mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3796 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3796 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass munges the code in the input function to better prepare it for
 | |
| // SelectionDAG-based code generation. This works around limitations in it's
 | |
| // basic-block-at-a-time approach. It should eventually be removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/ValueMap.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/BuildLibCalls.h"
 | |
| #include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "codegenprepare"
 | |
| 
 | |
| STATISTIC(NumBlocksElim, "Number of blocks eliminated");
 | |
| STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
 | |
| STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
 | |
| STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
 | |
|                       "sunken Cmps");
 | |
| STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
 | |
|                        "of sunken Casts");
 | |
| STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
 | |
|                           "computations were sunk");
 | |
| STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
 | |
| STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
 | |
| STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
 | |
| STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
 | |
| STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
 | |
| STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
 | |
| STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
 | |
| 
 | |
| static cl::opt<bool> DisableBranchOpts(
 | |
|   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable branch optimizations in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> DisableSelectToBranch(
 | |
|   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable select to branch conversion."));
 | |
| 
 | |
| static cl::opt<bool> AddrSinkUsingGEPs(
 | |
|   "addr-sink-using-gep", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Address sinking in CGP using GEPs."));
 | |
| 
 | |
| static cl::opt<bool> EnableAndCmpSinking(
 | |
|    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
 | |
|    cl::desc("Enable sinkinig and/cmp into branches."));
 | |
| 
 | |
| static cl::opt<bool> DisableStoreExtract(
 | |
|     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> StressStoreExtract(
 | |
|     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
 | |
| 
 | |
| namespace {
 | |
| typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
 | |
| struct TypeIsSExt {
 | |
|   Type *Ty;
 | |
|   bool IsSExt;
 | |
|   TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {}
 | |
| };
 | |
| typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
 | |
| 
 | |
|   class CodeGenPrepare : public FunctionPass {
 | |
|     /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | |
|     /// transformation profitability.
 | |
|     const TargetMachine *TM;
 | |
|     const TargetLowering *TLI;
 | |
|     const TargetTransformInfo *TTI;
 | |
|     const TargetLibraryInfo *TLInfo;
 | |
|     DominatorTree *DT;
 | |
| 
 | |
|     /// CurInstIterator - As we scan instructions optimizing them, this is the
 | |
|     /// next instruction to optimize.  Xforms that can invalidate this should
 | |
|     /// update it.
 | |
|     BasicBlock::iterator CurInstIterator;
 | |
| 
 | |
|     /// Keeps track of non-local addresses that have been sunk into a block.
 | |
|     /// This allows us to avoid inserting duplicate code for blocks with
 | |
|     /// multiple load/stores of the same address.
 | |
|     ValueMap<Value*, Value*> SunkAddrs;
 | |
| 
 | |
|     /// Keeps track of all truncates inserted for the current function.
 | |
|     SetOfInstrs InsertedTruncsSet;
 | |
|     /// Keeps track of the type of the related instruction before their
 | |
|     /// promotion for the current function.
 | |
|     InstrToOrigTy PromotedInsts;
 | |
| 
 | |
|     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
 | |
|     /// be updated.
 | |
|     bool ModifiedDT;
 | |
| 
 | |
|     /// OptSize - True if optimizing for size.
 | |
|     bool OptSize;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
 | |
|         : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) {
 | |
|         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|     const char *getPassName() const override { return "CodeGen Prepare"; }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|       AU.addRequired<TargetTransformInfo>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool EliminateFallThrough(Function &F);
 | |
|     bool EliminateMostlyEmptyBlocks(Function &F);
 | |
|     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | |
|     void EliminateMostlyEmptyBlock(BasicBlock *BB);
 | |
|     bool OptimizeBlock(BasicBlock &BB);
 | |
|     bool OptimizeInst(Instruction *I);
 | |
|     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
 | |
|     bool OptimizeInlineAsmInst(CallInst *CS);
 | |
|     bool OptimizeCallInst(CallInst *CI);
 | |
|     bool MoveExtToFormExtLoad(Instruction *I);
 | |
|     bool OptimizeExtUses(Instruction *I);
 | |
|     bool OptimizeSelectInst(SelectInst *SI);
 | |
|     bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
 | |
|     bool OptimizeExtractElementInst(Instruction *Inst);
 | |
|     bool DupRetToEnableTailCallOpts(BasicBlock *BB);
 | |
|     bool PlaceDbgValues(Function &F);
 | |
|     bool sinkAndCmp(Function &F);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char CodeGenPrepare::ID = 0;
 | |
| INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
 | |
|                    "Optimize for code generation", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
 | |
|   return new CodeGenPrepare(TM);
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   bool EverMadeChange = false;
 | |
|   // Clear per function information.
 | |
|   InsertedTruncsSet.clear();
 | |
|   PromotedInsts.clear();
 | |
| 
 | |
|   ModifiedDT = false;
 | |
|   if (TM)
 | |
|     TLI = TM->getSubtargetImpl()->getTargetLowering();
 | |
|   TLInfo = &getAnalysis<TargetLibraryInfo>();
 | |
|   TTI = &getAnalysis<TargetTransformInfo>();
 | |
|   DominatorTreeWrapperPass *DTWP =
 | |
|       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
|   OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                            Attribute::OptimizeForSize);
 | |
| 
 | |
|   /// This optimization identifies DIV instructions that can be
 | |
|   /// profitably bypassed and carried out with a shorter, faster divide.
 | |
|   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
 | |
|     const DenseMap<unsigned int, unsigned int> &BypassWidths =
 | |
|        TLI->getBypassSlowDivWidths();
 | |
|     for (Function::iterator I = F.begin(); I != F.end(); I++)
 | |
|       EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
 | |
|   }
 | |
| 
 | |
|   // Eliminate blocks that contain only PHI nodes and an
 | |
|   // unconditional branch.
 | |
|   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
 | |
| 
 | |
|   // llvm.dbg.value is far away from the value then iSel may not be able
 | |
|   // handle it properly. iSel will drop llvm.dbg.value if it can not
 | |
|   // find a node corresponding to the value.
 | |
|   EverMadeChange |= PlaceDbgValues(F);
 | |
| 
 | |
|   // If there is a mask, compare against zero, and branch that can be combined
 | |
|   // into a single target instruction, push the mask and compare into branch
 | |
|   // users. Do this before OptimizeBlock -> OptimizeInst ->
 | |
|   // OptimizeCmpExpression, which perturbs the pattern being searched for.
 | |
|   if (!DisableBranchOpts)
 | |
|     EverMadeChange |= sinkAndCmp(F);
 | |
| 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (Function::iterator I = F.begin(); I != F.end(); ) {
 | |
|       BasicBlock *BB = I++;
 | |
|       MadeChange |= OptimizeBlock(*BB);
 | |
|     }
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
| 
 | |
|   SunkAddrs.clear();
 | |
| 
 | |
|   if (!DisableBranchOpts) {
 | |
|     MadeChange = false;
 | |
|     SmallPtrSet<BasicBlock*, 8> WorkList;
 | |
|     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | |
|       MadeChange |= ConstantFoldTerminator(BB, true);
 | |
|       if (!MadeChange) continue;
 | |
| 
 | |
|       for (SmallVectorImpl<BasicBlock*>::iterator
 | |
|              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | |
|         if (pred_begin(*II) == pred_end(*II))
 | |
|           WorkList.insert(*II);
 | |
|     }
 | |
| 
 | |
|     // Delete the dead blocks and any of their dead successors.
 | |
|     MadeChange |= !WorkList.empty();
 | |
|     while (!WorkList.empty()) {
 | |
|       BasicBlock *BB = *WorkList.begin();
 | |
|       WorkList.erase(BB);
 | |
|       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | |
| 
 | |
|       DeleteDeadBlock(BB);
 | |
| 
 | |
|       for (SmallVectorImpl<BasicBlock*>::iterator
 | |
|              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | |
|         if (pred_begin(*II) == pred_end(*II))
 | |
|           WorkList.insert(*II);
 | |
|     }
 | |
| 
 | |
|     // Merge pairs of basic blocks with unconditional branches, connected by
 | |
|     // a single edge.
 | |
|     if (EverMadeChange || MadeChange)
 | |
|       MadeChange |= EliminateFallThrough(F);
 | |
| 
 | |
|     if (MadeChange)
 | |
|       ModifiedDT = true;
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (ModifiedDT && DT)
 | |
|     DT->recalculate(F);
 | |
| 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| /// EliminateFallThrough - Merge basic blocks which are connected
 | |
| /// by a single edge, where one of the basic blocks has a single successor
 | |
| /// pointing to the other basic block, which has a single predecessor.
 | |
| bool CodeGenPrepare::EliminateFallThrough(Function &F) {
 | |
|   bool Changed = false;
 | |
|   // Scan all of the blocks in the function, except for the entry block.
 | |
|   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
 | |
|     BasicBlock *BB = I++;
 | |
|     // If the destination block has a single pred, then this is a trivial
 | |
|     // edge, just collapse it.
 | |
|     BasicBlock *SinglePred = BB->getSinglePredecessor();
 | |
| 
 | |
|     // Don't merge if BB's address is taken.
 | |
|     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
 | |
| 
 | |
|     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
 | |
|     if (Term && !Term->isConditional()) {
 | |
|       Changed = true;
 | |
|       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
 | |
|       // Remember if SinglePred was the entry block of the function.
 | |
|       // If so, we will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(BB, this);
 | |
| 
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
| 
 | |
|       // We have erased a block. Update the iterator.
 | |
|       I = BB;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
 | |
| /// debug info directives, and an unconditional branch.  Passes before isel
 | |
| /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
 | |
| /// isel.  Start by eliminating these blocks so we can split them the way we
 | |
| /// want them.
 | |
| bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   // Note that this intentionally skips the entry block.
 | |
|   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
 | |
|     BasicBlock *BB = I++;
 | |
| 
 | |
|     // If this block doesn't end with an uncond branch, ignore it.
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     // If the instruction before the branch (skipping debug info) isn't a phi
 | |
|     // node, then other stuff is happening here.
 | |
|     BasicBlock::iterator BBI = BI;
 | |
|     if (BBI != BB->begin()) {
 | |
|       --BBI;
 | |
|       while (isa<DbgInfoIntrinsic>(BBI)) {
 | |
|         if (BBI == BB->begin())
 | |
|           break;
 | |
|         --BBI;
 | |
|       }
 | |
|       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Do not break infinite loops.
 | |
|     BasicBlock *DestBB = BI->getSuccessor(0);
 | |
|     if (DestBB == BB)
 | |
|       continue;
 | |
| 
 | |
|     if (!CanMergeBlocks(BB, DestBB))
 | |
|       continue;
 | |
| 
 | |
|     EliminateMostlyEmptyBlock(BB);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
 | |
| /// single uncond branch between them, and BB contains no other non-phi
 | |
| /// instructions.
 | |
| bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
 | |
|                                     const BasicBlock *DestBB) const {
 | |
|   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | |
|   // the successor.  If there are more complex condition (e.g. preheaders),
 | |
|   // don't mess around with them.
 | |
|   BasicBlock::const_iterator BBI = BB->begin();
 | |
|   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|     for (const User *U : PN->users()) {
 | |
|       const Instruction *UI = cast<Instruction>(U);
 | |
|       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
 | |
|         return false;
 | |
|       // If User is inside DestBB block and it is a PHINode then check
 | |
|       // incoming value. If incoming value is not from BB then this is
 | |
|       // a complex condition (e.g. preheaders) we want to avoid here.
 | |
|       if (UI->getParent() == DestBB) {
 | |
|         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
 | |
|           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | |
|             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | |
|             if (Insn && Insn->getParent() == BB &&
 | |
|                 Insn->getParent() != UPN->getIncomingBlock(I))
 | |
|               return false;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | |
|   // and DestBB may have conflicting incoming values for the block.  If so, we
 | |
|   // can't merge the block.
 | |
|   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | |
|   if (!DestBBPN) return true;  // no conflict.
 | |
| 
 | |
|   // Collect the preds of BB.
 | |
|   SmallPtrSet<const BasicBlock*, 16> BBPreds;
 | |
|   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // It is faster to get preds from a PHI than with pred_iterator.
 | |
|     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|       BBPreds.insert(BBPN->getIncomingBlock(i));
 | |
|   } else {
 | |
|     BBPreds.insert(pred_begin(BB), pred_end(BB));
 | |
|   }
 | |
| 
 | |
|   // Walk the preds of DestBB.
 | |
|   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | |
|     if (BBPreds.count(Pred)) {   // Common predecessor?
 | |
|       BBI = DestBB->begin();
 | |
|       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|         const Value *V1 = PN->getIncomingValueForBlock(Pred);
 | |
|         const Value *V2 = PN->getIncomingValueForBlock(BB);
 | |
| 
 | |
|         // If V2 is a phi node in BB, look up what the mapped value will be.
 | |
|         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | |
|           if (V2PN->getParent() == BB)
 | |
|             V2 = V2PN->getIncomingValueForBlock(Pred);
 | |
| 
 | |
|         // If there is a conflict, bail out.
 | |
|         if (V1 != V2) return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
 | |
| /// an unconditional branch in it.
 | |
| void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   BasicBlock *DestBB = BI->getSuccessor(0);
 | |
| 
 | |
|   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
 | |
| 
 | |
|   // If the destination block has a single pred, then this is a trivial edge,
 | |
|   // just collapse it.
 | |
|   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
 | |
|     if (SinglePred != DestBB) {
 | |
|       // Remember if SinglePred was the entry block of the function.  If so, we
 | |
|       // will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(DestBB, this);
 | |
| 
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
| 
 | |
|       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | |
|   // to handle the new incoming edges it is about to have.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator BBI = DestBB->begin();
 | |
|        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|     // Remove the incoming value for BB, and remember it.
 | |
|     Value *InVal = PN->removeIncomingValue(BB, false);
 | |
| 
 | |
|     // Two options: either the InVal is a phi node defined in BB or it is some
 | |
|     // value that dominates BB.
 | |
|     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | |
|     if (InValPhi && InValPhi->getParent() == BB) {
 | |
|       // Add all of the input values of the input PHI as inputs of this phi.
 | |
|       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | |
|         PN->addIncoming(InValPhi->getIncomingValue(i),
 | |
|                         InValPhi->getIncomingBlock(i));
 | |
|     } else {
 | |
|       // Otherwise, add one instance of the dominating value for each edge that
 | |
|       // we will be adding.
 | |
|       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
 | |
|       } else {
 | |
|         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|           PN->addIncoming(InVal, *PI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The PHIs are now updated, change everything that refers to BB to use
 | |
|   // DestBB and remove BB.
 | |
|   BB->replaceAllUsesWith(DestBB);
 | |
|   if (DT && !ModifiedDT) {
 | |
|     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
 | |
|     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
 | |
|     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
 | |
|     DT->changeImmediateDominator(DestBB, NewIDom);
 | |
|     DT->eraseNode(BB);
 | |
|   }
 | |
|   BB->eraseFromParent();
 | |
|   ++NumBlocksElim;
 | |
| 
 | |
|   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
| }
 | |
| 
 | |
| /// SinkCast - Sink the specified cast instruction into its user blocks
 | |
| static bool SinkCast(CastInst *CI) {
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   /// InsertedCasts - Only insert a cast in each block once.
 | |
|   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this cast is used in.  For PHI's this is the
 | |
|     // appropriate predecessor block.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       UserBB = PN->getIncomingBlock(TheUse);
 | |
|     }
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // If this user is in the same block as the cast, don't change the cast.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cast into this block, use it.
 | |
|     CastInst *&InsertedCast = InsertedCasts[UserBB];
 | |
| 
 | |
|     if (!InsertedCast) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       InsertedCast =
 | |
|         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
 | |
|                          InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cast with a use of the new cast.
 | |
|     TheUse = InsertedCast;
 | |
|     ++NumCastUses;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cast.
 | |
|   if (CI->use_empty()) {
 | |
|     CI->eraseFromParent();
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
 | |
| /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
 | |
| /// sink it into user blocks to reduce the number of virtual
 | |
| /// registers that must be created and coalesced.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| ///
 | |
| static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
 | |
|   // If this is a noop copy,
 | |
|   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(CI->getType());
 | |
| 
 | |
|   // This is an fp<->int conversion?
 | |
|   if (SrcVT.isInteger() != DstVT.isInteger())
 | |
|     return false;
 | |
| 
 | |
|   // If this is an extension, it will be a zero or sign extension, which
 | |
|   // isn't a noop.
 | |
|   if (SrcVT.bitsLT(DstVT)) return false;
 | |
| 
 | |
|   // If these values will be promoted, find out what they will be promoted
 | |
|   // to.  This helps us consider truncates on PPC as noop copies when they
 | |
|   // are.
 | |
|   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
 | |
|       TargetLowering::TypePromoteInteger)
 | |
|     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
 | |
|   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
 | |
|       TargetLowering::TypePromoteInteger)
 | |
|     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
 | |
| 
 | |
|   // If, after promotion, these are the same types, this is a noop copy.
 | |
|   if (SrcVT != DstVT)
 | |
|     return false;
 | |
| 
 | |
|   return SinkCast(CI);
 | |
| }
 | |
| 
 | |
| /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
 | |
| /// the number of virtual registers that must be created and coalesced.  This is
 | |
| /// a clear win except on targets with multiple condition code registers
 | |
| ///  (PowerPC), where it might lose; some adjustment may be wanted there.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeCmpExpression(CmpInst *CI) {
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   /// InsertedCmp - Only insert a cmp in each block once.
 | |
|   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(User))
 | |
|       continue;
 | |
| 
 | |
|     // Figure out which BB this cmp is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
| 
 | |
|     // If this user is in the same block as the cmp, don't change the cmp.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cmp into this block, use it.
 | |
|     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
 | |
| 
 | |
|     if (!InsertedCmp) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       InsertedCmp =
 | |
|         CmpInst::Create(CI->getOpcode(),
 | |
|                         CI->getPredicate(),  CI->getOperand(0),
 | |
|                         CI->getOperand(1), "", InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cmp with a use of the new cmp.
 | |
|     TheUse = InsertedCmp;
 | |
|     ++NumCmpUses;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cmp.
 | |
|   if (CI->use_empty())
 | |
|     CI->eraseFromParent();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// isExtractBitsCandidateUse - Check if the candidates could
 | |
| /// be combined with shift instruction, which includes:
 | |
| /// 1. Truncate instruction
 | |
| /// 2. And instruction and the imm is a mask of the low bits:
 | |
| /// imm & (imm+1) == 0
 | |
| static bool isExtractBitsCandidateUse(Instruction *User) {
 | |
|   if (!isa<TruncInst>(User)) {
 | |
|     if (User->getOpcode() != Instruction::And ||
 | |
|         !isa<ConstantInt>(User->getOperand(1)))
 | |
|       return false;
 | |
| 
 | |
|     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
 | |
| 
 | |
|     if ((Cimm & (Cimm + 1)).getBoolValue())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SinkShiftAndTruncate - sink both shift and truncate instruction
 | |
| /// to the use of truncate's BB.
 | |
| static bool
 | |
| SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
 | |
|                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
 | |
|                      const TargetLowering &TLI) {
 | |
|   BasicBlock *UserBB = User->getParent();
 | |
|   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
 | |
|   TruncInst *TruncI = dyn_cast<TruncInst>(User);
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   for (Value::user_iterator TruncUI = TruncI->user_begin(),
 | |
|                             TruncE = TruncI->user_end();
 | |
|        TruncUI != TruncE;) {
 | |
| 
 | |
|     Use &TruncTheUse = TruncUI.getUse();
 | |
|     Instruction *TruncUser = cast<Instruction>(*TruncUI);
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
| 
 | |
|     ++TruncUI;
 | |
| 
 | |
|     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
 | |
|     if (!ISDOpcode)
 | |
|       continue;
 | |
| 
 | |
|     // If the use is actually a legal node, there will not be an
 | |
|     // implicit truncate.
 | |
|     // FIXME: always querying the result type is just an
 | |
|     // approximation; some nodes' legality is determined by the
 | |
|     // operand or other means. There's no good way to find out though.
 | |
|     if (TLI.isOperationLegalOrCustom(
 | |
|             ISDOpcode, TLI.getValueType(TruncUser->getType(), true)))
 | |
|       continue;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(TruncUser))
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *TruncUserBB = TruncUser->getParent();
 | |
| 
 | |
|     if (UserBB == TruncUserBB)
 | |
|       continue;
 | |
| 
 | |
|     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
 | |
|     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
 | |
| 
 | |
|     if (!InsertedShift && !InsertedTrunc) {
 | |
|       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
 | |
|       // Sink the shift
 | |
|       if (ShiftI->getOpcode() == Instruction::AShr)
 | |
|         InsertedShift =
 | |
|             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | |
|       else
 | |
|         InsertedShift =
 | |
|             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | |
| 
 | |
|       // Sink the trunc
 | |
|       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
 | |
|       TruncInsertPt++;
 | |
| 
 | |
|       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
 | |
|                                        TruncI->getType(), "", TruncInsertPt);
 | |
| 
 | |
|       MadeChange = true;
 | |
| 
 | |
|       TruncTheUse = InsertedTrunc;
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
 | |
| /// the uses could potentially be combined with this shift instruction and
 | |
| /// generate BitExtract instruction. It will only be applied if the architecture
 | |
| /// supports BitExtract instruction. Here is an example:
 | |
| /// BB1:
 | |
| ///   %x.extract.shift = lshr i64 %arg1, 32
 | |
| /// BB2:
 | |
| ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
 | |
| /// ==>
 | |
| ///
 | |
| /// BB2:
 | |
| ///   %x.extract.shift.1 = lshr i64 %arg1, 32
 | |
| ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
 | |
| ///
 | |
| /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
 | |
| /// instruction.
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
 | |
|                                 const TargetLowering &TLI) {
 | |
|   BasicBlock *DefBB = ShiftI->getParent();
 | |
| 
 | |
|   /// Only insert instructions in each block once.
 | |
|   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
 | |
| 
 | |
|   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
 | |
|        UI != E;) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(User))
 | |
|       continue;
 | |
| 
 | |
|     if (!isExtractBitsCandidateUse(User))
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
| 
 | |
|     if (UserBB == DefBB) {
 | |
|       // If the shift and truncate instruction are in the same BB. The use of
 | |
|       // the truncate(TruncUse) may still introduce another truncate if not
 | |
|       // legal. In this case, we would like to sink both shift and truncate
 | |
|       // instruction to the BB of TruncUse.
 | |
|       // for example:
 | |
|       // BB1:
 | |
|       // i64 shift.result = lshr i64 opnd, imm
 | |
|       // trunc.result = trunc shift.result to i16
 | |
|       //
 | |
|       // BB2:
 | |
|       //   ----> We will have an implicit truncate here if the architecture does
 | |
|       //   not have i16 compare.
 | |
|       // cmp i16 trunc.result, opnd2
 | |
|       //
 | |
|       if (isa<TruncInst>(User) && shiftIsLegal
 | |
|           // If the type of the truncate is legal, no trucate will be
 | |
|           // introduced in other basic blocks.
 | |
|           && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
 | |
|         MadeChange =
 | |
|             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|     // If we have already inserted a shift into this block, use it.
 | |
|     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
 | |
| 
 | |
|     if (!InsertedShift) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
| 
 | |
|       if (ShiftI->getOpcode() == Instruction::AShr)
 | |
|         InsertedShift =
 | |
|             BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | |
|       else
 | |
|         InsertedShift =
 | |
|             BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | |
| 
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the shift with a use of the new shift.
 | |
|     TheUse = InsertedShift;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the shift.
 | |
|   if (ShiftI->use_empty())
 | |
|     ShiftI->eraseFromParent();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
 | |
| protected:
 | |
|   void replaceCall(Value *With) override {
 | |
|     CI->replaceAllUsesWith(With);
 | |
|     CI->eraseFromParent();
 | |
|   }
 | |
|   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
 | |
|       if (ConstantInt *SizeCI =
 | |
|                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
 | |
|         return SizeCI->isAllOnesValue();
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
 | |
|   BasicBlock *BB = CI->getParent();
 | |
| 
 | |
|   // Lower inline assembly if we can.
 | |
|   // If we found an inline asm expession, and if the target knows how to
 | |
|   // lower it to normal LLVM code, do so now.
 | |
|   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
 | |
|     if (TLI->ExpandInlineAsm(CI)) {
 | |
|       // Avoid invalidating the iterator.
 | |
|       CurInstIterator = BB->begin();
 | |
|       // Avoid processing instructions out of order, which could cause
 | |
|       // reuse before a value is defined.
 | |
|       SunkAddrs.clear();
 | |
|       return true;
 | |
|     }
 | |
|     // Sink address computing for memory operands into the block.
 | |
|     if (OptimizeInlineAsmInst(CI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Lower all uses of llvm.objectsize.*
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
 | |
|   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
 | |
|     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
 | |
|     Type *ReturnTy = CI->getType();
 | |
|     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
 | |
| 
 | |
|     // Substituting this can cause recursive simplifications, which can
 | |
|     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
 | |
|     // happens.
 | |
|     WeakVH IterHandle(CurInstIterator);
 | |
| 
 | |
|     replaceAndRecursivelySimplify(CI, RetVal,
 | |
|                                   TLI ? TLI->getDataLayout() : nullptr,
 | |
|                                   TLInfo, ModifiedDT ? nullptr : DT);
 | |
| 
 | |
|     // If the iterator instruction was recursively deleted, start over at the
 | |
|     // start of the block.
 | |
|     if (IterHandle != CurInstIterator) {
 | |
|       CurInstIterator = BB->begin();
 | |
|       SunkAddrs.clear();
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (II && TLI) {
 | |
|     SmallVector<Value*, 2> PtrOps;
 | |
|     Type *AccessTy;
 | |
|     if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
 | |
|       while (!PtrOps.empty())
 | |
|         if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
 | |
|           return true;
 | |
|   }
 | |
| 
 | |
|   // From here on out we're working with named functions.
 | |
|   if (!CI->getCalledFunction()) return false;
 | |
| 
 | |
|   // We'll need DataLayout from here on out.
 | |
|   const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
 | |
|   if (!TD) return false;
 | |
| 
 | |
|   // Lower all default uses of _chk calls.  This is very similar
 | |
|   // to what InstCombineCalls does, but here we are only lowering calls
 | |
|   // that have the default "don't know" as the objectsize.  Anything else
 | |
|   // should be left alone.
 | |
|   CodeGenPrepareFortifiedLibCalls Simplifier;
 | |
|   return Simplifier.fold(CI, TD, TLInfo);
 | |
| }
 | |
| 
 | |
| /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
 | |
| /// instructions to the predecessor to enable tail call optimizations. The
 | |
| /// case it is currently looking for is:
 | |
| /// @code
 | |
| /// bb0:
 | |
| ///   %tmp0 = tail call i32 @f0()
 | |
| ///   br label %return
 | |
| /// bb1:
 | |
| ///   %tmp1 = tail call i32 @f1()
 | |
| ///   br label %return
 | |
| /// bb2:
 | |
| ///   %tmp2 = tail call i32 @f2()
 | |
| ///   br label %return
 | |
| /// return:
 | |
| ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
 | |
| ///   ret i32 %retval
 | |
| /// @endcode
 | |
| ///
 | |
| /// =>
 | |
| ///
 | |
| /// @code
 | |
| /// bb0:
 | |
| ///   %tmp0 = tail call i32 @f0()
 | |
| ///   ret i32 %tmp0
 | |
| /// bb1:
 | |
| ///   %tmp1 = tail call i32 @f1()
 | |
| ///   ret i32 %tmp1
 | |
| /// bb2:
 | |
| ///   %tmp2 = tail call i32 @f2()
 | |
| ///   ret i32 %tmp2
 | |
| /// @endcode
 | |
| bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
 | |
|   if (!TLI)
 | |
|     return false;
 | |
| 
 | |
|   ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
 | |
|   if (!RI)
 | |
|     return false;
 | |
| 
 | |
|   PHINode *PN = nullptr;
 | |
|   BitCastInst *BCI = nullptr;
 | |
|   Value *V = RI->getReturnValue();
 | |
|   if (V) {
 | |
|     BCI = dyn_cast<BitCastInst>(V);
 | |
|     if (BCI)
 | |
|       V = BCI->getOperand(0);
 | |
| 
 | |
|     PN = dyn_cast<PHINode>(V);
 | |
|     if (!PN)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (PN && PN->getParent() != BB)
 | |
|     return false;
 | |
| 
 | |
|   // It's not safe to eliminate the sign / zero extension of the return value.
 | |
|   // See llvm::isInTailCallPosition().
 | |
|   const Function *F = BB->getParent();
 | |
|   AttributeSet CallerAttrs = F->getAttributes();
 | |
|   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
 | |
|       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure there are no instructions between the PHI and return, or that the
 | |
|   // return is the first instruction in the block.
 | |
|   if (PN) {
 | |
|     BasicBlock::iterator BI = BB->begin();
 | |
|     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
 | |
|     if (&*BI == BCI)
 | |
|       // Also skip over the bitcast.
 | |
|       ++BI;
 | |
|     if (&*BI != RI)
 | |
|       return false;
 | |
|   } else {
 | |
|     BasicBlock::iterator BI = BB->begin();
 | |
|     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
 | |
|     if (&*BI != RI)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
 | |
|   /// call.
 | |
|   SmallVector<CallInst*, 4> TailCalls;
 | |
|   if (PN) {
 | |
|     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
 | |
|       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
 | |
|       // Make sure the phi value is indeed produced by the tail call.
 | |
|       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
 | |
|           TLI->mayBeEmittedAsTailCall(CI))
 | |
|         TailCalls.push_back(CI);
 | |
|     }
 | |
|   } else {
 | |
|     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
 | |
|     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
 | |
|       if (!VisitedBBs.insert(*PI).second)
 | |
|         continue;
 | |
| 
 | |
|       BasicBlock::InstListType &InstList = (*PI)->getInstList();
 | |
|       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
 | |
|       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
 | |
|       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
 | |
|       if (RI == RE)
 | |
|         continue;
 | |
| 
 | |
|       CallInst *CI = dyn_cast<CallInst>(&*RI);
 | |
|       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
 | |
|         TailCalls.push_back(CI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
 | |
|     CallInst *CI = TailCalls[i];
 | |
|     CallSite CS(CI);
 | |
| 
 | |
|     // Conservatively require the attributes of the call to match those of the
 | |
|     // return. Ignore noalias because it doesn't affect the call sequence.
 | |
|     AttributeSet CalleeAttrs = CS.getAttributes();
 | |
|     if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
 | |
|           removeAttribute(Attribute::NoAlias) !=
 | |
|         AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
 | |
|           removeAttribute(Attribute::NoAlias))
 | |
|       continue;
 | |
| 
 | |
|     // Make sure the call instruction is followed by an unconditional branch to
 | |
|     // the return block.
 | |
|     BasicBlock *CallBB = CI->getParent();
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
 | |
|       continue;
 | |
| 
 | |
|     // Duplicate the return into CallBB.
 | |
|     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
 | |
|     ModifiedDT = Changed = true;
 | |
|     ++NumRetsDup;
 | |
|   }
 | |
| 
 | |
|   // If we eliminated all predecessors of the block, delete the block now.
 | |
|   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
 | |
|     BB->eraseFromParent();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Memory Optimization
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
 | |
| /// which holds actual Value*'s for register values.
 | |
| struct ExtAddrMode : public TargetLowering::AddrMode {
 | |
|   Value *BaseReg;
 | |
|   Value *ScaledReg;
 | |
|   ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
 | |
|   void print(raw_ostream &OS) const;
 | |
|   void dump() const;
 | |
| 
 | |
|   bool operator==(const ExtAddrMode& O) const {
 | |
|     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
 | |
|            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
 | |
|            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
 | |
|   }
 | |
| };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
 | |
|   AM.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ExtAddrMode::print(raw_ostream &OS) const {
 | |
|   bool NeedPlus = false;
 | |
|   OS << "[";
 | |
|   if (BaseGV) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "GV:";
 | |
|     BaseGV->printAsOperand(OS, /*PrintType=*/false);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   if (BaseOffs) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << BaseOffs;
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   if (BaseReg) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "Base:";
 | |
|     BaseReg->printAsOperand(OS, /*PrintType=*/false);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
|   if (Scale) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << Scale << "*";
 | |
|     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
 | |
|   }
 | |
| 
 | |
|   OS << ']';
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ExtAddrMode::dump() const {
 | |
|   print(dbgs());
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// \brief This class provides transaction based operation on the IR.
 | |
| /// Every change made through this class is recorded in the internal state and
 | |
| /// can be undone (rollback) until commit is called.
 | |
| class TypePromotionTransaction {
 | |
| 
 | |
|   /// \brief This represents the common interface of the individual transaction.
 | |
|   /// Each class implements the logic for doing one specific modification on
 | |
|   /// the IR via the TypePromotionTransaction.
 | |
|   class TypePromotionAction {
 | |
|   protected:
 | |
|     /// The Instruction modified.
 | |
|     Instruction *Inst;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Constructor of the action.
 | |
|     /// The constructor performs the related action on the IR.
 | |
|     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
 | |
| 
 | |
|     virtual ~TypePromotionAction() {}
 | |
| 
 | |
|     /// \brief Undo the modification done by this action.
 | |
|     /// When this method is called, the IR must be in the same state as it was
 | |
|     /// before this action was applied.
 | |
|     /// \pre Undoing the action works if and only if the IR is in the exact same
 | |
|     /// state as it was directly after this action was applied.
 | |
|     virtual void undo() = 0;
 | |
| 
 | |
|     /// \brief Advocate every change made by this action.
 | |
|     /// When the results on the IR of the action are to be kept, it is important
 | |
|     /// to call this function, otherwise hidden information may be kept forever.
 | |
|     virtual void commit() {
 | |
|       // Nothing to be done, this action is not doing anything.
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Utility to remember the position of an instruction.
 | |
|   class InsertionHandler {
 | |
|     /// Position of an instruction.
 | |
|     /// Either an instruction:
 | |
|     /// - Is the first in a basic block: BB is used.
 | |
|     /// - Has a previous instructon: PrevInst is used.
 | |
|     union {
 | |
|       Instruction *PrevInst;
 | |
|       BasicBlock *BB;
 | |
|     } Point;
 | |
|     /// Remember whether or not the instruction had a previous instruction.
 | |
|     bool HasPrevInstruction;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Record the position of \p Inst.
 | |
|     InsertionHandler(Instruction *Inst) {
 | |
|       BasicBlock::iterator It = Inst;
 | |
|       HasPrevInstruction = (It != (Inst->getParent()->begin()));
 | |
|       if (HasPrevInstruction)
 | |
|         Point.PrevInst = --It;
 | |
|       else
 | |
|         Point.BB = Inst->getParent();
 | |
|     }
 | |
| 
 | |
|     /// \brief Insert \p Inst at the recorded position.
 | |
|     void insert(Instruction *Inst) {
 | |
|       if (HasPrevInstruction) {
 | |
|         if (Inst->getParent())
 | |
|           Inst->removeFromParent();
 | |
|         Inst->insertAfter(Point.PrevInst);
 | |
|       } else {
 | |
|         Instruction *Position = Point.BB->getFirstInsertionPt();
 | |
|         if (Inst->getParent())
 | |
|           Inst->moveBefore(Position);
 | |
|         else
 | |
|           Inst->insertBefore(Position);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Move an instruction before another.
 | |
|   class InstructionMoveBefore : public TypePromotionAction {
 | |
|     /// Original position of the instruction.
 | |
|     InsertionHandler Position;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Move \p Inst before \p Before.
 | |
|     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
 | |
|         : TypePromotionAction(Inst), Position(Inst) {
 | |
|       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
 | |
|       Inst->moveBefore(Before);
 | |
|     }
 | |
| 
 | |
|     /// \brief Move the instruction back to its original position.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
 | |
|       Position.insert(Inst);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Set the operand of an instruction with a new value.
 | |
|   class OperandSetter : public TypePromotionAction {
 | |
|     /// Original operand of the instruction.
 | |
|     Value *Origin;
 | |
|     /// Index of the modified instruction.
 | |
|     unsigned Idx;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
 | |
|     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
 | |
|         : TypePromotionAction(Inst), Idx(Idx) {
 | |
|       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
 | |
|                    << "for:" << *Inst << "\n"
 | |
|                    << "with:" << *NewVal << "\n");
 | |
|       Origin = Inst->getOperand(Idx);
 | |
|       Inst->setOperand(Idx, NewVal);
 | |
|     }
 | |
| 
 | |
|     /// \brief Restore the original value of the instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
 | |
|                    << "for: " << *Inst << "\n"
 | |
|                    << "with: " << *Origin << "\n");
 | |
|       Inst->setOperand(Idx, Origin);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Hide the operands of an instruction.
 | |
|   /// Do as if this instruction was not using any of its operands.
 | |
|   class OperandsHider : public TypePromotionAction {
 | |
|     /// The list of original operands.
 | |
|     SmallVector<Value *, 4> OriginalValues;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
 | |
|     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
 | |
|       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
 | |
|       unsigned NumOpnds = Inst->getNumOperands();
 | |
|       OriginalValues.reserve(NumOpnds);
 | |
|       for (unsigned It = 0; It < NumOpnds; ++It) {
 | |
|         // Save the current operand.
 | |
|         Value *Val = Inst->getOperand(It);
 | |
|         OriginalValues.push_back(Val);
 | |
|         // Set a dummy one.
 | |
|         // We could use OperandSetter here, but that would implied an overhead
 | |
|         // that we are not willing to pay.
 | |
|         Inst->setOperand(It, UndefValue::get(Val->getType()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// \brief Restore the original list of uses.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
 | |
|       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
 | |
|         Inst->setOperand(It, OriginalValues[It]);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Build a truncate instruction.
 | |
|   class TruncBuilder : public TypePromotionAction {
 | |
|     Value *Val;
 | |
|   public:
 | |
|     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
 | |
|     /// result.
 | |
|     /// trunc Opnd to Ty.
 | |
|     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
 | |
|       IRBuilder<> Builder(Opnd);
 | |
|       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
 | |
|       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
 | |
|     }
 | |
| 
 | |
|     /// \brief Get the built value.
 | |
|     Value *getBuiltValue() { return Val; }
 | |
| 
 | |
|     /// \brief Remove the built instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
 | |
|       if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | |
|         IVal->eraseFromParent();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Build a sign extension instruction.
 | |
|   class SExtBuilder : public TypePromotionAction {
 | |
|     Value *Val;
 | |
|   public:
 | |
|     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
 | |
|     /// result.
 | |
|     /// sext Opnd to Ty.
 | |
|     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | |
|         : TypePromotionAction(InsertPt) {
 | |
|       IRBuilder<> Builder(InsertPt);
 | |
|       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
 | |
|       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
 | |
|     }
 | |
| 
 | |
|     /// \brief Get the built value.
 | |
|     Value *getBuiltValue() { return Val; }
 | |
| 
 | |
|     /// \brief Remove the built instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
 | |
|       if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | |
|         IVal->eraseFromParent();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Build a zero extension instruction.
 | |
|   class ZExtBuilder : public TypePromotionAction {
 | |
|     Value *Val;
 | |
|   public:
 | |
|     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
 | |
|     /// result.
 | |
|     /// zext Opnd to Ty.
 | |
|     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | |
|         : TypePromotionAction(InsertPt) {
 | |
|       IRBuilder<> Builder(InsertPt);
 | |
|       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
 | |
|       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
 | |
|     }
 | |
| 
 | |
|     /// \brief Get the built value.
 | |
|     Value *getBuiltValue() { return Val; }
 | |
| 
 | |
|     /// \brief Remove the built instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
 | |
|       if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | |
|         IVal->eraseFromParent();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Mutate an instruction to another type.
 | |
|   class TypeMutator : public TypePromotionAction {
 | |
|     /// Record the original type.
 | |
|     Type *OrigTy;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Mutate the type of \p Inst into \p NewTy.
 | |
|     TypeMutator(Instruction *Inst, Type *NewTy)
 | |
|         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
 | |
|       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
 | |
|                    << "\n");
 | |
|       Inst->mutateType(NewTy);
 | |
|     }
 | |
| 
 | |
|     /// \brief Mutate the instruction back to its original type.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
 | |
|                    << "\n");
 | |
|       Inst->mutateType(OrigTy);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Replace the uses of an instruction by another instruction.
 | |
|   class UsesReplacer : public TypePromotionAction {
 | |
|     /// Helper structure to keep track of the replaced uses.
 | |
|     struct InstructionAndIdx {
 | |
|       /// The instruction using the instruction.
 | |
|       Instruction *Inst;
 | |
|       /// The index where this instruction is used for Inst.
 | |
|       unsigned Idx;
 | |
|       InstructionAndIdx(Instruction *Inst, unsigned Idx)
 | |
|           : Inst(Inst), Idx(Idx) {}
 | |
|     };
 | |
| 
 | |
|     /// Keep track of the original uses (pair Instruction, Index).
 | |
|     SmallVector<InstructionAndIdx, 4> OriginalUses;
 | |
|     typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Replace all the use of \p Inst by \p New.
 | |
|     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
 | |
|       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
 | |
|                    << "\n");
 | |
|       // Record the original uses.
 | |
|       for (Use &U : Inst->uses()) {
 | |
|         Instruction *UserI = cast<Instruction>(U.getUser());
 | |
|         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
 | |
|       }
 | |
|       // Now, we can replace the uses.
 | |
|       Inst->replaceAllUsesWith(New);
 | |
|     }
 | |
| 
 | |
|     /// \brief Reassign the original uses of Inst to Inst.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
 | |
|       for (use_iterator UseIt = OriginalUses.begin(),
 | |
|                         EndIt = OriginalUses.end();
 | |
|            UseIt != EndIt; ++UseIt) {
 | |
|         UseIt->Inst->setOperand(UseIt->Idx, Inst);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Remove an instruction from the IR.
 | |
|   class InstructionRemover : public TypePromotionAction {
 | |
|     /// Original position of the instruction.
 | |
|     InsertionHandler Inserter;
 | |
|     /// Helper structure to hide all the link to the instruction. In other
 | |
|     /// words, this helps to do as if the instruction was removed.
 | |
|     OperandsHider Hider;
 | |
|     /// Keep track of the uses replaced, if any.
 | |
|     UsesReplacer *Replacer;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Remove all reference of \p Inst and optinally replace all its
 | |
|     /// uses with New.
 | |
|     /// \pre If !Inst->use_empty(), then New != nullptr
 | |
|     InstructionRemover(Instruction *Inst, Value *New = nullptr)
 | |
|         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
 | |
|           Replacer(nullptr) {
 | |
|       if (New)
 | |
|         Replacer = new UsesReplacer(Inst, New);
 | |
|       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
 | |
|       Inst->removeFromParent();
 | |
|     }
 | |
| 
 | |
|     ~InstructionRemover() { delete Replacer; }
 | |
| 
 | |
|     /// \brief Really remove the instruction.
 | |
|     void commit() override { delete Inst; }
 | |
| 
 | |
|     /// \brief Resurrect the instruction and reassign it to the proper uses if
 | |
|     /// new value was provided when build this action.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
 | |
|       Inserter.insert(Inst);
 | |
|       if (Replacer)
 | |
|         Replacer->undo();
 | |
|       Hider.undo();
 | |
|     }
 | |
|   };
 | |
| 
 | |
| public:
 | |
|   /// Restoration point.
 | |
|   /// The restoration point is a pointer to an action instead of an iterator
 | |
|   /// because the iterator may be invalidated but not the pointer.
 | |
|   typedef const TypePromotionAction *ConstRestorationPt;
 | |
|   /// Advocate every changes made in that transaction.
 | |
|   void commit();
 | |
|   /// Undo all the changes made after the given point.
 | |
|   void rollback(ConstRestorationPt Point);
 | |
|   /// Get the current restoration point.
 | |
|   ConstRestorationPt getRestorationPoint() const;
 | |
| 
 | |
|   /// \name API for IR modification with state keeping to support rollback.
 | |
|   /// @{
 | |
|   /// Same as Instruction::setOperand.
 | |
|   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
 | |
|   /// Same as Instruction::eraseFromParent.
 | |
|   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
 | |
|   /// Same as Value::replaceAllUsesWith.
 | |
|   void replaceAllUsesWith(Instruction *Inst, Value *New);
 | |
|   /// Same as Value::mutateType.
 | |
|   void mutateType(Instruction *Inst, Type *NewTy);
 | |
|   /// Same as IRBuilder::createTrunc.
 | |
|   Value *createTrunc(Instruction *Opnd, Type *Ty);
 | |
|   /// Same as IRBuilder::createSExt.
 | |
|   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | |
|   /// Same as IRBuilder::createZExt.
 | |
|   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | |
|   /// Same as Instruction::moveBefore.
 | |
|   void moveBefore(Instruction *Inst, Instruction *Before);
 | |
|   /// @}
 | |
| 
 | |
| private:
 | |
|   /// The ordered list of actions made so far.
 | |
|   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
 | |
|   typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
 | |
| };
 | |
| 
 | |
| void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
 | |
|                                           Value *NewVal) {
 | |
|   Actions.push_back(
 | |
|       make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
 | |
|                                                 Value *NewVal) {
 | |
|   Actions.push_back(
 | |
|       make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
 | |
|                                                   Value *New) {
 | |
|   Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
 | |
|   Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
 | |
| }
 | |
| 
 | |
| Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
 | |
|                                              Type *Ty) {
 | |
|   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
 | |
|   Value *Val = Ptr->getBuiltValue();
 | |
|   Actions.push_back(std::move(Ptr));
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionTransaction::createSExt(Instruction *Inst,
 | |
|                                             Value *Opnd, Type *Ty) {
 | |
|   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
 | |
|   Value *Val = Ptr->getBuiltValue();
 | |
|   Actions.push_back(std::move(Ptr));
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionTransaction::createZExt(Instruction *Inst,
 | |
|                                             Value *Opnd, Type *Ty) {
 | |
|   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
 | |
|   Value *Val = Ptr->getBuiltValue();
 | |
|   Actions.push_back(std::move(Ptr));
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::moveBefore(Instruction *Inst,
 | |
|                                           Instruction *Before) {
 | |
|   Actions.push_back(
 | |
|       make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
 | |
| }
 | |
| 
 | |
| TypePromotionTransaction::ConstRestorationPt
 | |
| TypePromotionTransaction::getRestorationPoint() const {
 | |
|   return !Actions.empty() ? Actions.back().get() : nullptr;
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::commit() {
 | |
|   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
 | |
|        ++It)
 | |
|     (*It)->commit();
 | |
|   Actions.clear();
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::rollback(
 | |
|     TypePromotionTransaction::ConstRestorationPt Point) {
 | |
|   while (!Actions.empty() && Point != Actions.back().get()) {
 | |
|     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
 | |
|     Curr->undo();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief A helper class for matching addressing modes.
 | |
| ///
 | |
| /// This encapsulates the logic for matching the target-legal addressing modes.
 | |
| class AddressingModeMatcher {
 | |
|   SmallVectorImpl<Instruction*> &AddrModeInsts;
 | |
|   const TargetLowering &TLI;
 | |
| 
 | |
|   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
 | |
|   /// the memory instruction that we're computing this address for.
 | |
|   Type *AccessTy;
 | |
|   Instruction *MemoryInst;
 | |
| 
 | |
|   /// AddrMode - This is the addressing mode that we're building up.  This is
 | |
|   /// part of the return value of this addressing mode matching stuff.
 | |
|   ExtAddrMode &AddrMode;
 | |
| 
 | |
|   /// The truncate instruction inserted by other CodeGenPrepare optimizations.
 | |
|   const SetOfInstrs &InsertedTruncs;
 | |
|   /// A map from the instructions to their type before promotion.
 | |
|   InstrToOrigTy &PromotedInsts;
 | |
|   /// The ongoing transaction where every action should be registered.
 | |
|   TypePromotionTransaction &TPT;
 | |
| 
 | |
|   /// IgnoreProfitability - This is set to true when we should not do
 | |
|   /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
 | |
|   /// always returns true.
 | |
|   bool IgnoreProfitability;
 | |
| 
 | |
|   AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
 | |
|                         const TargetLowering &T, Type *AT,
 | |
|                         Instruction *MI, ExtAddrMode &AM,
 | |
|                         const SetOfInstrs &InsertedTruncs,
 | |
|                         InstrToOrigTy &PromotedInsts,
 | |
|                         TypePromotionTransaction &TPT)
 | |
|       : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
 | |
|         InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
 | |
|     IgnoreProfitability = false;
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   /// Match - Find the maximal addressing mode that a load/store of V can fold,
 | |
|   /// give an access type of AccessTy.  This returns a list of involved
 | |
|   /// instructions in AddrModeInsts.
 | |
|   /// \p InsertedTruncs The truncate instruction inserted by other
 | |
|   /// CodeGenPrepare
 | |
|   /// optimizations.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   /// \p The ongoing transaction where every action should be registered.
 | |
|   static ExtAddrMode Match(Value *V, Type *AccessTy,
 | |
|                            Instruction *MemoryInst,
 | |
|                            SmallVectorImpl<Instruction*> &AddrModeInsts,
 | |
|                            const TargetLowering &TLI,
 | |
|                            const SetOfInstrs &InsertedTruncs,
 | |
|                            InstrToOrigTy &PromotedInsts,
 | |
|                            TypePromotionTransaction &TPT) {
 | |
|     ExtAddrMode Result;
 | |
| 
 | |
|     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
 | |
|                                          MemoryInst, Result, InsertedTruncs,
 | |
|                                          PromotedInsts, TPT).MatchAddr(V, 0);
 | |
|     (void)Success; assert(Success && "Couldn't select *anything*?");
 | |
|     return Result;
 | |
|   }
 | |
| private:
 | |
|   bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
 | |
|   bool MatchAddr(Value *V, unsigned Depth);
 | |
|   bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
 | |
|                           bool *MovedAway = nullptr);
 | |
|   bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
 | |
|                                             ExtAddrMode &AMBefore,
 | |
|                                             ExtAddrMode &AMAfter);
 | |
|   bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
 | |
|   bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
 | |
|                              Value *PromotedOperand) const;
 | |
| };
 | |
| 
 | |
| /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
 | |
| /// Return true and update AddrMode if this addr mode is legal for the target,
 | |
| /// false if not.
 | |
| bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
 | |
|                                              unsigned Depth) {
 | |
|   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
 | |
|   // mode.  Just process that directly.
 | |
|   if (Scale == 1)
 | |
|     return MatchAddr(ScaleReg, Depth);
 | |
| 
 | |
|   // If the scale is 0, it takes nothing to add this.
 | |
|   if (Scale == 0)
 | |
|     return true;
 | |
| 
 | |
|   // If we already have a scale of this value, we can add to it, otherwise, we
 | |
|   // need an available scale field.
 | |
|   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
 | |
|     return false;
 | |
| 
 | |
|   ExtAddrMode TestAddrMode = AddrMode;
 | |
| 
 | |
|   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
 | |
|   // [A+B + A*7] -> [B+A*8].
 | |
|   TestAddrMode.Scale += Scale;
 | |
|   TestAddrMode.ScaledReg = ScaleReg;
 | |
| 
 | |
|   // If the new address isn't legal, bail out.
 | |
|   if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
 | |
|     return false;
 | |
| 
 | |
|   // It was legal, so commit it.
 | |
|   AddrMode = TestAddrMode;
 | |
| 
 | |
|   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
 | |
|   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
 | |
|   // X*Scale + C*Scale to addr mode.
 | |
|   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
 | |
|   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
 | |
|       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
 | |
|     TestAddrMode.ScaledReg = AddLHS;
 | |
|     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
 | |
| 
 | |
|     // If this addressing mode is legal, commit it and remember that we folded
 | |
|     // this instruction.
 | |
|     if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
 | |
|       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
 | |
|       AddrMode = TestAddrMode;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, not (x+c)*scale, just return what we have.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// MightBeFoldableInst - This is a little filter, which returns true if an
 | |
| /// addressing computation involving I might be folded into a load/store
 | |
| /// accessing it.  This doesn't need to be perfect, but needs to accept at least
 | |
| /// the set of instructions that MatchOperationAddr can.
 | |
| static bool MightBeFoldableInst(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     // Don't touch identity bitcasts.
 | |
|     if (I->getType() == I->getOperand(0)->getType())
 | |
|       return false;
 | |
|     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
 | |
|   case Instruction::PtrToInt:
 | |
|     // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | |
|     return true;
 | |
|   case Instruction::IntToPtr:
 | |
|     // We know the input is intptr_t, so this is foldable.
 | |
|     return true;
 | |
|   case Instruction::Add:
 | |
|     return true;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl:
 | |
|     // Can only handle X*C and X << C.
 | |
|     return isa<ConstantInt>(I->getOperand(1));
 | |
|   case Instruction::GetElementPtr:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Hepler class to perform type promotion.
 | |
| class TypePromotionHelper {
 | |
|   /// \brief Utility function to check whether or not a sign or zero extension
 | |
|   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
 | |
|   /// either using the operands of \p Inst or promoting \p Inst.
 | |
|   /// The type of the extension is defined by \p IsSExt.
 | |
|   /// In other words, check if:
 | |
|   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
 | |
|   /// #1 Promotion applies:
 | |
|   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
 | |
|   /// #2 Operand reuses:
 | |
|   /// ext opnd1 to ConsideredExtType.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
 | |
|                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
 | |
| 
 | |
|   /// \brief Utility function to determine if \p OpIdx should be promoted when
 | |
|   /// promoting \p Inst.
 | |
|   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
 | |
|     if (isa<SelectInst>(Inst) && OpIdx == 0)
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Utility function to promote the operand of \p Ext when this
 | |
|   /// operand is a promotable trunc or sext or zext.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   /// \p CreatedInsts[out] contains how many non-free instructions have been
 | |
|   /// created to promote the operand of Ext.
 | |
|   /// Should never be called directly.
 | |
|   /// \return The promoted value which is used instead of Ext.
 | |
|   static Value *promoteOperandForTruncAndAnyExt(Instruction *Ext,
 | |
|                                                 TypePromotionTransaction &TPT,
 | |
|                                                 InstrToOrigTy &PromotedInsts,
 | |
|                                                 unsigned &CreatedInsts);
 | |
| 
 | |
|   /// \brief Utility function to promote the operand of \p Ext when this
 | |
|   /// operand is promotable and is not a supported trunc or sext.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   /// \p CreatedInsts[out] contains how many non-free instructions have been
 | |
|   /// created to promote the operand of Ext.
 | |
|   /// Should never be called directly.
 | |
|   /// \return The promoted value which is used instead of Ext.
 | |
|   static Value *promoteOperandForOther(Instruction *Ext,
 | |
|                                        TypePromotionTransaction &TPT,
 | |
|                                        InstrToOrigTy &PromotedInsts,
 | |
|                                        unsigned &CreatedInsts, bool IsSExt);
 | |
| 
 | |
|   /// \see promoteOperandForOther.
 | |
|   static Value *signExtendOperandForOther(Instruction *Ext,
 | |
|                                           TypePromotionTransaction &TPT,
 | |
|                                           InstrToOrigTy &PromotedInsts,
 | |
|                                           unsigned &CreatedInsts) {
 | |
|     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, true);
 | |
|   }
 | |
| 
 | |
|   /// \see promoteOperandForOther.
 | |
|   static Value *zeroExtendOperandForOther(Instruction *Ext,
 | |
|                                           TypePromotionTransaction &TPT,
 | |
|                                           InstrToOrigTy &PromotedInsts,
 | |
|                                           unsigned &CreatedInsts) {
 | |
|     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, false);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Type for the utility function that promotes the operand of Ext.
 | |
|   typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
 | |
|                            InstrToOrigTy &PromotedInsts,
 | |
|                            unsigned &CreatedInsts);
 | |
|   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
 | |
|   /// action to promote the operand of \p Ext instead of using Ext.
 | |
|   /// \return NULL if no promotable action is possible with the current
 | |
|   /// sign extension.
 | |
|   /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
 | |
|   /// the others CodeGenPrepare optimizations. This information is important
 | |
|   /// because we do not want to promote these instructions as CodeGenPrepare
 | |
|   /// will reinsert them later. Thus creating an infinite loop: create/remove.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs,
 | |
|                           const TargetLowering &TLI,
 | |
|                           const InstrToOrigTy &PromotedInsts);
 | |
| };
 | |
| 
 | |
| bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
 | |
|                                         Type *ConsideredExtType,
 | |
|                                         const InstrToOrigTy &PromotedInsts,
 | |
|                                         bool IsSExt) {
 | |
|   // We can always get through zext.
 | |
|   if (isa<ZExtInst>(Inst))
 | |
|     return true;
 | |
| 
 | |
|   // sext(sext) is ok too.
 | |
|   if (IsSExt && isa<SExtInst>(Inst))
 | |
|     return true;
 | |
| 
 | |
|   // We can get through binary operator, if it is legal. In other words, the
 | |
|   // binary operator must have a nuw or nsw flag.
 | |
|   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
 | |
|   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
 | |
|       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
 | |
|        (IsSExt && BinOp->hasNoSignedWrap())))
 | |
|     return true;
 | |
| 
 | |
|   // Check if we can do the following simplification.
 | |
|   // ext(trunc(opnd)) --> ext(opnd)
 | |
|   if (!isa<TruncInst>(Inst))
 | |
|     return false;
 | |
| 
 | |
|   Value *OpndVal = Inst->getOperand(0);
 | |
|   // Check if we can use this operand in the extension.
 | |
|   // If the type is larger than the result type of the extension,
 | |
|   // we cannot.
 | |
|   if (OpndVal->getType()->getIntegerBitWidth() >
 | |
|       ConsideredExtType->getIntegerBitWidth())
 | |
|     return false;
 | |
| 
 | |
|   // If the operand of the truncate is not an instruction, we will not have
 | |
|   // any information on the dropped bits.
 | |
|   // (Actually we could for constant but it is not worth the extra logic).
 | |
|   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
 | |
|   if (!Opnd)
 | |
|     return false;
 | |
| 
 | |
|   // Check if the source of the type is narrow enough.
 | |
|   // I.e., check that trunc just drops extended bits of the same kind of
 | |
|   // the extension.
 | |
|   // #1 get the type of the operand and check the kind of the extended bits.
 | |
|   const Type *OpndType;
 | |
|   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
 | |
|   if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt)
 | |
|     OpndType = It->second.Ty;
 | |
|   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
 | |
|     OpndType = Opnd->getOperand(0)->getType();
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // #2 check that the truncate just drop extended bits.
 | |
|   if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| TypePromotionHelper::Action TypePromotionHelper::getAction(
 | |
|     Instruction *Ext, const SetOfInstrs &InsertedTruncs,
 | |
|     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
 | |
|   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
 | |
|          "Unexpected instruction type");
 | |
|   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
 | |
|   Type *ExtTy = Ext->getType();
 | |
|   bool IsSExt = isa<SExtInst>(Ext);
 | |
|   // If the operand of the extension is not an instruction, we cannot
 | |
|   // get through.
 | |
|   // If it, check we can get through.
 | |
|   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Do not promote if the operand has been added by codegenprepare.
 | |
|   // Otherwise, it means we are undoing an optimization that is likely to be
 | |
|   // redone, thus causing potential infinite loop.
 | |
|   if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd))
 | |
|     return nullptr;
 | |
| 
 | |
|   // SExt or Trunc instructions.
 | |
|   // Return the related handler.
 | |
|   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
 | |
|       isa<ZExtInst>(ExtOpnd))
 | |
|     return promoteOperandForTruncAndAnyExt;
 | |
| 
 | |
|   // Regular instruction.
 | |
|   // Abort early if we will have to insert non-free instructions.
 | |
|   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
 | |
|     return nullptr;
 | |
|   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
 | |
|     llvm::Instruction *SExt, TypePromotionTransaction &TPT,
 | |
|     InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
 | |
|   // By construction, the operand of SExt is an instruction. Otherwise we cannot
 | |
|   // get through it and this method should not be called.
 | |
|   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
 | |
|   Value *ExtVal = SExt;
 | |
|   if (isa<ZExtInst>(SExtOpnd)) {
 | |
|     // Replace s|zext(zext(opnd))
 | |
|     // => zext(opnd).
 | |
|     Value *ZExt =
 | |
|         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
 | |
|     TPT.replaceAllUsesWith(SExt, ZExt);
 | |
|     TPT.eraseInstruction(SExt);
 | |
|     ExtVal = ZExt;
 | |
|   } else {
 | |
|     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
 | |
|     // => z|sext(opnd).
 | |
|     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
 | |
|   }
 | |
|   CreatedInsts = 0;
 | |
| 
 | |
|   // Remove dead code.
 | |
|   if (SExtOpnd->use_empty())
 | |
|     TPT.eraseInstruction(SExtOpnd);
 | |
| 
 | |
|   // Check if the extension is still needed.
 | |
|   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
 | |
|   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType())
 | |
|     return ExtVal;
 | |
| 
 | |
|   // At this point we have: ext ty opnd to ty.
 | |
|   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
 | |
|   Value *NextVal = ExtInst->getOperand(0);
 | |
|   TPT.eraseInstruction(ExtInst, NextVal);
 | |
|   return NextVal;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionHelper::promoteOperandForOther(
 | |
|     Instruction *Ext, TypePromotionTransaction &TPT,
 | |
|     InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, bool IsSExt) {
 | |
|   // By construction, the operand of Ext is an instruction. Otherwise we cannot
 | |
|   // get through it and this method should not be called.
 | |
|   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
 | |
|   CreatedInsts = 0;
 | |
|   if (!ExtOpnd->hasOneUse()) {
 | |
|     // ExtOpnd will be promoted.
 | |
|     // All its uses, but Ext, will need to use a truncated value of the
 | |
|     // promoted version.
 | |
|     // Create the truncate now.
 | |
|     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
 | |
|     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
 | |
|       ITrunc->removeFromParent();
 | |
|       // Insert it just after the definition.
 | |
|       ITrunc->insertAfter(ExtOpnd);
 | |
|     }
 | |
| 
 | |
|     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
 | |
|     // Restore the operand of Ext (which has been replace by the previous call
 | |
|     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
 | |
|     TPT.setOperand(Ext, 0, ExtOpnd);
 | |
|   }
 | |
| 
 | |
|   // Get through the Instruction:
 | |
|   // 1. Update its type.
 | |
|   // 2. Replace the uses of Ext by Inst.
 | |
|   // 3. Extend each operand that needs to be extended.
 | |
| 
 | |
|   // Remember the original type of the instruction before promotion.
 | |
|   // This is useful to know that the high bits are sign extended bits.
 | |
|   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
 | |
|       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
 | |
|   // Step #1.
 | |
|   TPT.mutateType(ExtOpnd, Ext->getType());
 | |
|   // Step #2.
 | |
|   TPT.replaceAllUsesWith(Ext, ExtOpnd);
 | |
|   // Step #3.
 | |
|   Instruction *ExtForOpnd = Ext;
 | |
| 
 | |
|   DEBUG(dbgs() << "Propagate Ext to operands\n");
 | |
|   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
 | |
|        ++OpIdx) {
 | |
|     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
 | |
|     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
 | |
|         !shouldExtOperand(ExtOpnd, OpIdx)) {
 | |
|       DEBUG(dbgs() << "No need to propagate\n");
 | |
|       continue;
 | |
|     }
 | |
|     // Check if we can statically extend the operand.
 | |
|     Value *Opnd = ExtOpnd->getOperand(OpIdx);
 | |
|     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
 | |
|       DEBUG(dbgs() << "Statically extend\n");
 | |
|       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
 | |
|       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
 | |
|                             : Cst->getValue().zext(BitWidth);
 | |
|       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
 | |
|       continue;
 | |
|     }
 | |
|     // UndefValue are typed, so we have to statically sign extend them.
 | |
|     if (isa<UndefValue>(Opnd)) {
 | |
|       DEBUG(dbgs() << "Statically extend\n");
 | |
|       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we have to explicity sign extend the operand.
 | |
|     // Check if Ext was reused to extend an operand.
 | |
|     if (!ExtForOpnd) {
 | |
|       // If yes, create a new one.
 | |
|       DEBUG(dbgs() << "More operands to ext\n");
 | |
|       ExtForOpnd =
 | |
|           cast<Instruction>(IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
 | |
|                                    : TPT.createZExt(Ext, Opnd, Ext->getType()));
 | |
|       ++CreatedInsts;
 | |
|     }
 | |
| 
 | |
|     TPT.setOperand(ExtForOpnd, 0, Opnd);
 | |
| 
 | |
|     // Move the sign extension before the insertion point.
 | |
|     TPT.moveBefore(ExtForOpnd, ExtOpnd);
 | |
|     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
 | |
|     // If more sext are required, new instructions will have to be created.
 | |
|     ExtForOpnd = nullptr;
 | |
|   }
 | |
|   if (ExtForOpnd == Ext) {
 | |
|     DEBUG(dbgs() << "Extension is useless now\n");
 | |
|     TPT.eraseInstruction(Ext);
 | |
|   }
 | |
|   return ExtOpnd;
 | |
| }
 | |
| 
 | |
| /// IsPromotionProfitable - Check whether or not promoting an instruction
 | |
| /// to a wider type was profitable.
 | |
| /// \p MatchedSize gives the number of instructions that have been matched
 | |
| /// in the addressing mode after the promotion was applied.
 | |
| /// \p SizeWithPromotion gives the number of created instructions for
 | |
| /// the promotion plus the number of instructions that have been
 | |
| /// matched in the addressing mode before the promotion.
 | |
| /// \p PromotedOperand is the value that has been promoted.
 | |
| /// \return True if the promotion is profitable, false otherwise.
 | |
| bool
 | |
| AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
 | |
|                                              unsigned SizeWithPromotion,
 | |
|                                              Value *PromotedOperand) const {
 | |
|   // We folded less instructions than what we created to promote the operand.
 | |
|   // This is not profitable.
 | |
|   if (MatchedSize < SizeWithPromotion)
 | |
|     return false;
 | |
|   if (MatchedSize > SizeWithPromotion)
 | |
|     return true;
 | |
|   // The promotion is neutral but it may help folding the sign extension in
 | |
|   // loads for instance.
 | |
|   // Check that we did not create an illegal instruction.
 | |
|   Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
 | |
|   if (!PromotedInst)
 | |
|     return false;
 | |
|   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
 | |
|   // If the ISDOpcode is undefined, it was undefined before the promotion.
 | |
|   if (!ISDOpcode)
 | |
|     return true;
 | |
|   // Otherwise, check if the promoted instruction is legal or not.
 | |
|   return TLI.isOperationLegalOrCustom(
 | |
|       ISDOpcode, TLI.getValueType(PromotedInst->getType()));
 | |
| }
 | |
| 
 | |
| /// MatchOperationAddr - Given an instruction or constant expr, see if we can
 | |
| /// fold the operation into the addressing mode.  If so, update the addressing
 | |
| /// mode and return true, otherwise return false without modifying AddrMode.
 | |
| /// If \p MovedAway is not NULL, it contains the information of whether or
 | |
| /// not AddrInst has to be folded into the addressing mode on success.
 | |
| /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
 | |
| /// because it has been moved away.
 | |
| /// Thus AddrInst must not be added in the matched instructions.
 | |
| /// This state can happen when AddrInst is a sext, since it may be moved away.
 | |
| /// Therefore, AddrInst may not be valid when MovedAway is true and it must
 | |
| /// not be referenced anymore.
 | |
| bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
 | |
|                                                unsigned Depth,
 | |
|                                                bool *MovedAway) {
 | |
|   // Avoid exponential behavior on extremely deep expression trees.
 | |
|   if (Depth >= 5) return false;
 | |
| 
 | |
|   // By default, all matched instructions stay in place.
 | |
|   if (MovedAway)
 | |
|     *MovedAway = false;
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::PtrToInt:
 | |
|     // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | |
|     return MatchAddr(AddrInst->getOperand(0), Depth);
 | |
|   case Instruction::IntToPtr:
 | |
|     // This inttoptr is a no-op if the integer type is pointer sized.
 | |
|     if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
 | |
|         TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
 | |
|       return MatchAddr(AddrInst->getOperand(0), Depth);
 | |
|     return false;
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     // BitCast is always a noop, and we can handle it as long as it is
 | |
|     // int->int or pointer->pointer (we don't want int<->fp or something).
 | |
|     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
 | |
|          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
 | |
|         // Don't touch identity bitcasts.  These were probably put here by LSR,
 | |
|         // and we don't want to mess around with them.  Assume it knows what it
 | |
|         // is doing.
 | |
|         AddrInst->getOperand(0)->getType() != AddrInst->getType())
 | |
|       return MatchAddr(AddrInst->getOperand(0), Depth);
 | |
|     return false;
 | |
|   case Instruction::Add: {
 | |
|     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
|     // Start a transaction at this point.
 | |
|     // The LHS may match but not the RHS.
 | |
|     // Therefore, we need a higher level restoration point to undo partially
 | |
|     // matched operation.
 | |
|     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|         TPT.getRestorationPoint();
 | |
| 
 | |
|     if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
 | |
|         MatchAddr(AddrInst->getOperand(0), Depth+1))
 | |
|       return true;
 | |
| 
 | |
|     // Restore the old addr mode info.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     TPT.rollback(LastKnownGood);
 | |
| 
 | |
|     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
 | |
|     if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
 | |
|         MatchAddr(AddrInst->getOperand(1), Depth+1))
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise we definitely can't merge the ADD in.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     TPT.rollback(LastKnownGood);
 | |
|     break;
 | |
|   }
 | |
|   //case Instruction::Or:
 | |
|   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
 | |
|   //break;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl: {
 | |
|     // Can only handle X*C and X << C.
 | |
|     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | |
|     if (!RHS)
 | |
|       return false;
 | |
|     int64_t Scale = RHS->getSExtValue();
 | |
|     if (Opcode == Instruction::Shl)
 | |
|       Scale = 1LL << Scale;
 | |
| 
 | |
|     return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
 | |
|   }
 | |
|   case Instruction::GetElementPtr: {
 | |
|     // Scan the GEP.  We check it if it contains constant offsets and at most
 | |
|     // one variable offset.
 | |
|     int VariableOperand = -1;
 | |
|     unsigned VariableScale = 0;
 | |
| 
 | |
|     int64_t ConstantOffset = 0;
 | |
|     const DataLayout *TD = TLI.getDataLayout();
 | |
|     gep_type_iterator GTI = gep_type_begin(AddrInst);
 | |
|     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         const StructLayout *SL = TD->getStructLayout(STy);
 | |
|         unsigned Idx =
 | |
|           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
 | |
|         ConstantOffset += SL->getElementOffset(Idx);
 | |
|       } else {
 | |
|         uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
 | |
|           ConstantOffset += CI->getSExtValue()*TypeSize;
 | |
|         } else if (TypeSize) {  // Scales of zero don't do anything.
 | |
|           // We only allow one variable index at the moment.
 | |
|           if (VariableOperand != -1)
 | |
|             return false;
 | |
| 
 | |
|           // Remember the variable index.
 | |
|           VariableOperand = i;
 | |
|           VariableScale = TypeSize;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // A common case is for the GEP to only do a constant offset.  In this case,
 | |
|     // just add it to the disp field and check validity.
 | |
|     if (VariableOperand == -1) {
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
 | |
|         // Check to see if we can fold the base pointer in too.
 | |
|         if (MatchAddr(AddrInst->getOperand(0), Depth+1))
 | |
|           return true;
 | |
|       }
 | |
|       AddrMode.BaseOffs -= ConstantOffset;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Save the valid addressing mode in case we can't match.
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     // See if the scale and offset amount is valid for this target.
 | |
|     AddrMode.BaseOffs += ConstantOffset;
 | |
| 
 | |
|     // Match the base operand of the GEP.
 | |
|     if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
 | |
|       // If it couldn't be matched, just stuff the value in a register.
 | |
|       if (AddrMode.HasBaseReg) {
 | |
|         AddrMode = BackupAddrMode;
 | |
|         AddrModeInsts.resize(OldSize);
 | |
|         return false;
 | |
|       }
 | |
|       AddrMode.HasBaseReg = true;
 | |
|       AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     // Match the remaining variable portion of the GEP.
 | |
|     if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
 | |
|                           Depth)) {
 | |
|       // If it couldn't be matched, try stuffing the base into a register
 | |
|       // instead of matching it, and retrying the match of the scale.
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|       if (AddrMode.HasBaseReg)
 | |
|         return false;
 | |
|       AddrMode.HasBaseReg = true;
 | |
|       AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
 | |
|                             VariableScale, Depth)) {
 | |
|         // If even that didn't work, bail.
 | |
|         AddrMode = BackupAddrMode;
 | |
|         AddrModeInsts.resize(OldSize);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::ZExt: {
 | |
|     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
 | |
|     if (!Ext)
 | |
|       return false;
 | |
| 
 | |
|     // Try to move this ext out of the way of the addressing mode.
 | |
|     // Ask for a method for doing so.
 | |
|     TypePromotionHelper::Action TPH =
 | |
|         TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts);
 | |
|     if (!TPH)
 | |
|       return false;
 | |
| 
 | |
|     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|         TPT.getRestorationPoint();
 | |
|     unsigned CreatedInsts = 0;
 | |
|     Value *PromotedOperand = TPH(Ext, TPT, PromotedInsts, CreatedInsts);
 | |
|     // SExt has been moved away.
 | |
|     // Thus either it will be rematched later in the recursive calls or it is
 | |
|     // gone. Anyway, we must not fold it into the addressing mode at this point.
 | |
|     // E.g.,
 | |
|     // op = add opnd, 1
 | |
|     // idx = ext op
 | |
|     // addr = gep base, idx
 | |
|     // is now:
 | |
|     // promotedOpnd = ext opnd            <- no match here
 | |
|     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
 | |
|     // addr = gep base, op                <- match
 | |
|     if (MovedAway)
 | |
|       *MovedAway = true;
 | |
| 
 | |
|     assert(PromotedOperand &&
 | |
|            "TypePromotionHelper should have filtered out those cases");
 | |
| 
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     if (!MatchAddr(PromotedOperand, Depth) ||
 | |
|         !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
 | |
|                                PromotedOperand)) {
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
 | |
|       TPT.rollback(LastKnownGood);
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MatchAddr - If we can, try to add the value of 'Addr' into the current
 | |
| /// addressing mode.  If Addr can't be added to AddrMode this returns false and
 | |
| /// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
 | |
| /// or intptr_t for the target.
 | |
| ///
 | |
| bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
 | |
|   // Start a transaction at this point that we will rollback if the matching
 | |
|   // fails.
 | |
|   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|       TPT.getRestorationPoint();
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
 | |
|     // Fold in immediates if legal for the target.
 | |
|     AddrMode.BaseOffs += CI->getSExtValue();
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|       return true;
 | |
|     AddrMode.BaseOffs -= CI->getSExtValue();
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
 | |
|     // If this is a global variable, try to fold it into the addressing mode.
 | |
|     if (!AddrMode.BaseGV) {
 | |
|       AddrMode.BaseGV = GV;
 | |
|       if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|         return true;
 | |
|       AddrMode.BaseGV = nullptr;
 | |
|     }
 | |
|   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     // Check to see if it is possible to fold this operation.
 | |
|     bool MovedAway = false;
 | |
|     if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
 | |
|       // This instruction may have been move away. If so, there is nothing
 | |
|       // to check here.
 | |
|       if (MovedAway)
 | |
|         return true;
 | |
|       // Okay, it's possible to fold this.  Check to see if it is actually
 | |
|       // *profitable* to do so.  We use a simple cost model to avoid increasing
 | |
|       // register pressure too much.
 | |
|       if (I->hasOneUse() ||
 | |
|           IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
 | |
|         AddrModeInsts.push_back(I);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // It isn't profitable to do this, roll back.
 | |
|       //cerr << "NOT FOLDING: " << *I;
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|       TPT.rollback(LastKnownGood);
 | |
|     }
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | |
|     if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
 | |
|       return true;
 | |
|     TPT.rollback(LastKnownGood);
 | |
|   } else if (isa<ConstantPointerNull>(Addr)) {
 | |
|     // Null pointer gets folded without affecting the addressing mode.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Worse case, the target should support [reg] addressing modes. :)
 | |
|   if (!AddrMode.HasBaseReg) {
 | |
|     AddrMode.HasBaseReg = true;
 | |
|     AddrMode.BaseReg = Addr;
 | |
|     // Still check for legality in case the target supports [imm] but not [i+r].
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|       return true;
 | |
|     AddrMode.HasBaseReg = false;
 | |
|     AddrMode.BaseReg = nullptr;
 | |
|   }
 | |
| 
 | |
|   // If the base register is already taken, see if we can do [r+r].
 | |
|   if (AddrMode.Scale == 0) {
 | |
|     AddrMode.Scale = 1;
 | |
|     AddrMode.ScaledReg = Addr;
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|       return true;
 | |
|     AddrMode.Scale = 0;
 | |
|     AddrMode.ScaledReg = nullptr;
 | |
|   }
 | |
|   // Couldn't match.
 | |
|   TPT.rollback(LastKnownGood);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
 | |
| /// inline asm call are due to memory operands.  If so, return true, otherwise
 | |
| /// return false.
 | |
| static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
 | |
|                                     const TargetLowering &TLI) {
 | |
|   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     // If this asm operand is our Value*, and if it isn't an indirect memory
 | |
|     // operand, we can't fold it!
 | |
|     if (OpInfo.CallOperandVal == OpVal &&
 | |
|         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
 | |
|          !OpInfo.isIndirect))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
 | |
| /// memory use.  If we find an obviously non-foldable instruction, return true.
 | |
| /// Add the ultimately found memory instructions to MemoryUses.
 | |
| static bool FindAllMemoryUses(Instruction *I,
 | |
|                 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
 | |
|                               SmallPtrSetImpl<Instruction*> &ConsideredInsts,
 | |
|                               const TargetLowering &TLI) {
 | |
|   // If we already considered this instruction, we're done.
 | |
|   if (!ConsideredInsts.insert(I).second)
 | |
|     return false;
 | |
| 
 | |
|   // If this is an obviously unfoldable instruction, bail out.
 | |
|   if (!MightBeFoldableInst(I))
 | |
|     return true;
 | |
| 
 | |
|   // Loop over all the uses, recursively processing them.
 | |
|   for (Use &U : I->uses()) {
 | |
|     Instruction *UserI = cast<Instruction>(U.getUser());
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
 | |
|       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
 | |
|       unsigned opNo = U.getOperandNo();
 | |
|       if (opNo == 0) return true; // Storing addr, not into addr.
 | |
|       MemoryUses.push_back(std::make_pair(SI, opNo));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
 | |
|       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
 | |
|       if (!IA) return true;
 | |
| 
 | |
|       // If this is a memory operand, we're cool, otherwise bail out.
 | |
|       if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
 | |
|         return true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
 | |
| /// the use site that we're folding it into.  If so, there is no cost to
 | |
| /// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
 | |
| /// that we know are live at the instruction already.
 | |
| bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
 | |
|                                                    Value *KnownLive2) {
 | |
|   // If Val is either of the known-live values, we know it is live!
 | |
|   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
 | |
|     return true;
 | |
| 
 | |
|   // All values other than instructions and arguments (e.g. constants) are live.
 | |
|   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
 | |
| 
 | |
|   // If Val is a constant sized alloca in the entry block, it is live, this is
 | |
|   // true because it is just a reference to the stack/frame pointer, which is
 | |
|   // live for the whole function.
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
 | |
|     if (AI->isStaticAlloca())
 | |
|       return true;
 | |
| 
 | |
|   // Check to see if this value is already used in the memory instruction's
 | |
|   // block.  If so, it's already live into the block at the very least, so we
 | |
|   // can reasonably fold it.
 | |
|   return Val->isUsedInBasicBlock(MemoryInst->getParent());
 | |
| }
 | |
| 
 | |
| /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
 | |
| /// mode of the machine to fold the specified instruction into a load or store
 | |
| /// that ultimately uses it.  However, the specified instruction has multiple
 | |
| /// uses.  Given this, it may actually increase register pressure to fold it
 | |
| /// into the load.  For example, consider this code:
 | |
| ///
 | |
| ///     X = ...
 | |
| ///     Y = X+1
 | |
| ///     use(Y)   -> nonload/store
 | |
| ///     Z = Y+1
 | |
| ///     load Z
 | |
| ///
 | |
| /// In this case, Y has multiple uses, and can be folded into the load of Z
 | |
| /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
 | |
| /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
 | |
| /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
 | |
| /// number of computations either.
 | |
| ///
 | |
| /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
 | |
| /// X was live across 'load Z' for other reasons, we actually *would* want to
 | |
| /// fold the addressing mode in the Z case.  This would make Y die earlier.
 | |
| bool AddressingModeMatcher::
 | |
| IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
 | |
|                                      ExtAddrMode &AMAfter) {
 | |
|   if (IgnoreProfitability) return true;
 | |
| 
 | |
|   // AMBefore is the addressing mode before this instruction was folded into it,
 | |
|   // and AMAfter is the addressing mode after the instruction was folded.  Get
 | |
|   // the set of registers referenced by AMAfter and subtract out those
 | |
|   // referenced by AMBefore: this is the set of values which folding in this
 | |
|   // address extends the lifetime of.
 | |
|   //
 | |
|   // Note that there are only two potential values being referenced here,
 | |
|   // BaseReg and ScaleReg (global addresses are always available, as are any
 | |
|   // folded immediates).
 | |
|   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
 | |
| 
 | |
|   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
 | |
|   // lifetime wasn't extended by adding this instruction.
 | |
|   if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | |
|     BaseReg = nullptr;
 | |
|   if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | |
|     ScaledReg = nullptr;
 | |
| 
 | |
|   // If folding this instruction (and it's subexprs) didn't extend any live
 | |
|   // ranges, we're ok with it.
 | |
|   if (!BaseReg && !ScaledReg)
 | |
|     return true;
 | |
| 
 | |
|   // If all uses of this instruction are ultimately load/store/inlineasm's,
 | |
|   // check to see if their addressing modes will include this instruction.  If
 | |
|   // so, we can fold it into all uses, so it doesn't matter if it has multiple
 | |
|   // uses.
 | |
|   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
 | |
|   SmallPtrSet<Instruction*, 16> ConsideredInsts;
 | |
|   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
 | |
|     return false;  // Has a non-memory, non-foldable use!
 | |
| 
 | |
|   // Now that we know that all uses of this instruction are part of a chain of
 | |
|   // computation involving only operations that could theoretically be folded
 | |
|   // into a memory use, loop over each of these uses and see if they could
 | |
|   // *actually* fold the instruction.
 | |
|   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
 | |
|   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
 | |
|     Instruction *User = MemoryUses[i].first;
 | |
|     unsigned OpNo = MemoryUses[i].second;
 | |
| 
 | |
|     // Get the access type of this use.  If the use isn't a pointer, we don't
 | |
|     // know what it accesses.
 | |
|     Value *Address = User->getOperand(OpNo);
 | |
|     if (!Address->getType()->isPointerTy())
 | |
|       return false;
 | |
|     Type *AddressAccessTy = Address->getType()->getPointerElementType();
 | |
| 
 | |
|     // Do a match against the root of this address, ignoring profitability. This
 | |
|     // will tell us if the addressing mode for the memory operation will
 | |
|     // *actually* cover the shared instruction.
 | |
|     ExtAddrMode Result;
 | |
|     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|         TPT.getRestorationPoint();
 | |
|     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
 | |
|                                   MemoryInst, Result, InsertedTruncs,
 | |
|                                   PromotedInsts, TPT);
 | |
|     Matcher.IgnoreProfitability = true;
 | |
|     bool Success = Matcher.MatchAddr(Address, 0);
 | |
|     (void)Success; assert(Success && "Couldn't select *anything*?");
 | |
| 
 | |
|     // The match was to check the profitability, the changes made are not
 | |
|     // part of the original matcher. Therefore, they should be dropped
 | |
|     // otherwise the original matcher will not present the right state.
 | |
|     TPT.rollback(LastKnownGood);
 | |
| 
 | |
|     // If the match didn't cover I, then it won't be shared by it.
 | |
|     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
 | |
|                   I) == MatchedAddrModeInsts.end())
 | |
|       return false;
 | |
| 
 | |
|     MatchedAddrModeInsts.clear();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// IsNonLocalValue - Return true if the specified values are defined in a
 | |
| /// different basic block than BB.
 | |
| static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() != BB;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// OptimizeMemoryInst - Load and Store Instructions often have
 | |
| /// addressing modes that can do significant amounts of computation.  As such,
 | |
| /// instruction selection will try to get the load or store to do as much
 | |
| /// computation as possible for the program.  The problem is that isel can only
 | |
| /// see within a single block.  As such, we sink as much legal addressing mode
 | |
| /// stuff into the block as possible.
 | |
| ///
 | |
| /// This method is used to optimize both load/store and inline asms with memory
 | |
| /// operands.
 | |
| bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | |
|                                         Type *AccessTy) {
 | |
|   Value *Repl = Addr;
 | |
| 
 | |
|   // Try to collapse single-value PHI nodes.  This is necessary to undo
 | |
|   // unprofitable PRE transformations.
 | |
|   SmallVector<Value*, 8> worklist;
 | |
|   SmallPtrSet<Value*, 16> Visited;
 | |
|   worklist.push_back(Addr);
 | |
| 
 | |
|   // Use a worklist to iteratively look through PHI nodes, and ensure that
 | |
|   // the addressing mode obtained from the non-PHI roots of the graph
 | |
|   // are equivalent.
 | |
|   Value *Consensus = nullptr;
 | |
|   unsigned NumUsesConsensus = 0;
 | |
|   bool IsNumUsesConsensusValid = false;
 | |
|   SmallVector<Instruction*, 16> AddrModeInsts;
 | |
|   ExtAddrMode AddrMode;
 | |
|   TypePromotionTransaction TPT;
 | |
|   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|       TPT.getRestorationPoint();
 | |
|   while (!worklist.empty()) {
 | |
|     Value *V = worklist.back();
 | |
|     worklist.pop_back();
 | |
| 
 | |
|     // Break use-def graph loops.
 | |
|     if (!Visited.insert(V).second) {
 | |
|       Consensus = nullptr;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // For a PHI node, push all of its incoming values.
 | |
|     if (PHINode *P = dyn_cast<PHINode>(V)) {
 | |
|       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
 | |
|         worklist.push_back(P->getIncomingValue(i));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // For non-PHIs, determine the addressing mode being computed.
 | |
|     SmallVector<Instruction*, 16> NewAddrModeInsts;
 | |
|     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
 | |
|         V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
 | |
|         PromotedInsts, TPT);
 | |
| 
 | |
|     // This check is broken into two cases with very similar code to avoid using
 | |
|     // getNumUses() as much as possible. Some values have a lot of uses, so
 | |
|     // calling getNumUses() unconditionally caused a significant compile-time
 | |
|     // regression.
 | |
|     if (!Consensus) {
 | |
|       Consensus = V;
 | |
|       AddrMode = NewAddrMode;
 | |
|       AddrModeInsts = NewAddrModeInsts;
 | |
|       continue;
 | |
|     } else if (NewAddrMode == AddrMode) {
 | |
|       if (!IsNumUsesConsensusValid) {
 | |
|         NumUsesConsensus = Consensus->getNumUses();
 | |
|         IsNumUsesConsensusValid = true;
 | |
|       }
 | |
| 
 | |
|       // Ensure that the obtained addressing mode is equivalent to that obtained
 | |
|       // for all other roots of the PHI traversal.  Also, when choosing one
 | |
|       // such root as representative, select the one with the most uses in order
 | |
|       // to keep the cost modeling heuristics in AddressingModeMatcher
 | |
|       // applicable.
 | |
|       unsigned NumUses = V->getNumUses();
 | |
|       if (NumUses > NumUsesConsensus) {
 | |
|         Consensus = V;
 | |
|         NumUsesConsensus = NumUses;
 | |
|         AddrModeInsts = NewAddrModeInsts;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Consensus = nullptr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If the addressing mode couldn't be determined, or if multiple different
 | |
|   // ones were determined, bail out now.
 | |
|   if (!Consensus) {
 | |
|     TPT.rollback(LastKnownGood);
 | |
|     return false;
 | |
|   }
 | |
|   TPT.commit();
 | |
| 
 | |
|   // Check to see if any of the instructions supersumed by this addr mode are
 | |
|   // non-local to I's BB.
 | |
|   bool AnyNonLocal = false;
 | |
|   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
 | |
|     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
 | |
|       AnyNonLocal = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all the instructions matched are already in this BB, don't do anything.
 | |
|   if (!AnyNonLocal) {
 | |
|     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Insert this computation right after this user.  Since our caller is
 | |
|   // scanning from the top of the BB to the bottom, reuse of the expr are
 | |
|   // guaranteed to happen later.
 | |
|   IRBuilder<> Builder(MemoryInst);
 | |
| 
 | |
|   // Now that we determined the addressing expression we want to use and know
 | |
|   // that we have to sink it into this block.  Check to see if we have already
 | |
|   // done this for some other load/store instr in this block.  If so, reuse the
 | |
|   // computation.
 | |
|   Value *&SunkAddr = SunkAddrs[Addr];
 | |
|   if (SunkAddr) {
 | |
|     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst << "\n");
 | |
|     if (SunkAddr->getType() != Addr->getType())
 | |
|       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
 | |
|   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
 | |
|                TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) {
 | |
|     // By default, we use the GEP-based method when AA is used later. This
 | |
|     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
 | |
|     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst << "\n");
 | |
|     Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
 | |
|     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
 | |
| 
 | |
|     // First, find the pointer.
 | |
|     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
 | |
|       ResultPtr = AddrMode.BaseReg;
 | |
|       AddrMode.BaseReg = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
 | |
|       // We can't add more than one pointer together, nor can we scale a
 | |
|       // pointer (both of which seem meaningless).
 | |
|       if (ResultPtr || AddrMode.Scale != 1)
 | |
|         return false;
 | |
| 
 | |
|       ResultPtr = AddrMode.ScaledReg;
 | |
|       AddrMode.Scale = 0;
 | |
|     }
 | |
| 
 | |
|     if (AddrMode.BaseGV) {
 | |
|       if (ResultPtr)
 | |
|         return false;
 | |
| 
 | |
|       ResultPtr = AddrMode.BaseGV;
 | |
|     }
 | |
| 
 | |
|     // If the real base value actually came from an inttoptr, then the matcher
 | |
|     // will look through it and provide only the integer value. In that case,
 | |
|     // use it here.
 | |
|     if (!ResultPtr && AddrMode.BaseReg) {
 | |
|       ResultPtr =
 | |
|         Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
 | |
|       AddrMode.BaseReg = nullptr;
 | |
|     } else if (!ResultPtr && AddrMode.Scale == 1) {
 | |
|       ResultPtr =
 | |
|         Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
 | |
|       AddrMode.Scale = 0;
 | |
|     }
 | |
| 
 | |
|     if (!ResultPtr &&
 | |
|         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
 | |
|       SunkAddr = Constant::getNullValue(Addr->getType());
 | |
|     } else if (!ResultPtr) {
 | |
|       return false;
 | |
|     } else {
 | |
|       Type *I8PtrTy =
 | |
|         Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
 | |
| 
 | |
|       // Start with the base register. Do this first so that subsequent address
 | |
|       // matching finds it last, which will prevent it from trying to match it
 | |
|       // as the scaled value in case it happens to be a mul. That would be
 | |
|       // problematic if we've sunk a different mul for the scale, because then
 | |
|       // we'd end up sinking both muls.
 | |
|       if (AddrMode.BaseReg) {
 | |
|         Value *V = AddrMode.BaseReg;
 | |
|         if (V->getType() != IntPtrTy)
 | |
|           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | |
| 
 | |
|         ResultIndex = V;
 | |
|       }
 | |
| 
 | |
|       // Add the scale value.
 | |
|       if (AddrMode.Scale) {
 | |
|         Value *V = AddrMode.ScaledReg;
 | |
|         if (V->getType() == IntPtrTy) {
 | |
|           // done.
 | |
|         } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | |
|                    cast<IntegerType>(V->getType())->getBitWidth()) {
 | |
|           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | |
|         } else {
 | |
|           // It is only safe to sign extend the BaseReg if we know that the math
 | |
|           // required to create it did not overflow before we extend it. Since
 | |
|           // the original IR value was tossed in favor of a constant back when
 | |
|           // the AddrMode was created we need to bail out gracefully if widths
 | |
|           // do not match instead of extending it.
 | |
|           Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
 | |
|           if (I && (ResultIndex != AddrMode.BaseReg))
 | |
|             I->eraseFromParent();
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         if (AddrMode.Scale != 1)
 | |
|           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | |
|                                 "sunkaddr");
 | |
|         if (ResultIndex)
 | |
|           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
 | |
|         else
 | |
|           ResultIndex = V;
 | |
|       }
 | |
| 
 | |
|       // Add in the Base Offset if present.
 | |
|       if (AddrMode.BaseOffs) {
 | |
|         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | |
|         if (ResultIndex) {
 | |
|           // We need to add this separately from the scale above to help with
 | |
|           // SDAG consecutive load/store merging.
 | |
|           if (ResultPtr->getType() != I8PtrTy)
 | |
|             ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
 | |
|           ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
 | |
|         }
 | |
| 
 | |
|         ResultIndex = V;
 | |
|       }
 | |
| 
 | |
|       if (!ResultIndex) {
 | |
|         SunkAddr = ResultPtr;
 | |
|       } else {
 | |
|         if (ResultPtr->getType() != I8PtrTy)
 | |
|           ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
 | |
|         SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
 | |
|       }
 | |
| 
 | |
|       if (SunkAddr->getType() != Addr->getType())
 | |
|         SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
 | |
|     }
 | |
|   } else {
 | |
|     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst << "\n");
 | |
|     Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
 | |
|     Value *Result = nullptr;
 | |
| 
 | |
|     // Start with the base register. Do this first so that subsequent address
 | |
|     // matching finds it last, which will prevent it from trying to match it
 | |
|     // as the scaled value in case it happens to be a mul. That would be
 | |
|     // problematic if we've sunk a different mul for the scale, because then
 | |
|     // we'd end up sinking both muls.
 | |
|     if (AddrMode.BaseReg) {
 | |
|       Value *V = AddrMode.BaseReg;
 | |
|       if (V->getType()->isPointerTy())
 | |
|         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | |
|       if (V->getType() != IntPtrTy)
 | |
|         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | |
|       Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add the scale value.
 | |
|     if (AddrMode.Scale) {
 | |
|       Value *V = AddrMode.ScaledReg;
 | |
|       if (V->getType() == IntPtrTy) {
 | |
|         // done.
 | |
|       } else if (V->getType()->isPointerTy()) {
 | |
|         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | |
|       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | |
|                  cast<IntegerType>(V->getType())->getBitWidth()) {
 | |
|         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | |
|       } else {
 | |
|         // It is only safe to sign extend the BaseReg if we know that the math
 | |
|         // required to create it did not overflow before we extend it. Since
 | |
|         // the original IR value was tossed in favor of a constant back when
 | |
|         // the AddrMode was created we need to bail out gracefully if widths
 | |
|         // do not match instead of extending it.
 | |
|         Instruction *I = dyn_cast_or_null<Instruction>(Result);
 | |
|         if (I && (Result != AddrMode.BaseReg))
 | |
|           I->eraseFromParent();
 | |
|         return false;
 | |
|       }
 | |
|       if (AddrMode.Scale != 1)
 | |
|         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | |
|                               "sunkaddr");
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the BaseGV if present.
 | |
|     if (AddrMode.BaseGV) {
 | |
|       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the Base Offset if present.
 | |
|     if (AddrMode.BaseOffs) {
 | |
|       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     if (!Result)
 | |
|       SunkAddr = Constant::getNullValue(Addr->getType());
 | |
|     else
 | |
|       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
 | |
|   }
 | |
| 
 | |
|   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
 | |
| 
 | |
|   // If we have no uses, recursively delete the value and all dead instructions
 | |
|   // using it.
 | |
|   if (Repl->use_empty()) {
 | |
|     // This can cause recursive deletion, which can invalidate our iterator.
 | |
|     // Use a WeakVH to hold onto it in case this happens.
 | |
|     WeakVH IterHandle(CurInstIterator);
 | |
|     BasicBlock *BB = CurInstIterator->getParent();
 | |
| 
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
 | |
| 
 | |
|     if (IterHandle != CurInstIterator) {
 | |
|       // If the iterator instruction was recursively deleted, start over at the
 | |
|       // start of the block.
 | |
|       CurInstIterator = BB->begin();
 | |
|       SunkAddrs.clear();
 | |
|     }
 | |
|   }
 | |
|   ++NumMemoryInsts;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// OptimizeInlineAsmInst - If there are any memory operands, use
 | |
| /// OptimizeMemoryInst to sink their address computing into the block when
 | |
| /// possible / profitable.
 | |
| bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   TargetLowering::AsmOperandInfoVector
 | |
|     TargetConstraints = TLI->ParseConstraints(CS);
 | |
|   unsigned ArgNo = 0;
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI->ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         OpInfo.isIndirect) {
 | |
|       Value *OpVal = CS->getArgOperand(ArgNo++);
 | |
|       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
 | |
|     } else if (OpInfo.Type == InlineAsm::isInput)
 | |
|       ArgNo++;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
 | |
| /// basic block as the load, unless conditions are unfavorable. This allows
 | |
| /// SelectionDAG to fold the extend into the load.
 | |
| ///
 | |
| bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
 | |
|   // Look for a load being extended.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
 | |
|   if (!LI) return false;
 | |
| 
 | |
|   // If they're already in the same block, there's nothing to do.
 | |
|   if (LI->getParent() == I->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // If the load has other users and the truncate is not free, this probably
 | |
|   // isn't worthwhile.
 | |
|   if (!LI->hasOneUse() &&
 | |
|       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
 | |
|               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
 | |
|       !TLI->isTruncateFree(I->getType(), LI->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether the target supports casts folded into loads.
 | |
|   unsigned LType;
 | |
|   if (isa<ZExtInst>(I))
 | |
|     LType = ISD::ZEXTLOAD;
 | |
|   else {
 | |
|     assert(isa<SExtInst>(I) && "Unexpected ext type!");
 | |
|     LType = ISD::SEXTLOAD;
 | |
|   }
 | |
|   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
 | |
|     return false;
 | |
| 
 | |
|   // Move the extend into the same block as the load, so that SelectionDAG
 | |
|   // can fold it.
 | |
|   I->removeFromParent();
 | |
|   I->insertAfter(LI);
 | |
|   ++NumExtsMoved;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
 | |
|   BasicBlock *DefBB = I->getParent();
 | |
| 
 | |
|   // If the result of a {s|z}ext and its source are both live out, rewrite all
 | |
|   // other uses of the source with result of extension.
 | |
|   Value *Src = I->getOperand(0);
 | |
|   if (Src->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Only do this xform if truncating is free.
 | |
|   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Only safe to perform the optimization if the source is also defined in
 | |
|   // this block.
 | |
|   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
 | |
|     return false;
 | |
| 
 | |
|   bool DefIsLiveOut = false;
 | |
|   for (User *U : I->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = UI->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     DefIsLiveOut = true;
 | |
|     break;
 | |
|   }
 | |
|   if (!DefIsLiveOut)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure none of the uses are PHI nodes.
 | |
|   for (User *U : Src->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
|     BasicBlock *UserBB = UI->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     // Be conservative. We don't want this xform to end up introducing
 | |
|     // reloads just before load / store instructions.
 | |
|     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // InsertedTruncs - Only insert one trunc in each block once.
 | |
|   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Use &U : Src->uses()) {
 | |
|     Instruction *User = cast<Instruction>(U.getUser());
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // Both src and def are live in this block. Rewrite the use.
 | |
|     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
 | |
| 
 | |
|     if (!InsertedTrunc) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
 | |
|       InsertedTruncsSet.insert(InsertedTrunc);
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the {s|z}ext source with a use of the result.
 | |
|     U = InsertedTrunc;
 | |
|     ++NumExtUses;
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
 | |
| /// turned into an explicit branch.
 | |
| static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
 | |
|   // FIXME: This should use the same heuristics as IfConversion to determine
 | |
|   // whether a select is better represented as a branch.  This requires that
 | |
|   // branch probability metadata is preserved for the select, which is not the
 | |
|   // case currently.
 | |
| 
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | |
| 
 | |
|   // If the branch is predicted right, an out of order CPU can avoid blocking on
 | |
|   // the compare.  Emit cmovs on compares with a memory operand as branches to
 | |
|   // avoid stalls on the load from memory.  If the compare has more than one use
 | |
|   // there's probably another cmov or setcc around so it's not worth emitting a
 | |
|   // branch.
 | |
|   if (!Cmp)
 | |
|     return false;
 | |
| 
 | |
|   Value *CmpOp0 = Cmp->getOperand(0);
 | |
|   Value *CmpOp1 = Cmp->getOperand(1);
 | |
| 
 | |
|   // We check that the memory operand has one use to avoid uses of the loaded
 | |
|   // value directly after the compare, making branches unprofitable.
 | |
|   return Cmp->hasOneUse() &&
 | |
|          ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
 | |
|           (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// If we have a SelectInst that will likely profit from branch prediction,
 | |
| /// turn it into a branch.
 | |
| bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
 | |
|   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
 | |
| 
 | |
|   // Can we convert the 'select' to CF ?
 | |
|   if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
 | |
|     return false;
 | |
| 
 | |
|   TargetLowering::SelectSupportKind SelectKind;
 | |
|   if (VectorCond)
 | |
|     SelectKind = TargetLowering::VectorMaskSelect;
 | |
|   else if (SI->getType()->isVectorTy())
 | |
|     SelectKind = TargetLowering::ScalarCondVectorVal;
 | |
|   else
 | |
|     SelectKind = TargetLowering::ScalarValSelect;
 | |
| 
 | |
|   // Do we have efficient codegen support for this kind of 'selects' ?
 | |
|   if (TLI->isSelectSupported(SelectKind)) {
 | |
|     // We have efficient codegen support for the select instruction.
 | |
|     // Check if it is profitable to keep this 'select'.
 | |
|     if (!TLI->isPredictableSelectExpensive() ||
 | |
|         !isFormingBranchFromSelectProfitable(SI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   ModifiedDT = true;
 | |
| 
 | |
|   // First, we split the block containing the select into 2 blocks.
 | |
|   BasicBlock *StartBlock = SI->getParent();
 | |
|   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
 | |
|   BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
 | |
| 
 | |
|   // Create a new block serving as the landing pad for the branch.
 | |
|   BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
 | |
|                                              NextBlock->getParent(), NextBlock);
 | |
| 
 | |
|   // Move the unconditional branch from the block with the select in it into our
 | |
|   // landing pad block.
 | |
|   StartBlock->getTerminator()->eraseFromParent();
 | |
|   BranchInst::Create(NextBlock, SmallBlock);
 | |
| 
 | |
|   // Insert the real conditional branch based on the original condition.
 | |
|   BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
 | |
| 
 | |
|   // The select itself is replaced with a PHI Node.
 | |
|   PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
 | |
|   PN->takeName(SI);
 | |
|   PN->addIncoming(SI->getTrueValue(), StartBlock);
 | |
|   PN->addIncoming(SI->getFalseValue(), SmallBlock);
 | |
|   SI->replaceAllUsesWith(PN);
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   // Instruct OptimizeBlock to skip to the next block.
 | |
|   CurInstIterator = StartBlock->end();
 | |
|   ++NumSelectsExpanded;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
 | |
|   SmallVector<int, 16> Mask(SVI->getShuffleMask());
 | |
|   int SplatElem = -1;
 | |
|   for (unsigned i = 0; i < Mask.size(); ++i) {
 | |
|     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
 | |
|       return false;
 | |
|     SplatElem = Mask[i];
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Some targets have expensive vector shifts if the lanes aren't all the same
 | |
| /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
 | |
| /// it's often worth sinking a shufflevector splat down to its use so that
 | |
| /// codegen can spot all lanes are identical.
 | |
| bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
 | |
|   BasicBlock *DefBB = SVI->getParent();
 | |
| 
 | |
|   // Only do this xform if variable vector shifts are particularly expensive.
 | |
|   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // We only expect better codegen by sinking a shuffle if we can recognise a
 | |
|   // constant splat.
 | |
|   if (!isBroadcastShuffle(SVI))
 | |
|     return false;
 | |
| 
 | |
|   // InsertedShuffles - Only insert a shuffle in each block once.
 | |
|   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (User *U : SVI->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = UI->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // For now only apply this when the splat is used by a shift instruction.
 | |
|     if (!UI->isShift()) continue;
 | |
| 
 | |
|     // Everything checks out, sink the shuffle if the user's block doesn't
 | |
|     // already have a copy.
 | |
|     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
 | |
| 
 | |
|     if (!InsertedShuffle) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
 | |
|                                               SVI->getOperand(1),
 | |
|                                               SVI->getOperand(2), "", InsertPt);
 | |
|     }
 | |
| 
 | |
|     UI->replaceUsesOfWith(SVI, InsertedShuffle);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the shuffle.
 | |
|   if (SVI->use_empty()) {
 | |
|     SVI->eraseFromParent();
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Helper class to promote a scalar operation to a vector one.
 | |
| /// This class is used to move downward extractelement transition.
 | |
| /// E.g.,
 | |
| /// a = vector_op <2 x i32>
 | |
| /// b = extractelement <2 x i32> a, i32 0
 | |
| /// c = scalar_op b
 | |
| /// store c
 | |
| ///
 | |
| /// =>
 | |
| /// a = vector_op <2 x i32>
 | |
| /// c = vector_op a (equivalent to scalar_op on the related lane)
 | |
| /// * d = extractelement <2 x i32> c, i32 0
 | |
| /// * store d
 | |
| /// Assuming both extractelement and store can be combine, we get rid of the
 | |
| /// transition.
 | |
| class VectorPromoteHelper {
 | |
|   /// Used to perform some checks on the legality of vector operations.
 | |
|   const TargetLowering &TLI;
 | |
| 
 | |
|   /// Used to estimated the cost of the promoted chain.
 | |
|   const TargetTransformInfo &TTI;
 | |
| 
 | |
|   /// The transition being moved downwards.
 | |
|   Instruction *Transition;
 | |
|   /// The sequence of instructions to be promoted.
 | |
|   SmallVector<Instruction *, 4> InstsToBePromoted;
 | |
|   /// Cost of combining a store and an extract.
 | |
|   unsigned StoreExtractCombineCost;
 | |
|   /// Instruction that will be combined with the transition.
 | |
|   Instruction *CombineInst;
 | |
| 
 | |
|   /// \brief The instruction that represents the current end of the transition.
 | |
|   /// Since we are faking the promotion until we reach the end of the chain
 | |
|   /// of computation, we need a way to get the current end of the transition.
 | |
|   Instruction *getEndOfTransition() const {
 | |
|     if (InstsToBePromoted.empty())
 | |
|       return Transition;
 | |
|     return InstsToBePromoted.back();
 | |
|   }
 | |
| 
 | |
|   /// \brief Return the index of the original value in the transition.
 | |
|   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
 | |
|   /// c, is at index 0.
 | |
|   unsigned getTransitionOriginalValueIdx() const {
 | |
|     assert(isa<ExtractElementInst>(Transition) &&
 | |
|            "Other kind of transitions are not supported yet");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return the index of the index in the transition.
 | |
|   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
 | |
|   /// is at index 1.
 | |
|   unsigned getTransitionIdx() const {
 | |
|     assert(isa<ExtractElementInst>(Transition) &&
 | |
|            "Other kind of transitions are not supported yet");
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the type of the transition.
 | |
|   /// This is the type of the original value.
 | |
|   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
 | |
|   /// transition is <2 x i32>.
 | |
|   Type *getTransitionType() const {
 | |
|     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
 | |
|   }
 | |
| 
 | |
|   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
 | |
|   /// I.e., we have the following sequence:
 | |
|   /// Def = Transition <ty1> a to <ty2>
 | |
|   /// b = ToBePromoted <ty2> Def, ...
 | |
|   /// =>
 | |
|   /// b = ToBePromoted <ty1> a, ...
 | |
|   /// Def = Transition <ty1> ToBePromoted to <ty2>
 | |
|   void promoteImpl(Instruction *ToBePromoted);
 | |
| 
 | |
|   /// \brief Check whether or not it is profitable to promote all the
 | |
|   /// instructions enqueued to be promoted.
 | |
|   bool isProfitableToPromote() {
 | |
|     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
 | |
|     unsigned Index = isa<ConstantInt>(ValIdx)
 | |
|                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
 | |
|                          : -1;
 | |
|     Type *PromotedType = getTransitionType();
 | |
| 
 | |
|     StoreInst *ST = cast<StoreInst>(CombineInst);
 | |
|     unsigned AS = ST->getPointerAddressSpace();
 | |
|     unsigned Align = ST->getAlignment();
 | |
|     // Check if this store is supported.
 | |
|     if (!TLI.allowsMisalignedMemoryAccesses(
 | |
|             TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) {
 | |
|       // If this is not supported, there is no way we can combine
 | |
|       // the extract with the store.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // The scalar chain of computation has to pay for the transition
 | |
|     // scalar to vector.
 | |
|     // The vector chain has to account for the combining cost.
 | |
|     uint64_t ScalarCost =
 | |
|         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
 | |
|     uint64_t VectorCost = StoreExtractCombineCost;
 | |
|     for (const auto &Inst : InstsToBePromoted) {
 | |
|       // Compute the cost.
 | |
|       // By construction, all instructions being promoted are arithmetic ones.
 | |
|       // Moreover, one argument is a constant that can be viewed as a splat
 | |
|       // constant.
 | |
|       Value *Arg0 = Inst->getOperand(0);
 | |
|       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
 | |
|                             isa<ConstantFP>(Arg0);
 | |
|       TargetTransformInfo::OperandValueKind Arg0OVK =
 | |
|           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
 | |
|                          : TargetTransformInfo::OK_AnyValue;
 | |
|       TargetTransformInfo::OperandValueKind Arg1OVK =
 | |
|           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
 | |
|                           : TargetTransformInfo::OK_AnyValue;
 | |
|       ScalarCost += TTI.getArithmeticInstrCost(
 | |
|           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
 | |
|       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
 | |
|                                                Arg0OVK, Arg1OVK);
 | |
|     }
 | |
|     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
 | |
|                  << ScalarCost << "\nVector: " << VectorCost << '\n');
 | |
|     return ScalarCost > VectorCost;
 | |
|   }
 | |
| 
 | |
|   /// \brief Generate a constant vector with \p Val with the same
 | |
|   /// number of elements as the transition.
 | |
|   /// \p UseSplat defines whether or not \p Val should be replicated
 | |
|   /// accross the whole vector.
 | |
|   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
 | |
|   /// otherwise we generate a vector with as many undef as possible:
 | |
|   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
 | |
|   /// used at the index of the extract.
 | |
|   Value *getConstantVector(Constant *Val, bool UseSplat) const {
 | |
|     unsigned ExtractIdx = UINT_MAX;
 | |
|     if (!UseSplat) {
 | |
|       // If we cannot determine where the constant must be, we have to
 | |
|       // use a splat constant.
 | |
|       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
 | |
|       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
 | |
|         ExtractIdx = CstVal->getSExtValue();
 | |
|       else
 | |
|         UseSplat = true;
 | |
|     }
 | |
| 
 | |
|     unsigned End = getTransitionType()->getVectorNumElements();
 | |
|     if (UseSplat)
 | |
|       return ConstantVector::getSplat(End, Val);
 | |
| 
 | |
|     SmallVector<Constant *, 4> ConstVec;
 | |
|     UndefValue *UndefVal = UndefValue::get(Val->getType());
 | |
|     for (unsigned Idx = 0; Idx != End; ++Idx) {
 | |
|       if (Idx == ExtractIdx)
 | |
|         ConstVec.push_back(Val);
 | |
|       else
 | |
|         ConstVec.push_back(UndefVal);
 | |
|     }
 | |
|     return ConstantVector::get(ConstVec);
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
 | |
|   /// in \p Use can trigger undefined behavior.
 | |
|   static bool canCauseUndefinedBehavior(const Instruction *Use,
 | |
|                                         unsigned OperandIdx) {
 | |
|     // This is not safe to introduce undef when the operand is on
 | |
|     // the right hand side of a division-like instruction.
 | |
|     if (OperandIdx != 1)
 | |
|       return false;
 | |
|     switch (Use->getOpcode()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::URem:
 | |
|       return true;
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::FRem:
 | |
|       return !Use->hasNoNaNs();
 | |
|     }
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI,
 | |
|                       Instruction *Transition, unsigned CombineCost)
 | |
|       : TLI(TLI), TTI(TTI), Transition(Transition),
 | |
|         StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
 | |
|     assert(Transition && "Do not know how to promote null");
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if we can promote \p ToBePromoted to \p Type.
 | |
|   bool canPromote(const Instruction *ToBePromoted) const {
 | |
|     // We could support CastInst too.
 | |
|     return isa<BinaryOperator>(ToBePromoted);
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if it is profitable to promote \p ToBePromoted
 | |
|   /// by moving downward the transition through.
 | |
|   bool shouldPromote(const Instruction *ToBePromoted) const {
 | |
|     // Promote only if all the operands can be statically expanded.
 | |
|     // Indeed, we do not want to introduce any new kind of transitions.
 | |
|     for (const Use &U : ToBePromoted->operands()) {
 | |
|       const Value *Val = U.get();
 | |
|       if (Val == getEndOfTransition()) {
 | |
|         // If the use is a division and the transition is on the rhs,
 | |
|         // we cannot promote the operation, otherwise we may create a
 | |
|         // division by zero.
 | |
|         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
 | |
|           return false;
 | |
|         continue;
 | |
|       }
 | |
|       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
 | |
|           !isa<ConstantFP>(Val))
 | |
|         return false;
 | |
|     }
 | |
|     // Check that the resulting operation is legal.
 | |
|     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
 | |
|     if (!ISDOpcode)
 | |
|       return false;
 | |
|     return StressStoreExtract ||
 | |
|            TLI.isOperationLegalOrCustom(
 | |
|                ISDOpcode, TLI.getValueType(getTransitionType(), true));
 | |
|   }
 | |
| 
 | |
|   /// \brief Check whether or not \p Use can be combined
 | |
|   /// with the transition.
 | |
|   /// I.e., is it possible to do Use(Transition) => AnotherUse?
 | |
|   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
 | |
| 
 | |
|   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
 | |
|   void enqueueForPromotion(Instruction *ToBePromoted) {
 | |
|     InstsToBePromoted.push_back(ToBePromoted);
 | |
|   }
 | |
| 
 | |
|   /// \brief Set the instruction that will be combined with the transition.
 | |
|   void recordCombineInstruction(Instruction *ToBeCombined) {
 | |
|     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
 | |
|     CombineInst = ToBeCombined;
 | |
|   }
 | |
| 
 | |
|   /// \brief Promote all the instructions enqueued for promotion if it is
 | |
|   /// is profitable.
 | |
|   /// \return True if the promotion happened, false otherwise.
 | |
|   bool promote() {
 | |
|     // Check if there is something to promote.
 | |
|     // Right now, if we do not have anything to combine with,
 | |
|     // we assume the promotion is not profitable.
 | |
|     if (InstsToBePromoted.empty() || !CombineInst)
 | |
|       return false;
 | |
| 
 | |
|     // Check cost.
 | |
|     if (!StressStoreExtract && !isProfitableToPromote())
 | |
|       return false;
 | |
| 
 | |
|     // Promote.
 | |
|     for (auto &ToBePromoted : InstsToBePromoted)
 | |
|       promoteImpl(ToBePromoted);
 | |
|     InstsToBePromoted.clear();
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| } // End of anonymous namespace.
 | |
| 
 | |
| void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
 | |
|   // At this point, we know that all the operands of ToBePromoted but Def
 | |
|   // can be statically promoted.
 | |
|   // For Def, we need to use its parameter in ToBePromoted:
 | |
|   // b = ToBePromoted ty1 a
 | |
|   // Def = Transition ty1 b to ty2
 | |
|   // Move the transition down.
 | |
|   // 1. Replace all uses of the promoted operation by the transition.
 | |
|   // = ... b => = ... Def.
 | |
|   assert(ToBePromoted->getType() == Transition->getType() &&
 | |
|          "The type of the result of the transition does not match "
 | |
|          "the final type");
 | |
|   ToBePromoted->replaceAllUsesWith(Transition);
 | |
|   // 2. Update the type of the uses.
 | |
|   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
 | |
|   Type *TransitionTy = getTransitionType();
 | |
|   ToBePromoted->mutateType(TransitionTy);
 | |
|   // 3. Update all the operands of the promoted operation with promoted
 | |
|   // operands.
 | |
|   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
 | |
|   for (Use &U : ToBePromoted->operands()) {
 | |
|     Value *Val = U.get();
 | |
|     Value *NewVal = nullptr;
 | |
|     if (Val == Transition)
 | |
|       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
 | |
|     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
 | |
|              isa<ConstantFP>(Val)) {
 | |
|       // Use a splat constant if it is not safe to use undef.
 | |
|       NewVal = getConstantVector(
 | |
|           cast<Constant>(Val),
 | |
|           isa<UndefValue>(Val) ||
 | |
|               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
 | |
|     } else
 | |
|       assert(0 && "Did you modified shouldPromote and forgot to update this?");
 | |
|     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
 | |
|   }
 | |
|   Transition->removeFromParent();
 | |
|   Transition->insertAfter(ToBePromoted);
 | |
|   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
 | |
| }
 | |
| 
 | |
| /// Some targets can do store(extractelement) with one instruction.
 | |
| /// Try to push the extractelement towards the stores when the target
 | |
| /// has this feature and this is profitable.
 | |
| bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) {
 | |
|   unsigned CombineCost = UINT_MAX;
 | |
|   if (DisableStoreExtract || !TLI ||
 | |
|       (!StressStoreExtract &&
 | |
|        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
 | |
|                                        Inst->getOperand(1), CombineCost)))
 | |
|     return false;
 | |
| 
 | |
|   // At this point we know that Inst is a vector to scalar transition.
 | |
|   // Try to move it down the def-use chain, until:
 | |
|   // - We can combine the transition with its single use
 | |
|   //   => we got rid of the transition.
 | |
|   // - We escape the current basic block
 | |
|   //   => we would need to check that we are moving it at a cheaper place and
 | |
|   //      we do not do that for now.
 | |
|   BasicBlock *Parent = Inst->getParent();
 | |
|   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
 | |
|   VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost);
 | |
|   // If the transition has more than one use, assume this is not going to be
 | |
|   // beneficial.
 | |
|   while (Inst->hasOneUse()) {
 | |
|     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
 | |
|     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
 | |
| 
 | |
|     if (ToBePromoted->getParent() != Parent) {
 | |
|       DEBUG(dbgs() << "Instruction to promote is in a different block ("
 | |
|                    << ToBePromoted->getParent()->getName()
 | |
|                    << ") than the transition (" << Parent->getName() << ").\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (VPH.canCombine(ToBePromoted)) {
 | |
|       DEBUG(dbgs() << "Assume " << *Inst << '\n'
 | |
|                    << "will be combined with: " << *ToBePromoted << '\n');
 | |
|       VPH.recordCombineInstruction(ToBePromoted);
 | |
|       bool Changed = VPH.promote();
 | |
|       NumStoreExtractExposed += Changed;
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Try promoting.\n");
 | |
|     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
 | |
|       return false;
 | |
| 
 | |
|     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
 | |
| 
 | |
|     VPH.enqueueForPromotion(ToBePromoted);
 | |
|     Inst = ToBePromoted;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeInst(Instruction *I) {
 | |
|   if (PHINode *P = dyn_cast<PHINode>(I)) {
 | |
|     // It is possible for very late stage optimizations (such as SimplifyCFG)
 | |
|     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
 | |
|     // trivial PHI, go ahead and zap it here.
 | |
|     if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr,
 | |
|                                        TLInfo, DT)) {
 | |
|       P->replaceAllUsesWith(V);
 | |
|       P->eraseFromParent();
 | |
|       ++NumPHIsElim;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|     // If the source of the cast is a constant, then this should have
 | |
|     // already been constant folded.  The only reason NOT to constant fold
 | |
|     // it is if something (e.g. LSR) was careful to place the constant
 | |
|     // evaluation in a block other than then one that uses it (e.g. to hoist
 | |
|     // the address of globals out of a loop).  If this is the case, we don't
 | |
|     // want to forward-subst the cast.
 | |
|     if (isa<Constant>(CI->getOperand(0)))
 | |
|       return false;
 | |
| 
 | |
|     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
 | |
|       return true;
 | |
| 
 | |
|     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
 | |
|       /// Sink a zext or sext into its user blocks if the target type doesn't
 | |
|       /// fit in one register
 | |
|       if (TLI && TLI->getTypeAction(CI->getContext(),
 | |
|                                     TLI->getValueType(CI->getType())) ==
 | |
|                      TargetLowering::TypeExpandInteger) {
 | |
|         return SinkCast(CI);
 | |
|       } else {
 | |
|         bool MadeChange = MoveExtToFormExtLoad(I);
 | |
|         return MadeChange | OptimizeExtUses(I);
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     if (!TLI || !TLI->hasMultipleConditionRegisters())
 | |
|       return OptimizeCmpExpression(CI);
 | |
| 
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (TLI)
 | |
|       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|     if (TLI)
 | |
|       return OptimizeMemoryInst(I, SI->getOperand(1),
 | |
|                                 SI->getOperand(0)->getType());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
 | |
| 
 | |
|   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
 | |
|                 BinOp->getOpcode() == Instruction::LShr)) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
 | |
|     if (TLI && CI && TLI->hasExtractBitsInsn())
 | |
|       return OptimizeExtractBits(BinOp, CI, *TLI);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|     if (GEPI->hasAllZeroIndices()) {
 | |
|       /// The GEP operand must be a pointer, so must its result -> BitCast
 | |
|       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
 | |
|                                         GEPI->getName(), GEPI);
 | |
|       GEPI->replaceAllUsesWith(NC);
 | |
|       GEPI->eraseFromParent();
 | |
|       ++NumGEPsElim;
 | |
|       OptimizeInst(NC);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     return OptimizeCallInst(CI);
 | |
| 
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(I))
 | |
|     return OptimizeSelectInst(SI);
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
 | |
|     return OptimizeShuffleVectorInst(SVI);
 | |
| 
 | |
|   if (isa<ExtractElementInst>(I))
 | |
|     return OptimizeExtractElementInst(I);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // In this pass we look for GEP and cast instructions that are used
 | |
| // across basic blocks and rewrite them to improve basic-block-at-a-time
 | |
| // selection.
 | |
| bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
 | |
|   SunkAddrs.clear();
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   CurInstIterator = BB.begin();
 | |
|   while (CurInstIterator != BB.end())
 | |
|     MadeChange |= OptimizeInst(CurInstIterator++);
 | |
| 
 | |
|   MadeChange |= DupRetToEnableTailCallOpts(&BB);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // llvm.dbg.value is far away from the value then iSel may not be able
 | |
| // handle it properly. iSel will drop llvm.dbg.value if it can not
 | |
| // find a node corresponding to the value.
 | |
| bool CodeGenPrepare::PlaceDbgValues(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|     Instruction *PrevNonDbgInst = nullptr;
 | |
|     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
 | |
|       Instruction *Insn = BI; ++BI;
 | |
|       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
 | |
|       // Leave dbg.values that refer to an alloca alone. These
 | |
|       // instrinsics describe the address of a variable (= the alloca)
 | |
|       // being taken.  They should not be moved next to the alloca
 | |
|       // (and to the beginning of the scope), but rather stay close to
 | |
|       // where said address is used.
 | |
|       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
 | |
|         PrevNonDbgInst = Insn;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
 | |
|       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
 | |
|         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
 | |
|         DVI->removeFromParent();
 | |
|         if (isa<PHINode>(VI))
 | |
|           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
 | |
|         else
 | |
|           DVI->insertAfter(VI);
 | |
|         MadeChange = true;
 | |
|         ++NumDbgValueMoved;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // If there is a sequence that branches based on comparing a single bit
 | |
| // against zero that can be combined into a single instruction, and the
 | |
| // target supports folding these into a single instruction, sink the
 | |
| // mask and compare into the branch uses. Do this before OptimizeBlock ->
 | |
| // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
 | |
| // searched for.
 | |
| bool CodeGenPrepare::sinkAndCmp(Function &F) {
 | |
|   if (!EnableAndCmpSinking)
 | |
|     return false;
 | |
|   if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
 | |
|     return false;
 | |
|   bool MadeChange = false;
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
 | |
|     BasicBlock *BB = I++;
 | |
| 
 | |
|     // Does this BB end with the following?
 | |
|     //   %andVal = and %val, #single-bit-set
 | |
|     //   %icmpVal = icmp %andResult, 0
 | |
|     //   br i1 %cmpVal label %dest1, label %dest2"
 | |
|     BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!Brcc || !Brcc->isConditional())
 | |
|       continue;
 | |
|     ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
 | |
|     if (!Cmp || Cmp->getParent() != BB)
 | |
|       continue;
 | |
|     ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
 | |
|     if (!Zero || !Zero->isZero())
 | |
|       continue;
 | |
|     Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
 | |
|     if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
 | |
|       continue;
 | |
|     ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
 | |
|     if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
 | |
| 
 | |
|     // Push the "and; icmp" for any users that are conditional branches.
 | |
|     // Since there can only be one branch use per BB, we don't need to keep
 | |
|     // track of which BBs we insert into.
 | |
|     for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
 | |
|          UI != E; ) {
 | |
|       Use &TheUse = *UI;
 | |
|       // Find brcc use.
 | |
|       BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
 | |
|       ++UI;
 | |
|       if (!BrccUser || !BrccUser->isConditional())
 | |
|         continue;
 | |
|       BasicBlock *UserBB = BrccUser->getParent();
 | |
|       if (UserBB == BB) continue;
 | |
|       DEBUG(dbgs() << "found Brcc use\n");
 | |
| 
 | |
|       // Sink the "and; icmp" to use.
 | |
|       MadeChange = true;
 | |
|       BinaryOperator *NewAnd =
 | |
|         BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
 | |
|                                   BrccUser);
 | |
|       CmpInst *NewCmp =
 | |
|         CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
 | |
|                         "", BrccUser);
 | |
|       TheUse = NewCmp;
 | |
|       ++NumAndCmpsMoved;
 | |
|       DEBUG(BrccUser->getParent()->dump());
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 |