirectCall()
 | |
|   //
 | |
|   // Assumes that the first operand of the CALLr is the function address
 | |
|   //
 | |
|   if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
 | |
|     MachineOperand MO = MI->getOperand(0);
 | |
|     if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool IsRegDependence(const SDep::Kind DepType) {
 | |
|   return (DepType == SDep::Data || DepType == SDep::Anti ||
 | |
|           DepType == SDep::Output);
 | |
| }
 | |
| 
 | |
| static bool IsDirectJump(MachineInstr* MI) {
 | |
|   return (MI->getOpcode() == Hexagon::J2_jump);
 | |
| }
 | |
| 
 | |
| static bool IsSchedBarrier(MachineInstr* MI) {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case Hexagon::BARRIER:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool IsControlFlow(MachineInstr* MI) {
 | |
|   return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
 | |
| }
 | |
| 
 | |
| static bool IsLoopN(MachineInstr *MI) {
 | |
|   return (MI->getOpcode() == Hexagon::J2_loop0i ||
 | |
|           MI->getOpcode() == Hexagon::J2_loop0r);
 | |
| }
 | |
| 
 | |
| /// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
 | |
| /// callee-saved register.
 | |
| static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
 | |
|                                      const TargetRegisterInfo *TRI) {
 | |
|   for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) {
 | |
|     unsigned CalleeSavedReg = *CSR;
 | |
|     if (MI->modifiesRegister(CalleeSavedReg, TRI))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Returns true if an instruction can be promoted to .new predicate
 | |
| // or new-value store.
 | |
| bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   if ( isCondInst(MI) || QII->mayBeNewStore(MI))
 | |
|     return true;
 | |
|   else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   const MCInstrDesc& TID = MI->getDesc();
 | |
|                                     // bug 5670: until that is fixed,
 | |
|                                     // this portion is disabled.
 | |
|   if (   TID.isConditionalBranch()  // && !IsRegisterJump(MI)) ||
 | |
|       || QII->isConditionalTransfer(MI)
 | |
|       || QII->isConditionalALU32(MI)
 | |
|       || QII->isConditionalLoad(MI)
 | |
|       || QII->isConditionalStore(MI)) {
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Promote an instructiont to its .new form.
 | |
| // At this time, we have already made a call to CanPromoteToDotNew
 | |
| // and made sure that it can *indeed* be promoted.
 | |
| bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
 | |
|                         SDep::Kind DepType, MachineBasicBlock::iterator &MII,
 | |
|                         const TargetRegisterClass* RC) {
 | |
| 
 | |
|   assert (DepType == SDep::Data);
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
| 
 | |
|   int NewOpcode;
 | |
|   if (RC == &Hexagon::PredRegsRegClass)
 | |
|     NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
 | |
|   else
 | |
|     NewOpcode = QII->GetDotNewOp(MI);
 | |
|   MI->setDesc(QII->get(NewOpcode));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
 | |
|   MI->setDesc(QII->get(NewOpcode));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| enum PredicateKind {
 | |
|   PK_False,
 | |
|   PK_True,
 | |
|   PK_Unknown
 | |
| };
 | |
| 
 | |
| /// Returns true if an instruction is predicated on p0 and false if it's
 | |
| /// predicated on !p0.
 | |
| static PredicateKind getPredicateSense(MachineInstr* MI,
 | |
|                                        const HexagonInstrInfo *QII) {
 | |
|   if (!QII->isPredicated(MI))
 | |
|     return PK_Unknown;
 | |
| 
 | |
|   if (QII->isPredicatedTrue(MI))
 | |
|     return PK_True;
 | |
| 
 | |
|   return PK_False;
 | |
| }
 | |
| 
 | |
| static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
 | |
|                                                const HexagonInstrInfo *QII) {
 | |
|   assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
 | |
| #ifndef NDEBUG
 | |
|   // Post Increment means duplicates. Use dense map to find duplicates in the
 | |
|   // list. Caution: Densemap initializes with the minimum of 64 buckets,
 | |
|   // whereas there are at most 5 operands in the post increment.
 | |
|   DenseMap<unsigned,  unsigned> DefRegsSet;
 | |
|   for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
 | |
|     if (MI->getOperand(opNum).isReg() &&
 | |
|         MI->getOperand(opNum).isDef()) {
 | |
|       DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
 | |
|     }
 | |
| 
 | |
|   for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
 | |
|     if (MI->getOperand(opNum).isReg() &&
 | |
|         MI->getOperand(opNum).isUse()) {
 | |
|       if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
 | |
|         return MI->getOperand(opNum);
 | |
|       }
 | |
|     }
 | |
| #else
 | |
|   if (MI->getDesc().mayLoad()) {
 | |
|     // The 2nd operand is always the post increment operand in load.
 | |
|     assert(MI->getOperand(1).isReg() &&
 | |
|                 "Post increment operand has be to a register.");
 | |
|     return (MI->getOperand(1));
 | |
|   }
 | |
|   if (MI->getDesc().mayStore()) {
 | |
|     // The 1st operand is always the post increment operand in store.
 | |
|     assert(MI->getOperand(0).isReg() &&
 | |
|                 "Post increment operand has be to a register.");
 | |
|     return (MI->getOperand(0));
 | |
|   }
 | |
| #endif
 | |
|   // we should never come here.
 | |
|   llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
 | |
| }
 | |
| 
 | |
| // get the value being stored
 | |
| static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
 | |
|   // value being stored is always the last operand.
 | |
|   return (MI->getOperand(MI->getNumOperands()-1));
 | |
| }
 | |
| 
 | |
| // can be new value store?
 | |
| // Following restrictions are to be respected in convert a store into
 | |
| // a new value store.
 | |
| // 1. If an instruction uses auto-increment, its address register cannot
 | |
| //    be a new-value register. Arch Spec 5.4.2.1
 | |
| // 2. If an instruction uses absolute-set addressing mode,
 | |
| //    its address register cannot be a new-value register.
 | |
| //    Arch Spec 5.4.2.1.TODO: This is not enabled as
 | |
| //    as absolute-set address mode patters are not implemented.
 | |
| // 3. If an instruction produces a 64-bit result, its registers cannot be used
 | |
| //    as new-value registers. Arch Spec 5.4.2.2.
 | |
| // 4. If the instruction that sets a new-value register is conditional, then
 | |
| //    the instruction that uses the new-value register must also be conditional,
 | |
| //    and both must always have their predicates evaluate identically.
 | |
| //    Arch Spec 5.4.2.3.
 | |
| // 5. There is an implied restriction of a packet can not have another store,
 | |
| //    if there is a  new value store in the packet. Corollary, if there is
 | |
| //    already a store in a packet, there can not be a new value store.
 | |
| //    Arch Spec: 3.4.4.2
 | |
| bool HexagonPacketizerList::CanPromoteToNewValueStore(
 | |
|     MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
 | |
|     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   // Make sure we are looking at the store, that can be promoted.
 | |
|   if (!QII->mayBeNewStore(MI))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure there is dependency and can be new value'ed
 | |
|   if (GetStoreValueOperand(MI).isReg() &&
 | |
|       GetStoreValueOperand(MI).getReg() != DepReg)
 | |
|     return false;
 | |
| 
 | |
|   const HexagonRegisterInfo *QRI =
 | |
|       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
 | |
|   const MCInstrDesc& MCID = PacketMI->getDesc();
 | |
|   // first operand is always the result
 | |
| 
 | |
|   const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
 | |
| 
 | |
|   // if there is already an store in the packet, no can do new value store
 | |
|   // Arch Spec 3.4.4.2.
 | |
|   for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
 | |
|          VE = CurrentPacketMIs.end();
 | |
|        (VI != VE); ++VI) {
 | |
|     SUnit *PacketSU = MIToSUnit.find(*VI)->second;
 | |
|     if (PacketSU->getInstr()->getDesc().mayStore() ||
 | |
|         // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
 | |
|         // then we don't need this
 | |
|         PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
 | |
|         PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (PacketRC == &Hexagon::DoubleRegsRegClass) {
 | |
|     // new value store constraint: double regs can not feed into new value store
 | |
|     // arch spec section: 5.4.2.2
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Make sure it's NOT the post increment register that we are going to
 | |
|   // new value.
 | |
|   if (QII->isPostIncrement(MI) &&
 | |
|       MI->getDesc().mayStore() &&
 | |
|       GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (QII->isPostIncrement(PacketMI) &&
 | |
|       PacketMI->getDesc().mayLoad() &&
 | |
|       GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
 | |
|     // if source is post_inc, or absolute-set addressing,
 | |
|     // it can not feed into new value store
 | |
|     //  r3 = memw(r2++#4)
 | |
|     //  memw(r30 + #-1404) = r2.new -> can not be new value store
 | |
|     // arch spec section: 5.4.2.1
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the source that feeds the store is predicated, new value store must
 | |
|   // also be predicated.
 | |
|   if (QII->isPredicated(PacketMI)) {
 | |
|     if (!QII->isPredicated(MI))
 | |
|       return false;
 | |
| 
 | |
|     // Check to make sure that they both will have their predicates
 | |
|     // evaluate identically
 | |
|     unsigned predRegNumSrc = 0;
 | |
|     unsigned predRegNumDst = 0;
 | |
|     const TargetRegisterClass* predRegClass = nullptr;
 | |
| 
 | |
|     // Get predicate register used in the source instruction
 | |
|     for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
 | |
|       if ( PacketMI->getOperand(opNum).isReg())
 | |
|       predRegNumSrc = PacketMI->getOperand(opNum).getReg();
 | |
|       predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
 | |
|       if (predRegClass == &Hexagon::PredRegsRegClass) {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
 | |
|         ("predicate register not found in a predicated PacketMI instruction"));
 | |
| 
 | |
|     // Get predicate register used in new-value store instruction
 | |
|     for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
 | |
|       if ( MI->getOperand(opNum).isReg())
 | |
|       predRegNumDst = MI->getOperand(opNum).getReg();
 | |
|       predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
 | |
|       if (predRegClass == &Hexagon::PredRegsRegClass) {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
 | |
|             ("predicate register not found in a predicated MI instruction"));
 | |
| 
 | |
|     // New-value register producer and user (store) need to satisfy these
 | |
|     // constraints:
 | |
|     // 1) Both instructions should be predicated on the same register.
 | |
|     // 2) If producer of the new-value register is .new predicated then store
 | |
|     // should also be .new predicated and if producer is not .new predicated
 | |
|     // then store should not be .new predicated.
 | |
|     // 3) Both new-value register producer and user should have same predicate
 | |
|     // sense, i.e, either both should be negated or both should be none negated.
 | |
| 
 | |
|     if (( predRegNumDst != predRegNumSrc) ||
 | |
|           QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI)  ||
 | |
|           getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that other than the new-value register no other store instruction
 | |
|   // register has been modified in the same packet. Predicate registers can be
 | |
|   // modified by they should not be modified between the producer and the store
 | |
|   // instruction as it will make them both conditional on different values.
 | |
|   // We already know this to be true for all the instructions before and
 | |
|   // including PacketMI. Howerver, we need to perform the check for the
 | |
|   // remaining instructions in the packet.
 | |
| 
 | |
|   std::vector<MachineInstr*>::iterator VI;
 | |
|   std::vector<MachineInstr*>::iterator VE;
 | |
|   unsigned StartCheck = 0;
 | |
| 
 | |
|   for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
 | |
|       (VI != VE); ++VI) {
 | |
|     SUnit *TempSU = MIToSUnit.find(*VI)->second;
 | |
|     MachineInstr* TempMI = TempSU->getInstr();
 | |
| 
 | |
|     // Following condition is true for all the instructions until PacketMI is
 | |
|     // reached (StartCheck is set to 0 before the for loop).
 | |
|     // StartCheck flag is 1 for all the instructions after PacketMI.
 | |
|     if (TempMI != PacketMI && !StartCheck) // start processing only after
 | |
|       continue;                            // encountering PacketMI
 | |
| 
 | |
|     StartCheck = 1;
 | |
|     if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
 | |
|       continue;
 | |
| 
 | |
|     for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
 | |
|       if (MI->getOperand(opNum).isReg() &&
 | |
|           TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
 | |
|                                                QRI))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that for non-POST_INC stores:
 | |
|   // 1. The only use of reg is DepReg and no other registers.
 | |
|   //    This handles V4 base+index registers.
 | |
|   //    The following store can not be dot new.
 | |
|   //    Eg.   r0 = add(r0, #3)a
 | |
|   //          memw(r1+r0<<#2) = r0
 | |
|   if (!QII->isPostIncrement(MI) &&
 | |
|       GetStoreValueOperand(MI).isReg() &&
 | |
|       GetStoreValueOperand(MI).getReg() == DepReg) {
 | |
|     for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
 | |
|       if (MI->getOperand(opNum).isReg() &&
 | |
|           MI->getOperand(opNum).getReg() == DepReg) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     // 2. If data definition is because of implicit definition of the register,
 | |
|     //    do not newify the store. Eg.
 | |
|     //    %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
 | |
|     //    STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
 | |
|     for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
 | |
|       if (PacketMI->getOperand(opNum).isReg() &&
 | |
|           PacketMI->getOperand(opNum).getReg() == DepReg &&
 | |
|           PacketMI->getOperand(opNum).isDef() &&
 | |
|           PacketMI->getOperand(opNum).isImplicit()) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Can be dot new store.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // can this MI to promoted to either
 | |
| // new value store or new value jump
 | |
| bool HexagonPacketizerList::CanPromoteToNewValue(
 | |
|     MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
 | |
|     const std::map<MachineInstr *, SUnit *> &MIToSUnit,
 | |
|     MachineBasicBlock::iterator &MII) {
 | |
| 
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   const HexagonRegisterInfo *QRI =
 | |
|       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
 | |
|   if (!QRI->Subtarget.hasV4TOps() ||
 | |
|       !QII->mayBeNewStore(MI))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *PacketMI = PacketSU->getInstr();
 | |
| 
 | |
|   // Check to see the store can be new value'ed.
 | |
|   if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
 | |
|     return true;
 | |
| 
 | |
|   // Check to see the compare/jump can be new value'ed.
 | |
|   // This is done as a pass on its own. Don't need to check it here.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check to see if an instruction can be dot new
 | |
| // There are three kinds.
 | |
| // 1. dot new on predicate - V2/V3/V4
 | |
| // 2. dot new on stores NV/ST - V4
 | |
| // 3. dot new on jump NV/J - V4 -- This is generated in a pass.
 | |
| bool HexagonPacketizerList::CanPromoteToDotNew(
 | |
|     MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
 | |
|     const std::map<MachineInstr *, SUnit *> &MIToSUnit,
 | |
|     MachineBasicBlock::iterator &MII, const TargetRegisterClass *RC) {
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   // Already a dot new instruction.
 | |
|   if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
 | |
|     return false;
 | |
| 
 | |
|   if (!isNewifiable(MI))
 | |
|     return false;
 | |
| 
 | |
|   // predicate .new
 | |
|   if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
 | |
|       return true;
 | |
|   else if (RC != &Hexagon::PredRegsRegClass &&
 | |
|       !QII->mayBeNewStore(MI)) // MI is not a new-value store
 | |
|     return false;
 | |
|   else {
 | |
|     // Create a dot new machine instruction to see if resources can be
 | |
|     // allocated. If not, bail out now.
 | |
|     int NewOpcode = QII->GetDotNewOp(MI);
 | |
|     const MCInstrDesc &desc = QII->get(NewOpcode);
 | |
|     DebugLoc dl;
 | |
|     MachineInstr *NewMI =
 | |
|                     MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
 | |
|     bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
 | |
|     MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
 | |
| 
 | |
|     if (!ResourcesAvailable)
 | |
|       return false;
 | |
| 
 | |
|     // new value store only
 | |
|     // new new value jump generated as a passes
 | |
|     if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Go through the packet instructions and search for anti dependency
 | |
| // between them and DepReg from MI
 | |
| // Consider this case:
 | |
| // Trying to add
 | |
| // a) %R1<def> = TFRI_cdNotPt %P3, 2
 | |
| // to this packet:
 | |
| // {
 | |
| //   b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
 | |
| //   c) %P3<def> = TFR_PdRs %R23
 | |
| //   d) %R1<def> = TFRI_cdnPt %P3, 4
 | |
| //  }
 | |
| // The P3 from a) and d) will be complements after
 | |
| // a)'s P3 is converted to .new form
 | |
| // Anti Dep between c) and b) is irrelevant for this case
 | |
| bool HexagonPacketizerList::RestrictingDepExistInPacket(
 | |
|     MachineInstr *MI, unsigned DepReg,
 | |
|     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
 | |
| 
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
|   SUnit *PacketSUDep = MIToSUnit.find(MI)->second;
 | |
| 
 | |
|   for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
 | |
|        VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
 | |
| 
 | |
|     // We only care for dependencies to predicated instructions
 | |
|     if(!QII->isPredicated(*VIN)) continue;
 | |
| 
 | |
|     // Scheduling Unit for current insn in the packet
 | |
|     SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
 | |
| 
 | |
|     // Look at dependencies between current members of the packet
 | |
|     // and predicate defining instruction MI.
 | |
|     // Make sure that dependency is on the exact register
 | |
|     // we care about.
 | |
|     if (PacketSU->isSucc(PacketSUDep)) {
 | |
|       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
 | |
|         if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
 | |
|             (PacketSU->Succs[i].getKind() == SDep::Anti) &&
 | |
|             (PacketSU->Succs[i].getReg() == DepReg)) {
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Gets the predicate register of a predicated instruction.
 | |
| static unsigned getPredicatedRegister(MachineInstr *MI,
 | |
|                                       const HexagonInstrInfo *QII) {
 | |
|   /// We use the following rule: The first predicate register that is a use is
 | |
|   /// the predicate register of a predicated instruction.
 | |
| 
 | |
|   assert(QII->isPredicated(MI) && "Must be predicated instruction");
 | |
| 
 | |
|   for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | |
|        OE = MI->operands_end(); OI != OE; ++OI) {
 | |
|     MachineOperand &Op = *OI;
 | |
|     if (Op.isReg() && Op.getReg() && Op.isUse() &&
 | |
|         Hexagon::PredRegsRegClass.contains(Op.getReg()))
 | |
|       return Op.getReg();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown instruction operand layout");
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Given two predicated instructions, this function detects whether
 | |
| // the predicates are complements
 | |
| bool HexagonPacketizerList::ArePredicatesComplements(
 | |
|     MachineInstr *MI1, MachineInstr *MI2,
 | |
|     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
 | |
| 
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
| 
 | |
|   // If we don't know the predicate sense of the instructions bail out early, we
 | |
|   // need it later.
 | |
|   if (getPredicateSense(MI1, QII) == PK_Unknown ||
 | |
|       getPredicateSense(MI2, QII) == PK_Unknown)
 | |
|     return false;
 | |
| 
 | |
|   // Scheduling unit for candidate
 | |
|   SUnit *SU = MIToSUnit.find(MI1)->second;
 | |
| 
 | |
|   // One corner case deals with the following scenario:
 | |
|   // Trying to add
 | |
|   // a) %R24<def> = TFR_cPt %P0, %R25
 | |
|   // to this packet:
 | |
|   //
 | |
|   // {
 | |
|   //   b) %R25<def> = TFR_cNotPt %P0, %R24
 | |
|   //   c) %P0<def> = CMPEQri %R26, 1
 | |
|   // }
 | |
|   //
 | |
|   // On general check a) and b) are complements, but
 | |
|   // presence of c) will convert a) to .new form, and
 | |
|   // then it is not a complement
 | |
|   // We attempt to detect it by analyzing  existing
 | |
|   // dependencies in the packet
 | |
| 
 | |
|   // Analyze relationships between all existing members of the packet.
 | |
|   // Look for Anti dependecy on the same predicate reg
 | |
|   // as used in the candidate
 | |
|   for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
 | |
|        VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
 | |
| 
 | |
|     // Scheduling Unit for current insn in the packet
 | |
|     SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
 | |
| 
 | |
|     // If this instruction in the packet is succeeded by the candidate...
 | |
|     if (PacketSU->isSucc(SU)) {
 | |
|       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
 | |
|         // The corner case exist when there is true data
 | |
|         // dependency between candidate and one of current
 | |
|         // packet members, this dep is on predicate reg, and
 | |
|         // there already exist anti dep on the same pred in
 | |
|         // the packet.
 | |
|         if (PacketSU->Succs[i].getSUnit() == SU &&
 | |
|             PacketSU->Succs[i].getKind() == SDep::Data &&
 | |
|             Hexagon::PredRegsRegClass.contains(
 | |
|               PacketSU->Succs[i].getReg()) &&
 | |
|             // Here I know that *VIN is predicate setting instruction
 | |
|             // with true data dep to candidate on the register
 | |
|             // we care about - c) in the above example.
 | |
|             // Now I need to see if there is an anti dependency
 | |
|             // from c) to any other instruction in the
 | |
|             // same packet on the pred reg of interest
 | |
|             RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
 | |
|                                         MIToSUnit)) {
 | |
|            return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the above case does not apply, check regular
 | |
|   // complement condition.
 | |
|   // Check that the predicate register is the same and
 | |
|   // that the predicate sense is different
 | |
|   // We also need to differentiate .old vs. .new:
 | |
|   // !p0 is not complimentary to p0.new
 | |
|   unsigned PReg1 = getPredicatedRegister(MI1, QII);
 | |
|   unsigned PReg2 = getPredicatedRegister(MI2, QII);
 | |
|   return ((PReg1 == PReg2) &&
 | |
|           Hexagon::PredRegsRegClass.contains(PReg1) &&
 | |
|           Hexagon::PredRegsRegClass.contains(PReg2) &&
 | |
|           (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
 | |
|           (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
 | |
| }
 | |
| 
 | |
| // initPacketizerState - Initialize packetizer flags
 | |
| void HexagonPacketizerList::initPacketizerState() {
 | |
| 
 | |
|   Dependence = false;
 | |
|   PromotedToDotNew = false;
 | |
|   GlueToNewValueJump = false;
 | |
|   GlueAllocframeStore = false;
 | |
|   FoundSequentialDependence = false;
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
 | |
| bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
 | |
|                                                     MachineBasicBlock *MBB) {
 | |
|   if (MI->isDebugValue())
 | |
|     return true;
 | |
| 
 | |
|   // We must print out inline assembly
 | |
|   if (MI->isInlineAsm())
 | |
|     return false;
 | |
| 
 | |
|   // We check if MI has any functional units mapped to it.
 | |
|   // If it doesn't, we ignore the instruction.
 | |
|   const MCInstrDesc& TID = MI->getDesc();
 | |
|   unsigned SchedClass = TID.getSchedClass();
 | |
|   const InstrStage* IS =
 | |
|                     ResourceTracker->getInstrItins()->beginStage(SchedClass);
 | |
|   unsigned FuncUnits = IS->getUnits();
 | |
|   return !FuncUnits;
 | |
| }
 | |
| 
 | |
| // isSoloInstruction: - Returns true for instructions that must be
 | |
| // scheduled in their own packet.
 | |
| bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
 | |
| 
 | |
|   if (MI->isInlineAsm())
 | |
|     return true;
 | |
| 
 | |
|   if (MI->isEHLabel())
 | |
|     return true;
 | |
| 
 | |
|   // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
 | |
|   // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
 | |
|   // They must not be grouped with other instructions in a packet.
 | |
|   if (IsSchedBarrier(MI))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isLegalToPacketizeTogether:
 | |
| // SUI is the current instruction that is out side of the current packet.
 | |
| // SUJ is the current instruction inside the current packet against which that
 | |
| // SUI will be packetized.
 | |
| bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
 | |
|   MachineInstr *I = SUI->getInstr();
 | |
|   MachineInstr *J = SUJ->getInstr();
 | |
|   assert(I && J && "Unable to packetize null instruction!");
 | |
| 
 | |
|   const MCInstrDesc &MCIDI = I->getDesc();
 | |
|   const MCInstrDesc &MCIDJ = J->getDesc();
 | |
| 
 | |
|   MachineBasicBlock::iterator II = I;
 | |
| 
 | |
|   const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
 | |
|   const HexagonRegisterInfo *QRI =
 | |
|       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
 | |
|   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
| 
 | |
|   // Inline asm cannot go in the packet.
 | |
|   if (I->getOpcode() == Hexagon::INLINEASM)
 | |
|     llvm_unreachable("Should not meet inline asm here!");
 | |
| 
 | |
|   if (isSoloInstruction(I))
 | |
|     llvm_unreachable("Should not meet solo instr here!");
 | |
| 
 | |
|   // A save callee-save register function call can only be in a packet
 | |
|   // with instructions that don't write to the callee-save registers.
 | |
|   if ((QII->isSaveCalleeSavedRegsCall(I) &&
 | |
|        DoesModifyCalleeSavedReg(J, QRI)) ||
 | |
|       (QII->isSaveCalleeSavedRegsCall(J) &&
 | |
|        DoesModifyCalleeSavedReg(I, QRI))) {
 | |
|     Dependence = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Two control flow instructions cannot go in the same packet.
 | |
|   if (IsControlFlow(I) && IsControlFlow(J)) {
 | |
|     Dependence = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // A LoopN instruction cannot appear in the same packet as a jump or call.
 | |
|   if (IsLoopN(I) &&
 | |
|      (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
 | |
|     Dependence = true;
 | |
|     return false;
 | |
|   }
 | |
|   if (IsLoopN(J) &&
 | |
|      (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
 | |
|     Dependence = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // dealloc_return cannot appear in the same packet as a conditional or
 | |
|   // unconditional jump.
 | |
|   if (QII->isDeallocRet(I) &&
 | |
|      (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
 | |
|     Dependence = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // V4 allows dual store. But does not allow second store, if the
 | |
|   // first store is not in SLOT0. New value store, new value jump,
 | |
|   // dealloc_return and memop always take SLOT0.
 | |
|   // Arch spec 3.4.4.2
 | |
|   if (QRI->Subtarget.hasV4TOps()) {
 | |
|     if (MCIDI.mayStore() && MCIDJ.mayStore() &&
 | |
|        (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
 | |
|       Dependence = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if ((QII->isMemOp(J) && MCIDI.mayStore())
 | |
|         || (MCIDJ.mayStore() && QII->isMemOp(I))
 | |
|         || (QII->isMemOp(J) && QII->isMemOp(I))) {
 | |
|       Dependence = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     //if dealloc_return
 | |
|     if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
 | |
|       Dependence = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If an instruction feeds new value jump, glue it.
 | |
|     MachineBasicBlock::iterator NextMII = I;
 | |
|     ++NextMII;
 | |
|     if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
 | |
|       MachineInstr *NextMI = NextMII;
 | |
| 
 | |
|       bool secondRegMatch = false;
 | |
|       bool maintainNewValueJump = false;
 | |
| 
 | |
|       if (NextMI->getOperand(1).isReg() &&
 | |
|           I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
 | |
|         secondRegMatch = true;
 | |
|         maintainNewValueJump = true;
 | |
|       }
 | |
| 
 | |
|       if (!secondRegMatch &&
 | |
|            I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
 | |
|         maintainNewValueJump = true;
 | |
|       }
 | |
| 
 | |
|       for (std::vector<MachineInstr*>::iterator
 | |
|             VI = CurrentPacketMIs.begin(),
 | |
|              VE = CurrentPacketMIs.end();
 | |
|            (VI != VE && maintainNewValueJump); ++VI) {
 | |
|         SUnit *PacketSU = MIToSUnit.find(*VI)->second;
 | |
| 
 | |
|         // NVJ can not be part of the dual jump - Arch Spec: section 7.8
 | |
|         if (PacketSU->getInstr()->getDesc().isCall()) {
 | |
|           Dependence = true;
 | |
|           break;
 | |
|         }
 | |
|         // Validate
 | |
|         // 1. Packet does not have a store in it.
 | |
|         // 2. If the first operand of the nvj is newified, and the second
 | |
|         //    operand is also a reg, it (second reg) is not defined in
 | |
|         //    the same packet.
 | |
|         // 3. If the second operand of the nvj is newified, (which means
 | |
|         //    first operand is also a reg), first reg is not defined in
 | |
|         //    the same packet.
 | |
|         if (PacketSU->getInstr()->getDesc().mayStore()               ||
 | |
|             PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
 | |
|             // Check #2.
 | |
|             (!secondRegMatch && NextMI->getOperand(1).isReg() &&
 | |
|              PacketSU->getInstr()->modifiesRegister(
 | |
|                                NextMI->getOperand(1).getReg(), QRI)) ||
 | |
|             // Check #3.
 | |
|             (secondRegMatch &&
 | |
|              PacketSU->getInstr()->modifiesRegister(
 | |
|                                NextMI->getOperand(0).getReg(), QRI))) {
 | |
|           Dependence = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!Dependence)
 | |
|         GlueToNewValueJump = true;
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (SUJ->isSucc(SUI)) {
 | |
|     for (unsigned i = 0;
 | |
|          (i < SUJ->Succs.size()) && !FoundSequentialDependence;
 | |
|          ++i) {
 | |
| 
 | |
|       if (SUJ->Succs[i].getSUnit() != SUI) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       SDep::Kind DepType = SUJ->Succs[i].getKind();
 | |
| 
 | |
|       // For direct calls:
 | |
|       // Ignore register dependences for call instructions for
 | |
|       // packetization purposes except for those due to r31 and
 | |
|       // predicate registers.
 | |
|       //
 | |
|       // For indirect calls:
 | |
|       // Same as direct calls + check for true dependences to the register
 | |
|       // used in the indirect call.
 | |
|       //
 | |
|       // We completely ignore Order dependences for call instructions
 | |
|       //
 | |
|       // For returns:
 | |
|       // Ignore register dependences for return instructions like jumpr,
 | |
|       // dealloc return unless we have dependencies on the explicit uses
 | |
|       // of the registers used by jumpr (like r31) or dealloc return
 | |
|       // (like r29 or r30).
 | |
|       //
 | |
|       // TODO: Currently, jumpr is handling only return of r31. So, the
 | |
|       // following logic (specificaly IsCallDependent) is working fine.
 | |
|       // We need to enable jumpr for register other than r31 and then,
 | |
|       // we need to rework the last part, where it handles indirect call
 | |
|       // of that (IsCallDependent) function. Bug 6216 is opened for this.
 | |
|       //
 | |
|       unsigned DepReg = 0;
 | |
|       const TargetRegisterClass* RC = nullptr;
 | |
|       if (DepType == SDep::Data) {
 | |
|         DepReg = SUJ->Succs[i].getReg();
 | |
|         RC = QRI->getMinimalPhysRegClass(DepReg);
 | |
|       }
 | |
|       if ((MCIDI.isCall() || MCIDI.isReturn()) &&
 | |
|           (!IsRegDependence(DepType) ||
 | |
|             !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
 | |
|         /* do nothing */
 | |
|       }
 | |
| 
 | |
|       // For instructions that can be promoted to dot-new, try to promote.
 | |
|       else if ((DepType == SDep::Data) &&
 | |
|                CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
 | |
|                PromoteToDotNew(I, DepType, II, RC)) {
 | |
|         PromotedToDotNew = true;
 | |
|         /* do nothing */
 | |
|       }
 | |
| 
 | |
|       else if ((DepType == SDep::Data) &&
 | |
|                (QII->isNewValueJump(I))) {
 | |
|         /* do nothing */
 | |
|       }
 | |
| 
 | |
|       // For predicated instructions, if the predicates are complements
 | |
|       // then there can be no dependence.
 | |
|       else if (QII->isPredicated(I) &&
 | |
|                QII->isPredicated(J) &&
 | |
|           ArePredicatesComplements(I, J, MIToSUnit)) {
 | |
|         /* do nothing */
 | |
| 
 | |
|       }
 | |
|       else if (IsDirectJump(I) &&
 | |
|                !MCIDJ.isBranch() &&
 | |
|                !MCIDJ.isCall() &&
 | |
|                (DepType == SDep::Order)) {
 | |
|         // Ignore Order dependences between unconditional direct branches
 | |
|         // and non-control-flow instructions
 | |
|         /* do nothing */
 | |
|       }
 | |
|       else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
 | |
|                (DepType != SDep::Output)) {
 | |
|         // Ignore all dependences for jumps except for true and output
 | |
|         // dependences
 | |
|         /* do nothing */
 | |
|       }
 | |
| 
 | |
|       // Ignore output dependences due to superregs. We can
 | |
|       // write to two different subregisters of R1:0 for instance
 | |
|       // in the same cycle
 | |
|       //
 | |
| 
 | |
|       //
 | |
|       // Let the
 | |
|       // If neither I nor J defines DepReg, then this is a
 | |
|       // superfluous output dependence. The dependence must be of the
 | |
|       // form:
 | |
|       //  R0 = ...
 | |
|       //  R1 = ...
 | |
|       // and there is an output dependence between the two instructions
 | |
|       // with
 | |
|       // DepReg = D0
 | |
|       // We want to ignore these dependences.
 | |
|       // Ideally, the dependence constructor should annotate such
 | |
|       // dependences. We can then avoid this relatively expensive check.
 | |
|       //
 | |
|       else if (DepType == SDep::Output) {
 | |
|         // DepReg is the register that's responsible for the dependence.
 | |
|         unsigned DepReg = SUJ->Succs[i].getReg();
 | |
| 
 | |
|         // Check if I and J really defines DepReg.
 | |
|         if (I->definesRegister(DepReg) ||
 | |
|             J->definesRegister(DepReg)) {
 | |
|           FoundSequentialDependence = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We ignore Order dependences for
 | |
|       // 1. Two loads unless they are volatile.
 | |
|       // 2. Two stores in V4 unless they are volatile.
 | |
|       else if ((DepType == SDep::Order) &&
 | |
|                !I->hasOrderedMemoryRef() &&
 | |
|                !J->hasOrderedMemoryRef()) {
 | |
|         if (QRI->Subtarget.hasV4TOps() &&
 | |
|             // hexagonv4 allows dual store.
 | |
|             MCIDI.mayStore() && MCIDJ.mayStore()) {
 | |
|           /* do nothing */
 | |
|         }
 | |
|         // store followed by store-- not OK on V2
 | |
|         // store followed by load -- not OK on all (OK if addresses
 | |
|         // are not aliased)
 | |
|         // load followed by store -- OK on all
 | |
|         // load followed by load  -- OK on all
 | |
|         else if ( !MCIDJ.mayStore()) {
 | |
|           /* do nothing */
 | |
|         }
 | |
|         else {
 | |
|           FoundSequentialDependence = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // For V4, special case ALLOCFRAME. Even though there is dependency
 | |
|       // between ALLOCFRAME and subsequent store, allow it to be
 | |
|       // packetized in a same packet. This implies that the store is using
 | |
|       // caller's SP. Hence, offset needs to be updated accordingly.
 | |
|       else if (DepType == SDep::Data
 | |
|                && QRI->Subtarget.hasV4TOps()
 | |
|                && J->getOpcode() == Hexagon::ALLOCFRAME
 | |
|                && (I->getOpcode() == Hexagon::STrid
 | |
|                    || I->getOpcode() == Hexagon::STriw
 | |
|                    || I->getOpcode() == Hexagon::STrib)
 | |
|                && I->getOperand(0).getReg() == QRI->getStackRegister()
 | |
|                && QII->isValidOffset(I->getOpcode(),
 | |
|                                      I->getOperand(1).getImm() -
 | |
|                                      (FrameSize + HEXAGON_LRFP_SIZE)))
 | |
|       {
 | |
|         GlueAllocframeStore = true;
 | |
|         // Since this store is to be glued with allocframe in the same
 | |
|         // packet, it will use SP of the previous stack frame, i.e
 | |
|         // caller's SP. Therefore, we need to recalculate offset according
 | |
|         // to this change.
 | |
|         I->getOperand(1).setImm(I->getOperand(1).getImm() -
 | |
|                                         (FrameSize + HEXAGON_LRFP_SIZE));
 | |
|       }
 | |
| 
 | |
|       //
 | |
|       // Skip over anti-dependences. Two instructions that are
 | |
|       // anti-dependent can share a packet
 | |
|       //
 | |
|       else if (DepType != SDep::Anti) {
 | |
|         FoundSequentialDependence = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (FoundSequentialDependence) {
 | |
|       Dependence = true;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // isLegalToPruneDependencies
 | |
| bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
 | |
|   MachineInstr *I = SUI->getInstr();
 | |
|   assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
 | |
| 
 | |
|   const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
 | |
| 
 | |
|   if (Dependence) {
 | |
| 
 | |
|     // Check if the instruction was promoted to a dot-new. If so, demote it
 | |
|     // back into a dot-old.
 | |
|     if (PromotedToDotNew) {
 | |
|       DemoteToDotOld(I);
 | |
|     }
 | |
| 
 | |
|     // Check if the instruction (must be a store) was glued with an Allocframe
 | |
|     // instruction. If so, restore its offset to its original value, i.e. use
 | |
|     // curent SP instead of caller's SP.
 | |
|     if (GlueAllocframeStore) {
 | |
|       I->getOperand(1).setImm(I->getOperand(1).getImm() +
 | |
|                                              FrameSize + HEXAGON_LRFP_SIZE);
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator
 | |
| HexagonPacketizerList::addToPacket(MachineInstr *MI) {
 | |
| 
 | |
|     MachineBasicBlock::iterator MII = MI;
 | |
|     MachineBasicBlock *MBB = MI->getParent();
 | |
| 
 | |
|     const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
 | |
| 
 | |
|     if (GlueToNewValueJump) {
 | |
| 
 | |
|       ++MII;
 | |
|       MachineInstr *nvjMI = MII;
 | |
|       assert(ResourceTracker->canReserveResources(MI));
 | |
|       ResourceTracker->reserveResources(MI);
 | |
|       if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
 | |
|           !tryAllocateResourcesForConstExt(MI)) {
 | |
|         endPacket(MBB, MI);
 | |
|         ResourceTracker->reserveResources(MI);
 | |
|         assert(canReserveResourcesForConstExt(MI) &&
 | |
|                "Ensure that there is a slot");
 | |
|         reserveResourcesForConstExt(MI);
 | |
|         // Reserve resources for new value jump constant extender.
 | |
|         assert(canReserveResourcesForConstExt(MI) &&
 | |
|                "Ensure that there is a slot");
 | |
|         reserveResourcesForConstExt(nvjMI);
 | |
|         assert(ResourceTracker->canReserveResources(nvjMI) &&
 | |
|                "Ensure that there is a slot");
 | |
| 
 | |
|       } else if (   // Extended instruction takes two slots in the packet.
 | |
|         // Try reserve and allocate 4-byte in the current packet first.
 | |
|         (QII->isExtended(nvjMI)
 | |
|             && (!tryAllocateResourcesForConstExt(nvjMI)
 | |
|                 || !ResourceTracker->canReserveResources(nvjMI)))
 | |
|         || // For non-extended instruction, no need to allocate extra 4 bytes.
 | |
|         (!QII->isExtended(nvjMI) &&
 | |
|               !ResourceTracker->canReserveResources(nvjMI)))
 | |
|       {
 | |
|         endPacket(MBB, MI);
 | |
|         // A new and empty packet starts.
 | |
|         // We are sure that the resources requirements can be satisfied.
 | |
|         // Therefore, do not need to call "canReserveResources" anymore.
 | |
|         ResourceTracker->reserveResources(MI);
 | |
|         if (QII->isExtended(nvjMI))
 | |
|           reserveResourcesForConstExt(nvjMI);
 | |
|       }
 | |
|       // Here, we are sure that "reserveResources" would succeed.
 | |
|       ResourceTracker->reserveResources(nvjMI);
 | |
|       CurrentPacketMIs.push_back(MI);
 | |
|       CurrentPacketMIs.push_back(nvjMI);
 | |
|     } else {
 | |
|       if (   (QII->isExtended(MI) || QII->isConstExtended(MI))
 | |
|           && (   !tryAllocateResourcesForConstExt(MI)
 | |
|               || !ResourceTracker->canReserveResources(MI)))
 | |
|       {
 | |
|         endPacket(MBB, MI);
 | |
|         // Check if the instruction was promoted to a dot-new. If so, demote it
 | |
|         // back into a dot-old
 | |
|         if (PromotedToDotNew) {
 | |
|           DemoteToDotOld(MI);
 | |
|         }
 | |
|         reserveResourcesForConstExt(MI);
 | |
|       }
 | |
|       // In case that "MI" is not an extended insn,
 | |
|       // the resource availability has already been checked.
 | |
|       ResourceTracker->reserveResources(MI);
 | |
|       CurrentPacketMIs.push_back(MI);
 | |
|     }
 | |
|     return MII;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createHexagonPacketizer() {
 | |
|   return new HexagonPacketizer();
 | |
| }
 | |
| 
 |