mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7558 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2109 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2109 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
 | |
| //
 | |
| // This file defines a simple peephole instruction selector for the x86 target
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| 
 | |
| /// BMI - A special BuildMI variant that takes an iterator to insert the
 | |
| /// instruction at as well as a basic block.  This is the version for when you
 | |
| /// have a destination register in mind.
 | |
| inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator &I,
 | |
|                                       int Opcode, unsigned NumOperands,
 | |
|                                       unsigned DestReg) {
 | |
|   assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
 | |
|   MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
 | |
|   I = MBB->insert(I, MI)+1;
 | |
|   return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
 | |
| }
 | |
| 
 | |
| /// BMI - A special BuildMI variant that takes an iterator to insert the
 | |
| /// instruction at as well as a basic block.
 | |
| inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator &I,
 | |
|                                       int Opcode, unsigned NumOperands) {
 | |
|   assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
 | |
|   MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
 | |
|   I = MBB->insert(I, MI)+1;
 | |
|   return MachineInstrBuilder(MI);
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   struct ISel : public FunctionPass, InstVisitor<ISel> {
 | |
|     TargetMachine &TM;
 | |
|     MachineFunction *F;                 // The function we are compiling into
 | |
|     MachineBasicBlock *BB;              // The current MBB we are compiling
 | |
|     int VarArgsFrameIndex;              // FrameIndex for start of varargs area
 | |
| 
 | |
|     std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs
 | |
| 
 | |
|     // MBBMap - Mapping between LLVM BB -> Machine BB
 | |
|     std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
 | |
| 
 | |
|     ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
 | |
| 
 | |
|     /// runOnFunction - Top level implementation of instruction selection for
 | |
|     /// the entire function.
 | |
|     ///
 | |
|     bool runOnFunction(Function &Fn) {
 | |
|       F = &MachineFunction::construct(&Fn, TM);
 | |
| 
 | |
|       // Create all of the machine basic blocks for the function...
 | |
|       for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|         F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
 | |
| 
 | |
|       BB = &F->front();
 | |
| 
 | |
|       // Copy incoming arguments off of the stack...
 | |
|       LoadArgumentsToVirtualRegs(Fn);
 | |
| 
 | |
|       // Instruction select everything except PHI nodes
 | |
|       visit(Fn);
 | |
| 
 | |
|       // Select the PHI nodes
 | |
|       SelectPHINodes();
 | |
| 
 | |
|       RegMap.clear();
 | |
|       MBBMap.clear();
 | |
|       F = 0;
 | |
|       // We always build a machine code representation for the function
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 Simple Instruction Selection";
 | |
|     }
 | |
| 
 | |
|     /// visitBasicBlock - This method is called when we are visiting a new basic
 | |
|     /// block.  This simply creates a new MachineBasicBlock to emit code into
 | |
|     /// and adds it to the current MachineFunction.  Subsequent visit* for
 | |
|     /// instructions will be invoked for all instructions in the basic block.
 | |
|     ///
 | |
|     void visitBasicBlock(BasicBlock &LLVM_BB) {
 | |
|       BB = MBBMap[&LLVM_BB];
 | |
|     }
 | |
| 
 | |
|     /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
 | |
|     /// from the stack into virtual registers.
 | |
|     ///
 | |
|     void LoadArgumentsToVirtualRegs(Function &F);
 | |
| 
 | |
|     /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
|     /// because we have to generate our sources into the source basic blocks,
 | |
|     /// not the current one.
 | |
|     ///
 | |
|     void SelectPHINodes();
 | |
| 
 | |
|     // Visitation methods for various instructions.  These methods simply emit
 | |
|     // fixed X86 code for each instruction.
 | |
|     //
 | |
| 
 | |
|     // Control flow operators
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitBranchInst(BranchInst &BI);
 | |
| 
 | |
|     struct ValueRecord {
 | |
|       Value *Val;
 | |
|       unsigned Reg;
 | |
|       const Type *Ty;
 | |
|       ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
 | |
|       ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
 | |
|     };
 | |
|     void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
| 		const std::vector<ValueRecord> &Args);
 | |
|     void visitCallInst(CallInst &I);
 | |
|     void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
 | |
| 
 | |
|     // Arithmetic operators
 | |
|     void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
 | |
|     void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
 | |
|     void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
 | |
|     void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
 | |
|                     unsigned DestReg, const Type *DestTy,
 | |
| 		    unsigned Op0Reg, unsigned Op1Reg);
 | |
|     void visitMul(BinaryOperator &B);
 | |
| 
 | |
|     void visitDiv(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitRem(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitDivRem(BinaryOperator &B);
 | |
| 
 | |
|     // Bitwise operators
 | |
|     void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
 | |
|     void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
 | |
|     void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
 | |
| 
 | |
|     // Comparison operators...
 | |
|     void visitSetCondInst(SetCondInst &I);
 | |
|     bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
 | |
| 
 | |
|     // Memory Instructions
 | |
|     MachineInstr *doFPLoad(MachineBasicBlock *MBB,
 | |
| 			   MachineBasicBlock::iterator &MBBI,
 | |
| 			   const Type *Ty, unsigned DestReg);
 | |
|     void visitLoadInst(LoadInst &I);
 | |
|     void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
 | |
|     void visitStoreInst(StoreInst &I);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|     void visitAllocaInst(AllocaInst &I);
 | |
|     void visitMallocInst(MallocInst &I);
 | |
|     void visitFreeInst(FreeInst &I);
 | |
|     
 | |
|     // Other operators
 | |
|     void visitShiftInst(ShiftInst &I);
 | |
|     void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
 | |
|     void visitCastInst(CastInst &I);
 | |
|     void visitVarArgInst(VarArgInst &I);
 | |
| 
 | |
|     void visitInstruction(Instruction &I) {
 | |
|       std::cerr << "Cannot instruction select: " << I;
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     /// promote32 - Make a value 32-bits wide, and put it somewhere.
 | |
|     ///
 | |
|     void promote32(unsigned targetReg, const ValueRecord &VR);
 | |
| 
 | |
|     /// EmitByteSwap - Byteswap SrcReg into DestReg.
 | |
|     ///
 | |
|     void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
 | |
|     
 | |
|     /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | |
|     /// constant expression GEP support.
 | |
|     ///
 | |
|     void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
 | |
|                           Value *Src, User::op_iterator IdxBegin,
 | |
|                           User::op_iterator IdxEnd, unsigned TargetReg);
 | |
| 
 | |
|     /// emitCastOperation - Common code shared between visitCastInst and
 | |
|     /// constant expression cast support.
 | |
|     void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
 | |
|                            Value *Src, const Type *DestTy, unsigned TargetReg);
 | |
| 
 | |
|     /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | |
|     /// and constant expression support.
 | |
|     void emitSimpleBinaryOperation(MachineBasicBlock *BB,
 | |
|                                    MachineBasicBlock::iterator &IP,
 | |
|                                    Value *Op0, Value *Op1,
 | |
|                                    unsigned OperatorClass, unsigned TargetReg);
 | |
| 
 | |
|     /// copyConstantToRegister - Output the instructions required to put the
 | |
|     /// specified constant into the specified register.
 | |
|     ///
 | |
|     void copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                 MachineBasicBlock::iterator &MBBI,
 | |
|                                 Constant *C, unsigned Reg);
 | |
| 
 | |
|     /// makeAnotherReg - This method returns the next register number we haven't
 | |
|     /// yet used.
 | |
|     ///
 | |
|     /// Long values are handled somewhat specially.  They are always allocated
 | |
|     /// as pairs of 32 bit integer values.  The register number returned is the
 | |
|     /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
 | |
|     /// of the long value.
 | |
|     ///
 | |
|     unsigned makeAnotherReg(const Type *Ty) {
 | |
|       assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
 | |
|              "Current target doesn't have X86 reg info??");
 | |
|       const X86RegisterInfo *MRI =
 | |
|         static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
 | |
|       if (Ty == Type::LongTy || Ty == Type::ULongTy) {
 | |
| 	const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
 | |
| 	// Create the lower part
 | |
| 	F->getSSARegMap()->createVirtualRegister(RC);
 | |
| 	// Create the upper part.
 | |
| 	return F->getSSARegMap()->createVirtualRegister(RC)-1;
 | |
|       }
 | |
| 
 | |
|       // Add the mapping of regnumber => reg class to MachineFunction
 | |
|       const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
 | |
|       return F->getSSARegMap()->createVirtualRegister(RC);
 | |
|     }
 | |
| 
 | |
|     /// getReg - This method turns an LLVM value into a register number.  This
 | |
|     /// is guaranteed to produce the same register number for a particular value
 | |
|     /// every time it is queried.
 | |
|     ///
 | |
|     unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
 | |
|     unsigned getReg(Value *V) {
 | |
|       // Just append to the end of the current bb.
 | |
|       MachineBasicBlock::iterator It = BB->end();
 | |
|       return getReg(V, BB, It);
 | |
|     }
 | |
|     unsigned getReg(Value *V, MachineBasicBlock *MBB,
 | |
|                     MachineBasicBlock::iterator &IPt) {
 | |
|       unsigned &Reg = RegMap[V];
 | |
|       if (Reg == 0) {
 | |
|         Reg = makeAnotherReg(V->getType());
 | |
|         RegMap[V] = Reg;
 | |
|       }
 | |
| 
 | |
|       // If this operand is a constant, emit the code to copy the constant into
 | |
|       // the register here...
 | |
|       //
 | |
|       if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|         copyConstantToRegister(MBB, IPt, C, Reg);
 | |
|         RegMap.erase(V);  // Assign a new name to this constant if ref'd again
 | |
|       } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|         // Move the address of the global into the register
 | |
|         BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
 | |
|         RegMap.erase(V);  // Assign a new name to this address if ref'd again
 | |
|       }
 | |
| 
 | |
|       return Reg;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
 | |
| /// Representation.
 | |
| ///
 | |
| enum TypeClass {
 | |
|   cByte, cShort, cInt, cFP, cLong
 | |
| };
 | |
| 
 | |
| /// getClass - Turn a primitive type into a "class" number which is based on the
 | |
| /// size of the type, and whether or not it is floating point.
 | |
| ///
 | |
| static inline TypeClass getClass(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::SByteTyID:
 | |
|   case Type::UByteTyID:   return cByte;      // Byte operands are class #0
 | |
|   case Type::ShortTyID:
 | |
|   case Type::UShortTyID:  return cShort;     // Short operands are class #1
 | |
|   case Type::IntTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::PointerTyID: return cInt;       // Int's and pointers are class #2
 | |
| 
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:  return cFP;        // Floating Point is #3
 | |
| 
 | |
|   case Type::LongTyID:
 | |
|   case Type::ULongTyID:   return cLong;      // Longs are class #4
 | |
|   default:
 | |
|     assert(0 && "Invalid type to getClass!");
 | |
|     return cByte;  // not reached
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getClassB - Just like getClass, but treat boolean values as bytes.
 | |
| static inline TypeClass getClassB(const Type *Ty) {
 | |
|   if (Ty == Type::BoolTy) return cByte;
 | |
|   return getClass(Ty);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// copyConstantToRegister - Output the instructions required to put the
 | |
| /// specified constant into the specified register.
 | |
| ///
 | |
| void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                   MachineBasicBlock::iterator &IP,
 | |
|                                   Constant *C, unsigned R) {
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     unsigned Class = 0;
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|       emitGEPOperation(MBB, IP, CE->getOperand(0),
 | |
|                        CE->op_begin()+1, CE->op_end(), R);
 | |
|       return;
 | |
|     case Instruction::Cast:
 | |
|       emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
 | |
|       return;
 | |
| 
 | |
|     case Instruction::Xor: ++Class; // FALL THROUGH
 | |
|     case Instruction::Or:  ++Class; // FALL THROUGH
 | |
|     case Instruction::And: ++Class; // FALL THROUGH
 | |
|     case Instruction::Sub: ++Class; // FALL THROUGH
 | |
|     case Instruction::Add:
 | |
|       emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | |
|                                 Class, R);
 | |
|       return;
 | |
| 
 | |
|     default:
 | |
|       std::cerr << "Offending expr: " << C << "\n";
 | |
|       assert(0 && "Constant expressions not yet handled!\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (C->getType()->isIntegral()) {
 | |
|     unsigned Class = getClassB(C->getType());
 | |
| 
 | |
|     if (Class == cLong) {
 | |
|       // Copy the value into the register pair.
 | |
|       uint64_t Val = cast<ConstantInt>(C)->getRawValue();
 | |
|       BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
 | |
|       BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(Class <= cInt && "Type not handled yet!");
 | |
| 
 | |
|     static const unsigned IntegralOpcodeTab[] = {
 | |
|       X86::MOVir8, X86::MOVir16, X86::MOVir32
 | |
|     };
 | |
| 
 | |
|     if (C->getType() == Type::BoolTy) {
 | |
|       BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
 | |
|     } else {
 | |
|       ConstantInt *CI = cast<ConstantInt>(C);
 | |
|       BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
 | |
|     }
 | |
|   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|     double Value = CFP->getValue();
 | |
|     if (Value == +0.0)
 | |
|       BMI(MBB, IP, X86::FLD0, 0, R);
 | |
|     else if (Value == +1.0)
 | |
|       BMI(MBB, IP, X86::FLD1, 0, R);
 | |
|     else {
 | |
|       // Otherwise we need to spill the constant to memory...
 | |
|       MachineConstantPool *CP = F->getConstantPool();
 | |
|       unsigned CPI = CP->getConstantPoolIndex(CFP);
 | |
|       addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
 | |
|     }
 | |
| 
 | |
|   } else if (isa<ConstantPointerNull>(C)) {
 | |
|     // Copy zero (null pointer) to the register.
 | |
|     BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
 | |
|   } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
 | |
|     unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
 | |
|     BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
 | |
|   } else {
 | |
|     std::cerr << "Offending constant: " << C << "\n";
 | |
|     assert(0 && "Type not handled yet!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
 | |
| /// the stack into virtual registers.
 | |
| ///
 | |
| void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
 | |
|   // Emit instructions to load the arguments...  On entry to a function on the
 | |
|   // X86, the stack frame looks like this:
 | |
|   //
 | |
|   // [ESP] -- return address
 | |
|   // [ESP + 4] -- first argument (leftmost lexically)
 | |
|   // [ESP + 8] -- second argument, if first argument is four bytes in size
 | |
|   //    ... 
 | |
|   //
 | |
|   unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
 | |
|   MachineFrameInfo *MFI = F->getFrameInfo();
 | |
| 
 | |
|   for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
 | |
|     unsigned Reg = getReg(*I);
 | |
|     
 | |
|     int FI;          // Frame object index
 | |
|     switch (getClassB(I->getType())) {
 | |
|     case cByte:
 | |
|       FI = MFI->CreateFixedObject(1, ArgOffset);
 | |
|       addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
 | |
|       break;
 | |
|     case cShort:
 | |
|       FI = MFI->CreateFixedObject(2, ArgOffset);
 | |
|       addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
 | |
|       break;
 | |
|     case cInt:
 | |
|       FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|       addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
 | |
|       break;
 | |
|     case cLong:
 | |
|       FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
|       addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
 | |
|       addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
 | |
|       ArgOffset += 4;   // longs require 4 additional bytes
 | |
|       break;
 | |
|     case cFP:
 | |
|       unsigned Opcode;
 | |
|       if (I->getType() == Type::FloatTy) {
 | |
| 	Opcode = X86::FLDr32;
 | |
| 	FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|       } else {
 | |
| 	Opcode = X86::FLDr64;
 | |
| 	FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
| 	ArgOffset += 4;   // doubles require 4 additional bytes
 | |
|       }
 | |
|       addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
 | |
|       break;
 | |
|     default:
 | |
|       assert(0 && "Unhandled argument type!");
 | |
|     }
 | |
|     ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
 | |
|   }
 | |
| 
 | |
|   // If the function takes variable number of arguments, add a frame offset for
 | |
|   // the start of the first vararg value... this is used to expand
 | |
|   // llvm.va_start.
 | |
|   if (Fn.getFunctionType()->isVarArg())
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
| /// because we have to generate our sources into the source basic blocks, not
 | |
| /// the current one.
 | |
| ///
 | |
| void ISel::SelectPHINodes() {
 | |
|   const TargetInstrInfo &TII = TM.getInstrInfo();
 | |
|   const Function &LF = *F->getFunction();  // The LLVM function...
 | |
|   for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
 | |
|     const BasicBlock *BB = I;
 | |
|     MachineBasicBlock *MBB = MBBMap[I];
 | |
| 
 | |
|     // Loop over all of the PHI nodes in the LLVM basic block...
 | |
|     unsigned NumPHIs = 0;
 | |
|     for (BasicBlock::const_iterator I = BB->begin();
 | |
|          PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
 | |
| 
 | |
|       // Create a new machine instr PHI node, and insert it.
 | |
|       unsigned PHIReg = getReg(*PN);
 | |
|       MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
 | |
|       MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
 | |
| 
 | |
|       MachineInstr *LongPhiMI = 0;
 | |
|       if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
 | |
| 	LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
 | |
| 	MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
 | |
|       }
 | |
| 
 | |
|       // PHIValues - Map of blocks to incoming virtual registers.  We use this
 | |
|       // so that we only initialize one incoming value for a particular block,
 | |
|       // even if the block has multiple entries in the PHI node.
 | |
|       //
 | |
|       std::map<MachineBasicBlock*, unsigned> PHIValues;
 | |
| 
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
 | |
|         unsigned ValReg;
 | |
|         std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
 | |
|           PHIValues.lower_bound(PredMBB);
 | |
| 
 | |
|         if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
 | |
|           // We already inserted an initialization of the register for this
 | |
|           // predecessor.  Recycle it.
 | |
|           ValReg = EntryIt->second;
 | |
| 
 | |
|         } else {        
 | |
|           // Get the incoming value into a virtual register.  If it is not
 | |
|           // already available in a virtual register, insert the computation
 | |
|           // code into PredMBB
 | |
|           //
 | |
|           MachineBasicBlock::iterator PI = PredMBB->end();
 | |
|           while (PI != PredMBB->begin() &&
 | |
|                  TII.isTerminatorInstr((*(PI-1))->getOpcode()))
 | |
|             --PI;
 | |
|           ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
 | |
| 
 | |
|           // Remember that we inserted a value for this PHI for this predecessor
 | |
|           PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
 | |
|         }
 | |
| 
 | |
| 	PhiMI->addRegOperand(ValReg);
 | |
|         PhiMI->addMachineBasicBlockOperand(PredMBB);
 | |
| 	if (LongPhiMI) {
 | |
| 	  LongPhiMI->addRegOperand(ValReg+1);
 | |
| 	  LongPhiMI->addMachineBasicBlockOperand(PredMBB);
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
 | |
| // the conditional branch instruction which is the only user of the cc
 | |
| // instruction.  This is the case if the conditional branch is the only user of
 | |
| // the setcc, and if the setcc is in the same basic block as the conditional
 | |
| // branch.  We also don't handle long arguments below, so we reject them here as
 | |
| // well.
 | |
| //
 | |
| static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
 | |
|   if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | |
|     if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
 | |
|         SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
 | |
|       const Type *Ty = SCI->getOperand(0)->getType();
 | |
|       if (Ty != Type::LongTy && Ty != Type::ULongTy)
 | |
|         return SCI;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Return a fixed numbering for setcc instructions which does not depend on the
 | |
| // order of the opcodes.
 | |
| //
 | |
| static unsigned getSetCCNumber(unsigned Opcode) {
 | |
|   switch(Opcode) {
 | |
|   default: assert(0 && "Unknown setcc instruction!");
 | |
|   case Instruction::SetEQ: return 0;
 | |
|   case Instruction::SetNE: return 1;
 | |
|   case Instruction::SetLT: return 2;
 | |
|   case Instruction::SetGE: return 3;
 | |
|   case Instruction::SetGT: return 4;
 | |
|   case Instruction::SetLE: return 5;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // LLVM  -> X86 signed  X86 unsigned
 | |
| // -----    ----------  ------------
 | |
| // seteq -> sete        sete
 | |
| // setne -> setne       setne
 | |
| // setlt -> setl        setb
 | |
| // setge -> setge       setae
 | |
| // setgt -> setg        seta
 | |
| // setle -> setle       setbe
 | |
| static const unsigned SetCCOpcodeTab[2][6] = {
 | |
|   {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
 | |
|   {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
 | |
| };
 | |
| 
 | |
| bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
 | |
| 
 | |
|   // The arguments are already supposed to be of the same type.
 | |
|   const Type *CompTy = Op0->getType();
 | |
|   bool isSigned = CompTy->isSigned();
 | |
|   unsigned Class = getClassB(CompTy);
 | |
|   unsigned Op0r = getReg(Op0);
 | |
| 
 | |
|   // Special case handling of: cmp R, i
 | |
|   if (Class == cByte || Class == cShort || Class == cInt)
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|       uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
 | |
| 
 | |
|       // Mask off any upper bits of the constant, if there are any...
 | |
|       Op1v &= (1ULL << (8 << Class)) - 1;
 | |
| 
 | |
|       switch (Class) {
 | |
|       case cByte:  BuildMI(BB, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
 | |
|       case cShort: BuildMI(BB, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
 | |
|       case cInt:   BuildMI(BB, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
 | |
|       default:
 | |
|         assert(0 && "Invalid class!");
 | |
|       }
 | |
|       return isSigned;
 | |
|     }
 | |
| 
 | |
|   unsigned Op1r = getReg(Op1);
 | |
|   switch (Class) {
 | |
|   default: assert(0 && "Unknown type class!");
 | |
|     // Emit: cmp <var1>, <var2> (do the comparison).  We can
 | |
|     // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
 | |
|     // 32-bit.
 | |
|   case cByte:
 | |
|     BuildMI(BB, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
|   case cShort:
 | |
|     BuildMI(BB, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
|   case cInt:
 | |
|     BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
|   case cFP:
 | |
|     BuildMI(BB, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
 | |
|     BuildMI(BB, X86::FNSTSWr8, 0);
 | |
|     BuildMI(BB, X86::SAHF, 1);
 | |
|     isSigned = false;   // Compare with unsigned operators
 | |
|     break;
 | |
| 
 | |
|   case cLong:
 | |
|     if (OpNum < 2) {    // seteq, setne
 | |
|       unsigned LoTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned HiTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
 | |
|       BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
 | |
|       BuildMI(BB, X86::ORrr32,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | |
|       break;  // Allow the sete or setne to be generated from flags set by OR
 | |
|     } else {
 | |
|       // Emit a sequence of code which compares the high and low parts once
 | |
|       // each, then uses a conditional move to handle the overflow case.  For
 | |
|       // example, a setlt for long would generate code like this:
 | |
|       //
 | |
|       // AL = lo(op1) < lo(op2)   // Signedness depends on operands
 | |
|       // BL = hi(op1) < hi(op2)   // Always unsigned comparison
 | |
|       // dest = hi(op1) == hi(op2) ? AL : BL;
 | |
|       //
 | |
| 
 | |
|       // FIXME: This would be much better if we had hierarchical register
 | |
|       // classes!  Until then, hardcode registers so that we can deal with their
 | |
|       // aliases (because we don't have conditional byte moves).
 | |
|       //
 | |
|       BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
 | |
|       BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
 | |
|       BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
 | |
|       BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
 | |
|       BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
 | |
|       // NOTE: visitSetCondInst knows that the value is dumped into the BL
 | |
|       // register at this point for long values...
 | |
|       return isSigned;
 | |
|     }
 | |
|   }
 | |
|   return isSigned;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
 | |
| /// register, then move it to wherever the result should be. 
 | |
| ///
 | |
| void ISel::visitSetCondInst(SetCondInst &I) {
 | |
|   if (canFoldSetCCIntoBranch(&I)) return;  // Fold this into a branch...
 | |
| 
 | |
|   unsigned OpNum = getSetCCNumber(I.getOpcode());
 | |
|   unsigned DestReg = getReg(I);
 | |
|   bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
 | |
|                                               I.getOperand(1));
 | |
| 
 | |
|   if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
 | |
|     // Handle normal comparisons with a setcc instruction...
 | |
|     BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
 | |
|   } else {
 | |
|     // Handle long comparisons by copying the value which is already in BL into
 | |
|     // the register we want...
 | |
|     BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
 | |
| /// operand, in the specified target register.
 | |
| void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
 | |
|   bool isUnsigned = VR.Ty->isUnsigned();
 | |
| 
 | |
|   // Make sure we have the register number for this value...
 | |
|   unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
 | |
| 
 | |
|   switch (getClassB(VR.Ty)) {
 | |
|   case cByte:
 | |
|     // Extend value into target register (8->32)
 | |
|     if (isUnsigned)
 | |
|       BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
 | |
|     else
 | |
|       BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cShort:
 | |
|     // Extend value into target register (16->32)
 | |
|     if (isUnsigned)
 | |
|       BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
 | |
|     else
 | |
|       BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cInt:
 | |
|     // Move value into target register (32->32)
 | |
|     BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   default:
 | |
|     assert(0 && "Unpromotable operand class in promote32");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
 | |
| /// we have the following possibilities:
 | |
| ///
 | |
| ///   ret void: No return value, simply emit a 'ret' instruction
 | |
| ///   ret sbyte, ubyte : Extend value into EAX and return
 | |
| ///   ret short, ushort: Extend value into EAX and return
 | |
| ///   ret int, uint    : Move value into EAX and return
 | |
| ///   ret pointer      : Move value into EAX and return
 | |
| ///   ret long, ulong  : Move value into EAX/EDX and return
 | |
| ///   ret float/double : Top of FP stack
 | |
| ///
 | |
| void ISel::visitReturnInst(ReturnInst &I) {
 | |
|   if (I.getNumOperands() == 0) {
 | |
|     BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Value *RetVal = I.getOperand(0);
 | |
|   unsigned RetReg = getReg(RetVal);
 | |
|   switch (getClassB(RetVal->getType())) {
 | |
|   case cByte:   // integral return values: extend or move into EAX and return
 | |
|   case cShort:
 | |
|   case cInt:
 | |
|     promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
 | |
|     // Declare that EAX is live on exit
 | |
|     BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
 | |
|     break;
 | |
|   case cFP:                   // Floats & Doubles: Return in ST(0)
 | |
|     BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
 | |
|     // Declare that top-of-stack is live on exit
 | |
|     BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
 | |
|     break;
 | |
|   case cLong:
 | |
|     BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
 | |
|     BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
 | |
|     // Declare that EAX & EDX are live on exit
 | |
|     BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
 | |
|     break;
 | |
|   default:
 | |
|     visitInstruction(I);
 | |
|   }
 | |
|   // Emit a 'ret' instruction
 | |
|   BuildMI(BB, X86::RET, 0);
 | |
| }
 | |
| 
 | |
| // getBlockAfter - Return the basic block which occurs lexically after the
 | |
| // specified one.
 | |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
 | |
|   Function::iterator I = BB; ++I;  // Get iterator to next block
 | |
|   return I != BB->getParent()->end() ? &*I : 0;
 | |
| }
 | |
| 
 | |
| /// visitBranchInst - Handle conditional and unconditional branches here.  Note
 | |
| /// that since code layout is frozen at this point, that if we are trying to
 | |
| /// jump to a block that is the immediate successor of the current block, we can
 | |
| /// just make a fall-through (but we don't currently).
 | |
| ///
 | |
| void ISel::visitBranchInst(BranchInst &BI) {
 | |
|   BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
 | |
| 
 | |
|   if (!BI.isConditional()) {  // Unconditional branch?
 | |
|     if (BI.getSuccessor(0) != NextBB)
 | |
|       BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the setcc into the branch itself...
 | |
|   SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
 | |
|   if (SCI == 0) {
 | |
|     // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
 | |
|     // computed some other way...
 | |
|     unsigned condReg = getReg(BI.getCondition());
 | |
|     BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
 | |
|     if (BI.getSuccessor(1) == NextBB) {
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
 | |
|     } else {
 | |
|       BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
 | |
|       
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | |
|   bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
 | |
|                                               SCI->getOperand(1));
 | |
|   
 | |
|   // LLVM  -> X86 signed  X86 unsigned
 | |
|   // -----    ----------  ------------
 | |
|   // seteq -> je          je
 | |
|   // setne -> jne         jne
 | |
|   // setlt -> jl          jb
 | |
|   // setge -> jge         jae
 | |
|   // setgt -> jg          ja
 | |
|   // setle -> jle         jbe
 | |
|   static const unsigned OpcodeTab[2][6] = {
 | |
|     { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
 | |
|     { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
 | |
|   };
 | |
|   
 | |
|   if (BI.getSuccessor(0) != NextBB) {
 | |
|     BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
 | |
|     if (BI.getSuccessor(1) != NextBB)
 | |
|       BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
 | |
|   } else {
 | |
|     // Change to the inverse condition...
 | |
|     if (BI.getSuccessor(1) != NextBB) {
 | |
|       OpNum ^= 1;
 | |
|       BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// doCall - This emits an abstract call instruction, setting up the arguments
 | |
| /// and the return value as appropriate.  For the actual function call itself,
 | |
| /// it inserts the specified CallMI instruction into the stream.
 | |
| ///
 | |
| void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
| 		  const std::vector<ValueRecord> &Args) {
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack...
 | |
|   unsigned NumBytes = 0;
 | |
| 
 | |
|   if (!Args.empty()) {
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte: case cShort: case cInt:
 | |
| 	NumBytes += 4; break;
 | |
|       case cLong:
 | |
| 	NumBytes += 8; break;
 | |
|       case cFP:
 | |
| 	NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
 | |
| 	break;
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
| 
 | |
|     // Adjust the stack pointer for the new arguments...
 | |
|     BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
 | |
| 
 | |
|     // Arguments go on the stack in reverse order, as specified by the ABI.
 | |
|     unsigned ArgOffset = 0;
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|       unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte:
 | |
|       case cShort: {
 | |
| 	// Promote arg to 32 bits wide into a temporary register...
 | |
| 	unsigned R = makeAnotherReg(Type::UIntTy);
 | |
| 	promote32(R, Args[i]);
 | |
| 	addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
 | |
| 		     X86::ESP, ArgOffset).addReg(R);
 | |
| 	break;
 | |
|       }
 | |
|       case cInt:
 | |
| 	addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
 | |
| 		     X86::ESP, ArgOffset).addReg(ArgReg);
 | |
| 	break;
 | |
|       case cLong:
 | |
| 	addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
 | |
| 		     X86::ESP, ArgOffset).addReg(ArgReg);
 | |
| 	addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
 | |
| 		     X86::ESP, ArgOffset+4).addReg(ArgReg+1);
 | |
| 	ArgOffset += 4;        // 8 byte entry, not 4.
 | |
| 	break;
 | |
| 	
 | |
|       case cFP:
 | |
| 	if (Args[i].Ty == Type::FloatTy) {
 | |
| 	  addRegOffset(BuildMI(BB, X86::FSTr32, 5),
 | |
| 		       X86::ESP, ArgOffset).addReg(ArgReg);
 | |
| 	} else {
 | |
| 	  assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
 | |
| 	  addRegOffset(BuildMI(BB, X86::FSTr64, 5),
 | |
| 		       X86::ESP, ArgOffset).addReg(ArgReg);
 | |
| 	  ArgOffset += 4;       // 8 byte entry, not 4.
 | |
| 	}
 | |
| 	break;
 | |
| 
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
|       ArgOffset += 4;
 | |
|     }
 | |
|   } else {
 | |
|     BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
 | |
|   }
 | |
| 
 | |
|   BB->push_back(CallMI);
 | |
| 
 | |
|   BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
 | |
| 
 | |
|   // If there is a return value, scavenge the result from the location the call
 | |
|   // leaves it in...
 | |
|   //
 | |
|   if (Ret.Ty != Type::VoidTy) {
 | |
|     unsigned DestClass = getClassB(Ret.Ty);
 | |
|     switch (DestClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt: {
 | |
|       // Integral results are in %eax, or the appropriate portion
 | |
|       // thereof.
 | |
|       static const unsigned regRegMove[] = {
 | |
| 	X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
 | |
|       };
 | |
|       static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
 | |
|       BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
 | |
|       break;
 | |
|     }
 | |
|     case cFP:     // Floating-point return values live in %ST(0)
 | |
|       BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
 | |
|       break;
 | |
|     case cLong:   // Long values are left in EDX:EAX
 | |
|       BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
 | |
|       BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
 | |
|       break;
 | |
|     default: assert(0 && "Unknown class!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCallInst - Push args on stack and do a procedure call instruction.
 | |
| void ISel::visitCallInst(CallInst &CI) {
 | |
|   MachineInstr *TheCall;
 | |
|   if (Function *F = CI.getCalledFunction()) {
 | |
|     // Is it an intrinsic function call?
 | |
|     if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
 | |
|       visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Emit a CALL instruction with PC-relative displacement.
 | |
|     TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
 | |
|   } else {  // Emit an indirect call...
 | |
|     unsigned Reg = getReg(CI.getCalledValue());
 | |
|     TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
 | |
|     Args.push_back(ValueRecord(CI.getOperand(i)));
 | |
| 
 | |
|   unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
 | |
|   doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
 | |
| }	 
 | |
| 
 | |
| void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
 | |
|   unsigned TmpReg1, TmpReg2;
 | |
|   switch (ID) {
 | |
|   case LLVMIntrinsic::va_start:
 | |
|     // Get the address of the first vararg value...
 | |
|     TmpReg1 = makeAnotherReg(Type::UIntTy);
 | |
|     addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
 | |
|     TmpReg2 = getReg(CI.getOperand(1));
 | |
|     addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
 | |
|     return;
 | |
| 
 | |
|   case LLVMIntrinsic::va_end: return;   // Noop on X86
 | |
|   case LLVMIntrinsic::va_copy:
 | |
|     TmpReg1 = getReg(CI.getOperand(2));  // Get existing va_list
 | |
|     TmpReg2 = getReg(CI.getOperand(1));  // Get va_list* to store into
 | |
|     addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
 | |
|     return;
 | |
| 
 | |
|   case LLVMIntrinsic::longjmp:
 | |
|     BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("abort", true); 
 | |
|     return;
 | |
| 
 | |
|   case LLVMIntrinsic::setjmp:
 | |
|     // Setjmp always returns zero...
 | |
|     BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
 | |
|     return;
 | |
|   default: assert(0 && "Unknown intrinsic for X86!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitSimpleBinary - Implement simple binary operators for integral types...
 | |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
 | |
| /// Xor.
 | |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
 | |
|   unsigned DestReg = getReg(B);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
 | |
|                             OperatorClass, DestReg);
 | |
| }
 | |
| 
 | |
| /// visitSimpleBinary - Implement simple binary operators for integral types...
 | |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
 | |
| /// 4 for Xor.
 | |
| ///
 | |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | |
| /// and constant expression support.
 | |
| void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
 | |
|                                      MachineBasicBlock::iterator &IP,
 | |
|                                      Value *Op0, Value *Op1,
 | |
|                                      unsigned OperatorClass,unsigned TargetReg){
 | |
|   unsigned Class = getClassB(Op0->getType());
 | |
|   if (!isa<ConstantInt>(Op1) || Class == cLong) {
 | |
|     static const unsigned OpcodeTab[][4] = {
 | |
|       // Arithmetic operators
 | |
|       { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD },  // ADD
 | |
|       { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB },  // SUB
 | |
|       
 | |
|       // Bitwise operators
 | |
|       { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 },  // AND
 | |
|       { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 },  // OR
 | |
|       { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 },  // XOR
 | |
|     };
 | |
|     
 | |
|     bool isLong = false;
 | |
|     if (Class == cLong) {
 | |
|       isLong = true;
 | |
|       Class = cInt;          // Bottom 32 bits are handled just like ints
 | |
|     }
 | |
|     
 | |
|     unsigned Opcode = OpcodeTab[OperatorClass][Class];
 | |
|     assert(Opcode && "Floating point arguments to logical inst?");
 | |
|     unsigned Op0r = getReg(Op0, BB, IP);
 | |
|     unsigned Op1r = getReg(Op1, BB, IP);
 | |
|     BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
 | |
|     
 | |
|     if (isLong) {        // Handle the upper 32 bits of long values...
 | |
|       static const unsigned TopTab[] = {
 | |
|         X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
 | |
|       };
 | |
|       BMI(BB, IP, TopTab[OperatorClass], 2,
 | |
|           TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
 | |
|     }
 | |
|   } else {
 | |
|     // Special case: op Reg, <const>
 | |
|     ConstantInt *Op1C = cast<ConstantInt>(Op1);
 | |
| 
 | |
|     static const unsigned OpcodeTab[][3] = {
 | |
|       // Arithmetic operators
 | |
|       { X86::ADDri8, X86::ADDri16, X86::ADDri32 },  // ADD
 | |
|       { X86::SUBri8, X86::SUBri16, X86::SUBri32 },  // SUB
 | |
|       
 | |
|       // Bitwise operators
 | |
|       { X86::ANDri8, X86::ANDri16, X86::ANDri32 },  // AND
 | |
|       { X86:: ORri8, X86:: ORri16, X86:: ORri32 },  // OR
 | |
|       { X86::XORri8, X86::XORri16, X86::XORri32 },  // XOR
 | |
|     };
 | |
| 
 | |
|     assert(Class < 3 && "General code handles 64-bit integer types!");
 | |
|     unsigned Opcode = OpcodeTab[OperatorClass][Class];
 | |
|     unsigned Op0r = getReg(Op0, BB, IP);
 | |
|     uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
 | |
| 
 | |
|     // Mask off any upper bits of the constant, if there are any...
 | |
|     Op1v &= (1ULL << (8 << Class)) - 1;
 | |
|     BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// doMultiply - Emit appropriate instructions to multiply together the
 | |
| /// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
 | |
| /// result should be given as DestTy.
 | |
| ///
 | |
| void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
 | |
|                       unsigned DestReg, const Type *DestTy,
 | |
|                       unsigned op0Reg, unsigned op1Reg) {
 | |
|   unsigned Class = getClass(DestTy);
 | |
|   switch (Class) {
 | |
|   case cFP:              // Floating point multiply
 | |
|     BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
 | |
|     return;
 | |
|   case cInt:
 | |
|   case cShort:
 | |
|     BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
 | |
|       .addReg(op0Reg).addReg(op1Reg);
 | |
|     return;
 | |
|   case cByte:
 | |
|     // Must use the MUL instruction, which forces use of AL...
 | |
|     BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
 | |
|     BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
 | |
|     BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
 | |
|     return;
 | |
|   default:
 | |
|   case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitMul - Multiplies are not simple binary operators because they must deal
 | |
| /// with the EAX register explicitly.
 | |
| ///
 | |
| void ISel::visitMul(BinaryOperator &I) {
 | |
|   unsigned Op0Reg  = getReg(I.getOperand(0));
 | |
|   unsigned Op1Reg  = getReg(I.getOperand(1));
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   // Simple scalar multiply?
 | |
|   if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
 | |
|     MachineBasicBlock::iterator MBBI = BB->end();
 | |
|     doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
 | |
|   } else {
 | |
|     // Long value.  We have to do things the hard way...
 | |
|     // Multiply the two low parts... capturing carry into EDX
 | |
|     BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
 | |
|     BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg);  // AL*BL
 | |
| 
 | |
|     unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
 | |
|     BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX);     // AL*BL
 | |
|     BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
 | |
| 
 | |
|     MachineBasicBlock::iterator MBBI = BB->end();
 | |
|     unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
 | |
|     BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
 | |
| 
 | |
|     unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
 | |
|     BuildMI(BB, X86::ADDrr32, 2,                         // AH*BL+(AL*BL >> 32)
 | |
| 	    AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
 | |
|     
 | |
|     MBBI = BB->end();
 | |
|     unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
 | |
|     BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
 | |
|     
 | |
|     BuildMI(BB, X86::ADDrr32, 2,               // AL*BH + AH*BL + (AL*BL >> 32)
 | |
| 	    DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitDivRem - Handle division and remainder instructions... these
 | |
| /// instruction both require the same instructions to be generated, they just
 | |
| /// select the result from a different register.  Note that both of these
 | |
| /// instructions work differently for signed and unsigned operands.
 | |
| ///
 | |
| void ISel::visitDivRem(BinaryOperator &I) {
 | |
|   unsigned Class = getClass(I.getType());
 | |
|   unsigned Op0Reg, Op1Reg, ResultReg = getReg(I);
 | |
| 
 | |
|   switch (Class) {
 | |
|   case cFP:              // Floating point divide
 | |
|     if (I.getOpcode() == Instruction::Div) {
 | |
|       Op0Reg = getReg(I.getOperand(0));
 | |
|       Op1Reg = getReg(I.getOperand(1));
 | |
|       BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
 | |
|     } else {               // Floating point remainder...
 | |
|       MachineInstr *TheCall =
 | |
| 	BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(I.getOperand(0)));
 | |
|       Args.push_back(ValueRecord(I.getOperand(1)));
 | |
|       doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
 | |
|     }
 | |
|     return;
 | |
|   case cLong: {
 | |
|     static const char *FnName[] =
 | |
|       { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
 | |
| 
 | |
|     unsigned NameIdx = I.getType()->isUnsigned()*2;
 | |
|     NameIdx += I.getOpcode() == Instruction::Div;
 | |
|     MachineInstr *TheCall =
 | |
|       BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
 | |
| 
 | |
|     std::vector<ValueRecord> Args;
 | |
|     Args.push_back(ValueRecord(I.getOperand(0)));
 | |
|     Args.push_back(ValueRecord(I.getOperand(1)));
 | |
|     doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
 | |
|     return;
 | |
|   }
 | |
|   case cByte: case cShort: case cInt:
 | |
|     break;          // Small integerals, handled below...
 | |
|   default: assert(0 && "Unknown class!");
 | |
|   }
 | |
| 
 | |
|   static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
 | |
|   static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
 | |
|   static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
 | |
|   static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
 | |
|   static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };
 | |
| 
 | |
|   static const unsigned DivOpcode[][4] = {
 | |
|     { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 },  // Unsigned division
 | |
|     { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 },  // Signed division
 | |
|   };
 | |
| 
 | |
|   bool isSigned   = I.getType()->isSigned();
 | |
|   unsigned Reg    = Regs[Class];
 | |
|   unsigned ExtReg = ExtRegs[Class];
 | |
| 
 | |
|   // Put the first operand into one of the A registers...
 | |
|   Op0Reg = getReg(I.getOperand(0));
 | |
|   BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
 | |
| 
 | |
|   if (isSigned) {
 | |
|     // Emit a sign extension instruction...
 | |
|     unsigned ShiftResult = makeAnotherReg(I.getType());
 | |
|     BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
 | |
|     BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
 | |
|   } else {
 | |
|     // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
 | |
|     BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
 | |
|   }
 | |
| 
 | |
|   // Emit the appropriate divide or remainder instruction...
 | |
|   Op1Reg = getReg(I.getOperand(1));
 | |
|   BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
 | |
| 
 | |
|   // Figure out which register we want to pick the result out of...
 | |
|   unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
 | |
|   
 | |
|   // Put the result into the destination register...
 | |
|   BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
 | |
| /// for constant immediate shift values, and for constant immediate
 | |
| /// shift values equal to 1. Even the general case is sort of special,
 | |
| /// because the shift amount has to be in CL, not just any old register.
 | |
| ///
 | |
| void ISel::visitShiftInst(ShiftInst &I) {
 | |
|   unsigned SrcReg = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
|   bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | |
|   bool isSigned = I.getType()->isSigned();
 | |
|   unsigned Class = getClass(I.getType());
 | |
|   
 | |
|   static const unsigned ConstantOperand[][4] = {
 | |
|     { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 },  // SHR
 | |
|     { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 },  // SAR
 | |
|     { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 },  // SHL
 | |
|     { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 },  // SAL = SHL
 | |
|   };
 | |
| 
 | |
|   static const unsigned NonConstantOperand[][4] = {
 | |
|     { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 },  // SHR
 | |
|     { X86::SARrr8, X86::SARrr16, X86::SARrr32 },  // SAR
 | |
|     { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 },  // SHL
 | |
|     { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 },  // SAL = SHL
 | |
|   };
 | |
| 
 | |
|   // Longs, as usual, are handled specially...
 | |
|   if (Class == cLong) {
 | |
|     // If we have a constant shift, we can generate much more efficient code
 | |
|     // than otherwise...
 | |
|     //
 | |
|     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
 | |
|       unsigned Amount = CUI->getValue();
 | |
|       if (Amount < 32) {
 | |
| 	const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
 | |
| 	if (isLeftShift) {
 | |
| 	  BuildMI(BB, Opc[3], 3, 
 | |
| 		  DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
 | |
| 	  BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
 | |
| 	} else {
 | |
| 	  BuildMI(BB, Opc[3], 3,
 | |
| 		  DestReg).addReg(SrcReg  ).addReg(SrcReg+1).addZImm(Amount);
 | |
| 	  BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
 | |
| 	}
 | |
|       } else {                 // Shifting more than 32 bits
 | |
| 	Amount -= 32;
 | |
| 	if (isLeftShift) {
 | |
| 	  BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
 | |
| 	  BuildMI(BB, X86::MOVir32, 1,DestReg  ).addZImm(0);
 | |
| 	} else {
 | |
| 	  unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
 | |
| 	  BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
 | |
| 	  BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
 | |
| 	}
 | |
|       }
 | |
|     } else {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
| 
 | |
|       if (!isLeftShift && isSigned) {
 | |
|         // If this is a SHR of a Long, then we need to do funny sign extension
 | |
|         // stuff.  TmpReg gets the value to use as the high-part if we are
 | |
|         // shifting more than 32 bits.
 | |
|         BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
 | |
|       } else {
 | |
|         // Other shifts use a fixed zero value if the shift is more than 32
 | |
|         // bits.
 | |
|         BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
 | |
|       }
 | |
| 
 | |
|       // Initialize CL with the shift amount...
 | |
|       unsigned ShiftAmount = getReg(I.getOperand(1));
 | |
|       BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
 | |
| 
 | |
|       unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
 | |
|       if (isLeftShift) {
 | |
|         // TmpReg2 = shld inHi, inLo
 | |
|         BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
 | |
|         // TmpReg3 = shl  inLo, CL
 | |
|         BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
 | |
| 
 | |
|         // Set the flags to indicate whether the shift was by more than 32 bits.
 | |
|         BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
 | |
| 
 | |
|         // DestHi = (>32) ? TmpReg3 : TmpReg2;
 | |
|         BuildMI(BB, X86::CMOVNErr32, 2, 
 | |
|                 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
 | |
|         // DestLo = (>32) ? TmpReg : TmpReg3;
 | |
|         BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
 | |
|       } else {
 | |
|         // TmpReg2 = shrd inLo, inHi
 | |
|         BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
 | |
|         // TmpReg3 = s[ah]r  inHi, CL
 | |
|         BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
 | |
|                        .addReg(SrcReg+1);
 | |
| 
 | |
|         // Set the flags to indicate whether the shift was by more than 32 bits.
 | |
|         BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
 | |
| 
 | |
|         // DestLo = (>32) ? TmpReg3 : TmpReg2;
 | |
|         BuildMI(BB, X86::CMOVNErr32, 2, 
 | |
|                 DestReg).addReg(TmpReg2).addReg(TmpReg3);
 | |
| 
 | |
|         // DestHi = (>32) ? TmpReg : TmpReg3;
 | |
|         BuildMI(BB, X86::CMOVNErr32, 2, 
 | |
|                 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
 | |
|     // The shift amount is constant, guaranteed to be a ubyte. Get its value.
 | |
|     assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
 | |
| 
 | |
|     const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
 | |
|     BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
 | |
|   } else {                  // The shift amount is non-constant.
 | |
|     BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
 | |
| 
 | |
|     const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
 | |
|     BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// doFPLoad - This method is used to load an FP value from memory using the
 | |
| /// current endianness.  NOTE: This method returns a partially constructed load
 | |
| /// instruction which needs to have the memory source filled in still.
 | |
| ///
 | |
| MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
 | |
| 			     MachineBasicBlock::iterator &MBBI,
 | |
| 			     const Type *Ty, unsigned DestReg) {
 | |
|   assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|   unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
 | |
| 
 | |
|   if (TM.getTargetData().isLittleEndian()) // fast path...
 | |
|     return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
 | |
| 
 | |
|   // If we are big-endian, start by creating an LEA instruction to represent the
 | |
|   // address of the memory location to load from...
 | |
|   //
 | |
|   unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
 | |
|   MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
 | |
| 
 | |
|   // Allocate a temporary stack slot to transform the value into...
 | |
|   int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
 | |
| 
 | |
|   // Perform the bswaps 32 bits at a time...
 | |
|   unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
 | |
|   unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
 | |
|   addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
 | |
|   BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
 | |
|   unsigned Offset = (Ty == Type::DoubleTy) << 2;
 | |
|   addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
 | |
| 		    FrameIdx, Offset).addReg(TmpReg2);
 | |
|   
 | |
|   if (Ty == Type::DoubleTy) {   // Swap the other 32 bits of a double value...
 | |
|     TmpReg1 = makeAnotherReg(Type::UIntTy);
 | |
|     TmpReg2 = makeAnotherReg(Type::UIntTy);
 | |
| 
 | |
|     addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
 | |
|     BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
 | |
|     unsigned Offset = (Ty == Type::DoubleTy) << 2;
 | |
|     addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
 | |
|   }
 | |
| 
 | |
|   // Now we can reload the final byteswapped result into the final destination.
 | |
|   addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// EmitByteSwap - Byteswap SrcReg into DestReg.
 | |
| ///
 | |
| void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
 | |
|   // Emit the byte swap instruction...
 | |
|   switch (Class) {
 | |
|   case cByte:
 | |
|     // No byteswap necessary for 8 bit value...
 | |
|     BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
 | |
|     break;
 | |
|   case cInt:
 | |
|     // Use the 32 bit bswap instruction to do a 32 bit swap...
 | |
|     BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
 | |
|     break;
 | |
|     
 | |
|   case cShort:
 | |
|     // For 16 bit we have to use an xchg instruction, because there is no
 | |
|     // 16-bit bswap.  XCHG is necessarily not in SSA form, so we force things
 | |
|     // into AX to do the xchg.
 | |
|     //
 | |
|     BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
 | |
|     BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
 | |
|       .addReg(X86::AH, MOTy::UseAndDef);
 | |
|     BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
 | |
|     break;
 | |
|   default: assert(0 && "Cannot byteswap this class!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
 | |
| /// instruction.  The load and store instructions are the only place where we
 | |
| /// need to worry about the memory layout of the target machine.
 | |
| ///
 | |
| void ISel::visitLoadInst(LoadInst &I) {
 | |
|   bool isLittleEndian  = TM.getTargetData().isLittleEndian();
 | |
|   bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
 | |
|   unsigned SrcAddrReg = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   unsigned Class = getClassB(I.getType());
 | |
|   switch (Class) {
 | |
|   case cFP: {
 | |
|     MachineBasicBlock::iterator MBBI = BB->end();
 | |
|     addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
 | |
|     return;
 | |
|   }
 | |
|   case cLong: case cInt: case cShort: case cByte:
 | |
|     break;      // Integers of various sizes handled below
 | |
|   default: assert(0 && "Unknown memory class!");
 | |
|   }
 | |
| 
 | |
|   // We need to adjust the input pointer if we are emulating a big-endian
 | |
|   // long-pointer target.  On these systems, the pointer that we are interested
 | |
|   // in is in the upper part of the eight byte memory image of the pointer.  It
 | |
|   // also happens to be byte-swapped, but this will be handled later.
 | |
|   //
 | |
|   if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
 | |
|     unsigned R = makeAnotherReg(Type::UIntTy);
 | |
|     BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
 | |
|     SrcAddrReg = R;
 | |
|   }
 | |
| 
 | |
|   unsigned IReg = DestReg;
 | |
|   if (!isLittleEndian)  // If big endian we need an intermediate stage
 | |
|     DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
 | |
| 
 | |
|   static const unsigned Opcode[] = {
 | |
|     X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
 | |
|   };
 | |
|   addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
 | |
| 
 | |
|   // Handle long values now...
 | |
|   if (Class == cLong) {
 | |
|     if (isLittleEndian) {
 | |
|       addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
 | |
|     } else {
 | |
|       EmitByteSwap(IReg+1, DestReg, cInt);
 | |
|       unsigned TempReg = makeAnotherReg(Type::IntTy);
 | |
|       addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
 | |
|       EmitByteSwap(IReg, TempReg, cInt);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!isLittleEndian)
 | |
|     EmitByteSwap(IReg, DestReg, Class);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// doFPStore - This method is used to store an FP value to memory using the
 | |
| /// current endianness.
 | |
| ///
 | |
| void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
 | |
|   assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|   unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
 | |
| 
 | |
|   if (TM.getTargetData().isLittleEndian()) {  // fast path...
 | |
|     addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Allocate a temporary stack slot to transform the value into...
 | |
|   int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
 | |
|   unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
 | |
|   addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
 | |
| 
 | |
|   // Store the value into a temporary stack slot...
 | |
|   addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
 | |
| 
 | |
|   // Perform the bswaps 32 bits at a time...
 | |
|   unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
 | |
|   unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
 | |
|   addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
 | |
|   BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
 | |
|   unsigned Offset = (Ty == Type::DoubleTy) << 2;
 | |
|   addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
 | |
| 	       DestAddrReg, Offset).addReg(TmpReg2);
 | |
|   
 | |
|   if (Ty == Type::DoubleTy) {   // Swap the other 32 bits of a double value...
 | |
|     TmpReg1 = makeAnotherReg(Type::UIntTy);
 | |
|     TmpReg2 = makeAnotherReg(Type::UIntTy);
 | |
| 
 | |
|     addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
 | |
|     BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
 | |
|     unsigned Offset = (Ty == Type::DoubleTy) << 2;
 | |
|     addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
 | |
| /// instruction.
 | |
| ///
 | |
| void ISel::visitStoreInst(StoreInst &I) {
 | |
|   bool isLittleEndian  = TM.getTargetData().isLittleEndian();
 | |
|   bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
 | |
|   unsigned ValReg      = getReg(I.getOperand(0));
 | |
|   unsigned AddressReg  = getReg(I.getOperand(1));
 | |
| 
 | |
|   unsigned Class = getClassB(I.getOperand(0)->getType());
 | |
|   switch (Class) {
 | |
|   case cLong:
 | |
|     if (isLittleEndian) {
 | |
|       addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
 | |
|       addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
 | |
| 		   AddressReg, 4).addReg(ValReg+1);
 | |
|     } else {
 | |
|       unsigned T1 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned T2 = makeAnotherReg(Type::IntTy);
 | |
|       EmitByteSwap(T1, ValReg  , cInt);
 | |
|       EmitByteSwap(T2, ValReg+1, cInt);
 | |
|       addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
 | |
|       addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
 | |
|     }
 | |
|     return;
 | |
|   case cFP:
 | |
|     doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
 | |
|     return;
 | |
|   case cInt: case cShort: case cByte:
 | |
|     break;      // Integers of various sizes handled below
 | |
|   default: assert(0 && "Unknown memory class!");
 | |
|   }
 | |
| 
 | |
|   if (!isLittleEndian && hasLongPointers &&
 | |
|       isa<PointerType>(I.getOperand(0)->getType())) {
 | |
|     unsigned R = makeAnotherReg(Type::UIntTy);
 | |
|     BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
 | |
|     AddressReg = R;
 | |
|   }
 | |
| 
 | |
|   if (!isLittleEndian && Class != cByte) {
 | |
|     unsigned R = makeAnotherReg(I.getOperand(0)->getType());
 | |
|     EmitByteSwap(R, ValReg, Class);
 | |
|     ValReg = R;
 | |
|   }
 | |
| 
 | |
|   static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
 | |
|   addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCastInst - Here we have various kinds of copying with or without
 | |
| /// sign extension going on.
 | |
| void ISel::visitCastInst(CastInst &CI) {
 | |
|   Value *Op = CI.getOperand(0);
 | |
|   // If this is a cast from a 32-bit integer to a Long type, and the only uses
 | |
|   // of the case are GEP instructions, then the cast does not need to be
 | |
|   // generated explicitly, it will be folded into the GEP.
 | |
|   if (CI.getType() == Type::LongTy &&
 | |
|       (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
 | |
|     bool AllUsesAreGEPs = true;
 | |
|     for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
 | |
|       if (!isa<GetElementPtrInst>(*I)) {
 | |
|         AllUsesAreGEPs = false;
 | |
|         break;
 | |
|       }        
 | |
| 
 | |
|     // No need to codegen this cast if all users are getelementptr instrs...
 | |
|     if (AllUsesAreGEPs) return;
 | |
|   }
 | |
| 
 | |
|   unsigned DestReg = getReg(CI);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
 | |
| }
 | |
| 
 | |
| /// emitCastOperation - Common code shared between visitCastInst and
 | |
| /// constant expression cast support.
 | |
| void ISel::emitCastOperation(MachineBasicBlock *BB,
 | |
|                              MachineBasicBlock::iterator &IP,
 | |
|                              Value *Src, const Type *DestTy,
 | |
|                              unsigned DestReg) {
 | |
|   unsigned SrcReg = getReg(Src, BB, IP);
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   unsigned SrcClass = getClassB(SrcTy);
 | |
|   unsigned DestClass = getClassB(DestTy);
 | |
| 
 | |
|   // Implement casts to bool by using compare on the operand followed by set if
 | |
|   // not zero on the result.
 | |
|   if (DestTy == Type::BoolTy) {
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|       BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cShort:
 | |
|       BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cInt:
 | |
|       BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cLong: {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
 | |
|       break;
 | |
|     }
 | |
|     case cFP:
 | |
|       assert(0 && "FIXME: implement cast FP to bool");
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     // If the zero flag is not set, then the value is true, set the byte to
 | |
|     // true.
 | |
|     BMI(BB, IP, X86::SETNEr, 1, DestReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   static const unsigned RegRegMove[] = {
 | |
|     X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
 | |
|   };
 | |
| 
 | |
|   // Implement casts between values of the same type class (as determined by
 | |
|   // getClass) by using a register-to-register move.
 | |
|   if (SrcClass == DestClass) {
 | |
|     if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
 | |
|       BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
 | |
|     } else if (SrcClass == cFP) {
 | |
|       if (SrcTy == Type::FloatTy) {  // double -> float
 | |
| 	assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
 | |
| 	BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
 | |
|       } else {                       // float -> double
 | |
| 	assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
 | |
| 	       "Unknown cFP member!");
 | |
| 	// Truncate from double to float by storing to memory as short, then
 | |
| 	// reading it back.
 | |
| 	unsigned FltAlign = TM.getTargetData().getFloatAlignment();
 | |
|         int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
 | |
| 	addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
 | |
| 	addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
 | |
|       }
 | |
|     } else if (SrcClass == cLong) {
 | |
|       BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
 | |
|       BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
 | |
|     } else {
 | |
|       assert(0 && "Cannot handle this type of cast instruction!");
 | |
|       abort();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle cast of SMALLER int to LARGER int using a move with sign extension
 | |
|   // or zero extension, depending on whether the source type was signed.
 | |
|   if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
 | |
|       SrcClass < DestClass) {
 | |
|     bool isLong = DestClass == cLong;
 | |
|     if (isLong) DestClass = cInt;
 | |
| 
 | |
|     static const unsigned Opc[][4] = {
 | |
|       { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
 | |
|       { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 }  // u
 | |
|     };
 | |
|     
 | |
|     bool isUnsigned = SrcTy->isUnsigned();
 | |
|     BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
 | |
|         DestReg).addReg(SrcReg);
 | |
| 
 | |
|     if (isLong) {  // Handle upper 32 bits as appropriate...
 | |
|       if (isUnsigned)     // Zero out top bits...
 | |
| 	BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
 | |
|       else                // Sign extend bottom half...
 | |
| 	BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Special case long -> int ...
 | |
|   if (SrcClass == cLong && DestClass == cInt) {
 | |
|     BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
 | |
|   // move out of AX or AL.
 | |
|   if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
 | |
|       && SrcClass > DestClass) {
 | |
|     static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
 | |
|     BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
 | |
|     BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle casts from integer to floating point now...
 | |
|   if (DestClass == cFP) {
 | |
|     // Promote the integer to a type supported by FLD.  We do this because there
 | |
|     // are no unsigned FLD instructions, so we must promote an unsigned value to
 | |
|     // a larger signed value, then use FLD on the larger value.
 | |
|     //
 | |
|     const Type *PromoteType = 0;
 | |
|     unsigned PromoteOpcode;
 | |
|     switch (SrcTy->getPrimitiveID()) {
 | |
|     case Type::BoolTyID:
 | |
|     case Type::SByteTyID:
 | |
|       // We don't have the facilities for directly loading byte sized data from
 | |
|       // memory (even signed).  Promote it to 16 bits.
 | |
|       PromoteType = Type::ShortTy;
 | |
|       PromoteOpcode = X86::MOVSXr16r8;
 | |
|       break;
 | |
|     case Type::UByteTyID:
 | |
|       PromoteType = Type::ShortTy;
 | |
|       PromoteOpcode = X86::MOVZXr16r8;
 | |
|       break;
 | |
|     case Type::UShortTyID:
 | |
|       PromoteType = Type::IntTy;
 | |
|       PromoteOpcode = X86::MOVZXr32r16;
 | |
|       break;
 | |
|     case Type::UIntTyID: {
 | |
|       // Make a 64 bit temporary... and zero out the top of it...
 | |
|       unsigned TmpReg = makeAnotherReg(Type::LongTy);
 | |
|       BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
 | |
|       BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
 | |
|       SrcTy = Type::LongTy;
 | |
|       SrcClass = cLong;
 | |
|       SrcReg = TmpReg;
 | |
|       break;
 | |
|     }
 | |
|     case Type::ULongTyID:
 | |
|       assert("FIXME: not implemented: cast ulong X to fp type!");
 | |
|     default:  // No promotion needed...
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (PromoteType) {
 | |
|       unsigned TmpReg = makeAnotherReg(PromoteType);
 | |
|       BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
 | |
|           1, TmpReg).addReg(SrcReg);
 | |
|       SrcTy = PromoteType;
 | |
|       SrcClass = getClass(PromoteType);
 | |
|       SrcReg = TmpReg;
 | |
|     }
 | |
| 
 | |
|     // Spill the integer to memory and reload it from there...
 | |
|     int FrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
 | |
| 
 | |
|     if (SrcClass == cLong) {
 | |
|       addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
 | |
|       addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
 | |
| 			FrameIdx, 4).addReg(SrcReg+1);
 | |
|     } else {
 | |
|       static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
 | |
|       addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
 | |
|     }
 | |
| 
 | |
|     static const unsigned Op2[] =
 | |
|       { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
 | |
|     addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle casts from floating point to integer now...
 | |
|   if (SrcClass == cFP) {
 | |
|     // Change the floating point control register to use "round towards zero"
 | |
|     // mode when truncating to an integer value.
 | |
|     //
 | |
|     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
 | |
|     addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
 | |
| 
 | |
|     // Load the old value of the high byte of the control word...
 | |
|     unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
 | |
|     addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
 | |
| 
 | |
|     // Set the high part to be round to zero...
 | |
|     addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
 | |
| 
 | |
|     // Reload the modified control word now...
 | |
|     addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
 | |
|     
 | |
|     // Restore the memory image of control word to original value
 | |
|     addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
 | |
| 		      CWFrameIdx, 1).addReg(HighPartOfCW);
 | |
| 
 | |
|     // We don't have the facilities for directly storing byte sized data to
 | |
|     // memory.  Promote it to 16 bits.  We also must promote unsigned values to
 | |
|     // larger classes because we only have signed FP stores.
 | |
|     unsigned StoreClass  = DestClass;
 | |
|     const Type *StoreTy  = DestTy;
 | |
|     if (StoreClass == cByte || DestTy->isUnsigned())
 | |
|       switch (StoreClass) {
 | |
|       case cByte:  StoreTy = Type::ShortTy; StoreClass = cShort; break;
 | |
|       case cShort: StoreTy = Type::IntTy;   StoreClass = cInt;   break;
 | |
|       case cInt:   StoreTy = Type::LongTy;  StoreClass = cLong;  break;
 | |
|       // The following treatment of cLong may not be perfectly right,
 | |
|       // but it survives chains of casts of the form
 | |
|       // double->ulong->double.
 | |
|       case cLong:  StoreTy = Type::LongTy;  StoreClass = cLong;  break;
 | |
|       default: assert(0 && "Unknown store class!");
 | |
|       }
 | |
| 
 | |
|     // Spill the integer to memory and reload it from there...
 | |
|     int FrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
 | |
| 
 | |
|     static const unsigned Op1[] =
 | |
|       { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
 | |
|     addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
 | |
| 
 | |
|     if (DestClass == cLong) {
 | |
|       addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
 | |
|       addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
 | |
|     } else {
 | |
|       static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
 | |
|       addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
 | |
|     }
 | |
| 
 | |
|     // Reload the original control word now...
 | |
|     addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Anything we haven't handled already, we can't (yet) handle at all.
 | |
|   assert(0 && "Unhandled cast instruction!");
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| /// visitVarArgInst - Implement the va_arg instruction...
 | |
| ///
 | |
| void ISel::visitVarArgInst(VarArgInst &I) {
 | |
|   unsigned SrcReg = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   // Load the va_list into a register...
 | |
|   unsigned VAList = makeAnotherReg(Type::UIntTy);
 | |
|   addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
 | |
| 
 | |
|   unsigned Size;
 | |
|   switch (I.getType()->getPrimitiveID()) {
 | |
|   default:
 | |
|     std::cerr << I;
 | |
|     assert(0 && "Error: bad type for va_arg instruction!");
 | |
|     return;
 | |
|   case Type::PointerTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::IntTyID:
 | |
|     Size = 4;
 | |
|     addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
 | |
|     break;
 | |
|   case Type::ULongTyID:
 | |
|   case Type::LongTyID:
 | |
|     Size = 8;
 | |
|     addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
 | |
|     addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Size = 8;
 | |
|     addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Increment the VAList pointer...
 | |
|   unsigned NextVAList = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
 | |
| 
 | |
|   // Update the VAList in memory...
 | |
|   addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | |
| // returns zero when the input is not exactly a power of two.
 | |
| static unsigned ExactLog2(unsigned Val) {
 | |
|   if (Val == 0) return 0;
 | |
|   unsigned Count = 0;
 | |
|   while (Val != 1) {
 | |
|     if (Val & 1) return 0;
 | |
|     Val >>= 1;
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count+1;
 | |
| }
 | |
| 
 | |
| void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   unsigned outputReg = getReg(I);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   emitGEPOperation(BB, MI, I.getOperand(0),
 | |
|                    I.op_begin()+1, I.op_end(), outputReg);
 | |
| }
 | |
| 
 | |
| void ISel::emitGEPOperation(MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator &IP,
 | |
|                             Value *Src, User::op_iterator IdxBegin,
 | |
|                             User::op_iterator IdxEnd, unsigned TargetReg) {
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
|   const Type *Ty = Src->getType();
 | |
|   unsigned BaseReg = getReg(Src, MBB, IP);
 | |
| 
 | |
|   // GEPs have zero or more indices; we must perform a struct access
 | |
|   // or array access for each one.
 | |
|   for (GetElementPtrInst::op_iterator oi = IdxBegin,
 | |
|          oe = IdxEnd; oi != oe; ++oi) {
 | |
|     Value *idx = *oi;
 | |
|     unsigned NextReg = BaseReg;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       // It's a struct access.  idx is the index into the structure,
 | |
|       // which names the field. This index must have ubyte type.
 | |
|       const ConstantUInt *CUI = cast<ConstantUInt>(idx);
 | |
|       assert(CUI->getType() == Type::UByteTy
 | |
| 	      && "Funny-looking structure index in GEP");
 | |
|       // Use the TargetData structure to pick out what the layout of
 | |
|       // the structure is in memory.  Since the structure index must
 | |
|       // be constant, we can get its value and use it to find the
 | |
|       // right byte offset from the StructLayout class's list of
 | |
|       // structure member offsets.
 | |
|       unsigned idxValue = CUI->getValue();
 | |
|       unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
 | |
|       if (FieldOff) {
 | |
| 	NextReg = makeAnotherReg(Type::UIntTy);
 | |
| 	// Emit an ADD to add FieldOff to the basePtr.
 | |
| 	BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
 | |
|       }
 | |
|       // The next type is the member of the structure selected by the
 | |
|       // index.
 | |
|       Ty = StTy->getElementTypes()[idxValue];
 | |
|     } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
 | |
|       // It's an array or pointer access: [ArraySize x ElementType].
 | |
| 
 | |
|       // idx is the index into the array.  Unlike with structure
 | |
|       // indices, we may not know its actual value at code-generation
 | |
|       // time.
 | |
|       assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
 | |
| 
 | |
|       // Most GEP instructions use a [cast (int/uint) to LongTy] as their
 | |
|       // operand on X86.  Handle this case directly now...
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(idx))
 | |
|         if (CI->getOperand(0)->getType() == Type::IntTy ||
 | |
|             CI->getOperand(0)->getType() == Type::UIntTy)
 | |
|           idx = CI->getOperand(0);
 | |
| 
 | |
|       // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
 | |
|       // must find the size of the pointed-to type (Not coincidentally, the next
 | |
|       // type is the type of the elements in the array).
 | |
|       Ty = SqTy->getElementType();
 | |
|       unsigned elementSize = TD.getTypeSize(Ty);
 | |
| 
 | |
|       // If idxReg is a constant, we don't need to perform the multiply!
 | |
|       if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
 | |
|         if (!CSI->isNullValue()) {
 | |
|           unsigned Offset = elementSize*CSI->getValue();
 | |
| 	  NextReg = makeAnotherReg(Type::UIntTy);
 | |
|           BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
 | |
|         }
 | |
|       } else if (elementSize == 1) {
 | |
|         // If the element size is 1, we don't have to multiply, just add
 | |
|         unsigned idxReg = getReg(idx, MBB, IP);
 | |
| 	NextReg = makeAnotherReg(Type::UIntTy);
 | |
|         BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
 | |
|       } else {
 | |
|         unsigned idxReg = getReg(idx, MBB, IP);
 | |
|         unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
 | |
|         if (unsigned Shift = ExactLog2(elementSize)) {
 | |
|           // If the element size is exactly a power of 2, use a shift to get it.
 | |
|           BMI(MBB, IP, X86::SHLir32, 2,
 | |
|               OffsetReg).addReg(idxReg).addZImm(Shift-1);
 | |
|         } else {
 | |
|           // Most general case, emit a multiply...
 | |
|           unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
 | |
|           BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
 | |
|         
 | |
|           // Emit a MUL to multiply the register holding the index by
 | |
|           // elementSize, putting the result in OffsetReg.
 | |
|           doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
 | |
|         }
 | |
|         // Emit an ADD to add OffsetReg to the basePtr.
 | |
| 	NextReg = makeAnotherReg(Type::UIntTy);
 | |
|         BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
 | |
|       }
 | |
|     }
 | |
|     // Now that we are here, further indices refer to subtypes of this
 | |
|     // one, so we don't need to worry about BaseReg itself, anymore.
 | |
|     BaseReg = NextReg;
 | |
|   }
 | |
|   // After we have processed all the indices, the result is left in
 | |
|   // BaseReg.  Move it to the register where we were expected to
 | |
|   // put the answer.  A 32-bit move should do it, because we are in
 | |
|   // ILP32 land.
 | |
|   BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
 | |
| /// frame manager, otherwise do it the hard way.
 | |
| ///
 | |
| void ISel::visitAllocaInst(AllocaInst &I) {
 | |
|   // Find the data size of the alloca inst's getAllocatedType.
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | |
| 
 | |
|   // If this is a fixed size alloca in the entry block for the function,
 | |
|   // statically stack allocate the space.
 | |
|   //
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
 | |
|     if (I.getParent() == I.getParent()->getParent()->begin()) {
 | |
|       TySize *= CUI->getValue();   // Get total allocated size...
 | |
|       unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
 | |
|       
 | |
|       // Create a new stack object using the frame manager...
 | |
|       int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
 | |
|       addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Create a register to hold the temporary result of multiplying the type size
 | |
|   // constant by the variable amount.
 | |
|   unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   unsigned SrcReg1 = getReg(I.getArraySize());
 | |
|   unsigned SizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
 | |
|   
 | |
|   // TotalSizeReg = mul <numelements>, <TypeSize>
 | |
|   MachineBasicBlock::iterator MBBI = BB->end();
 | |
|   doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
 | |
| 
 | |
|   // AddedSize = add <TotalSizeReg>, 15
 | |
|   unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
 | |
| 
 | |
|   // AlignedSize = and <AddedSize>, ~15
 | |
|   unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
 | |
|   
 | |
|   // Subtract size from stack pointer, thereby allocating some space.
 | |
|   BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
 | |
| 
 | |
|   // Put a pointer to the space into the result register, by copying
 | |
|   // the stack pointer.
 | |
|   BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   F->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| /// visitMallocInst - Malloc instructions are code generated into direct calls
 | |
| /// to the library malloc.
 | |
| ///
 | |
| void ISel::visitMallocInst(MallocInst &I) {
 | |
|   unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
 | |
|   unsigned Arg;
 | |
| 
 | |
|   if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
 | |
|     Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
 | |
|   } else {
 | |
|     Arg = makeAnotherReg(Type::UIntTy);
 | |
|     unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
 | |
|     unsigned Op1Reg = getReg(I.getOperand(0));
 | |
|     MachineBasicBlock::iterator MBBI = BB->end();
 | |
|     doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(Arg, Type::UIntTy));
 | |
|   MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
 | |
| 				  1).addExternalSymbol("malloc", true);
 | |
|   doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitFreeInst - Free instructions are code gen'd to call the free libc
 | |
| /// function.
 | |
| ///
 | |
| void ISel::visitFreeInst(FreeInst &I) {
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(I.getOperand(0)));
 | |
|   MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
 | |
| 				  1).addExternalSymbol("free", true);
 | |
|   doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
 | |
| }
 | |
|    
 | |
| 
 | |
| /// createX86SimpleInstructionSelector - This pass converts an LLVM function
 | |
| /// into a machine code representation is a very simple peep-hole fashion.  The
 | |
| /// generated code sucks but the implementation is nice and simple.
 | |
| ///
 | |
| Pass *createX86SimpleInstructionSelector(TargetMachine &TM) {
 | |
|   return new ISel(TM);
 | |
| }
 |