mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
d04a8d4b33
Sooooo many of these had incorrect or strange main module includes. I have manually inspected all of these, and fixed the main module include to be the nearest plausible thing I could find. If you own or care about any of these source files, I encourage you to take some time and check that these edits were sensible. I can't have broken anything (I strictly added headers, and reordered them, never removed), but they may not be the headers you'd really like to identify as containing the API being implemented. Many forward declarations and missing includes were added to a header files to allow them to parse cleanly when included first. The main module rule does in fact have its merits. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
1292 lines
47 KiB
C++
1292 lines
47 KiB
C++
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a MachineCodeEmitter object that is used by the JIT to
|
|
// write machine code to memory and remember where relocatable values are.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "JIT.h"
|
|
#include "JITDwarfEmitter.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/ValueMap.h"
|
|
#include "llvm/CodeGen/JITCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineCodeInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRelocation.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DataLayout.h"
|
|
#include "llvm/DebugInfo.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/ExecutionEngine/JITEventListener.h"
|
|
#include "llvm/ExecutionEngine/JITMemoryManager.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Disassembler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/Memory.h"
|
|
#include "llvm/Support/MutexGuard.h"
|
|
#include "llvm/Support/ValueHandle.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetJITInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#ifndef NDEBUG
|
|
#include <iomanip>
|
|
#endif
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumBytes, "Number of bytes of machine code compiled");
|
|
STATISTIC(NumRelos, "Number of relocations applied");
|
|
STATISTIC(NumRetries, "Number of retries with more memory");
|
|
|
|
|
|
// A declaration may stop being a declaration once it's fully read from bitcode.
|
|
// This function returns true if F is fully read and is still a declaration.
|
|
static bool isNonGhostDeclaration(const Function *F) {
|
|
return F->isDeclaration() && !F->isMaterializable();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JIT lazy compilation code.
|
|
//
|
|
namespace {
|
|
class JITEmitter;
|
|
class JITResolverState;
|
|
|
|
template<typename ValueTy>
|
|
struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
|
|
typedef JITResolverState *ExtraData;
|
|
static void onRAUW(JITResolverState *, Value *Old, Value *New) {
|
|
llvm_unreachable("The JIT doesn't know how to handle a"
|
|
" RAUW on a value it has emitted.");
|
|
}
|
|
};
|
|
|
|
struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
|
|
typedef JITResolverState *ExtraData;
|
|
static void onDelete(JITResolverState *JRS, Function *F);
|
|
};
|
|
|
|
class JITResolverState {
|
|
public:
|
|
typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
|
|
FunctionToLazyStubMapTy;
|
|
typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
|
|
typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
|
|
CallSiteValueMapConfig> FunctionToCallSitesMapTy;
|
|
typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
|
|
private:
|
|
/// FunctionToLazyStubMap - Keep track of the lazy stub created for a
|
|
/// particular function so that we can reuse them if necessary.
|
|
FunctionToLazyStubMapTy FunctionToLazyStubMap;
|
|
|
|
/// CallSiteToFunctionMap - Keep track of the function that each lazy call
|
|
/// site corresponds to, and vice versa.
|
|
CallSiteToFunctionMapTy CallSiteToFunctionMap;
|
|
FunctionToCallSitesMapTy FunctionToCallSitesMap;
|
|
|
|
/// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
|
|
/// particular GlobalVariable so that we can reuse them if necessary.
|
|
GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
|
|
|
|
#ifndef NDEBUG
|
|
/// Instance of the JIT this ResolverState serves.
|
|
JIT *TheJIT;
|
|
#endif
|
|
|
|
public:
|
|
JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
|
|
FunctionToCallSitesMap(this) {
|
|
#ifndef NDEBUG
|
|
TheJIT = jit;
|
|
#endif
|
|
}
|
|
|
|
FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
|
|
const MutexGuard& locked) {
|
|
assert(locked.holds(TheJIT->lock));
|
|
return FunctionToLazyStubMap;
|
|
}
|
|
|
|
GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
|
|
assert(lck.holds(TheJIT->lock));
|
|
return GlobalToIndirectSymMap;
|
|
}
|
|
|
|
std::pair<void *, Function *> LookupFunctionFromCallSite(
|
|
const MutexGuard &locked, void *CallSite) const {
|
|
assert(locked.holds(TheJIT->lock));
|
|
|
|
// The address given to us for the stub may not be exactly right, it
|
|
// might be a little bit after the stub. As such, use upper_bound to
|
|
// find it.
|
|
CallSiteToFunctionMapTy::const_iterator I =
|
|
CallSiteToFunctionMap.upper_bound(CallSite);
|
|
assert(I != CallSiteToFunctionMap.begin() &&
|
|
"This is not a known call site!");
|
|
--I;
|
|
return *I;
|
|
}
|
|
|
|
void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
|
|
assert(locked.holds(TheJIT->lock));
|
|
|
|
bool Inserted = CallSiteToFunctionMap.insert(
|
|
std::make_pair(CallSite, F)).second;
|
|
(void)Inserted;
|
|
assert(Inserted && "Pair was already in CallSiteToFunctionMap");
|
|
FunctionToCallSitesMap[F].insert(CallSite);
|
|
}
|
|
|
|
void EraseAllCallSitesForPrelocked(Function *F);
|
|
|
|
// Erases _all_ call sites regardless of their function. This is used to
|
|
// unregister the stub addresses from the StubToResolverMap in
|
|
// ~JITResolver().
|
|
void EraseAllCallSitesPrelocked();
|
|
};
|
|
|
|
/// JITResolver - Keep track of, and resolve, call sites for functions that
|
|
/// have not yet been compiled.
|
|
class JITResolver {
|
|
typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
|
|
typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
|
|
typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
|
|
|
|
/// LazyResolverFn - The target lazy resolver function that we actually
|
|
/// rewrite instructions to use.
|
|
TargetJITInfo::LazyResolverFn LazyResolverFn;
|
|
|
|
JITResolverState state;
|
|
|
|
/// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
|
|
/// for external functions. TODO: Of course, external functions don't need
|
|
/// a lazy stub. It's actually here to make it more likely that far calls
|
|
/// succeed, but no single stub can guarantee that. I'll remove this in a
|
|
/// subsequent checkin when I actually fix far calls.
|
|
std::map<void*, void*> ExternalFnToStubMap;
|
|
|
|
/// revGOTMap - map addresses to indexes in the GOT
|
|
std::map<void*, unsigned> revGOTMap;
|
|
unsigned nextGOTIndex;
|
|
|
|
JITEmitter &JE;
|
|
|
|
/// Instance of JIT corresponding to this Resolver.
|
|
JIT *TheJIT;
|
|
|
|
public:
|
|
explicit JITResolver(JIT &jit, JITEmitter &je)
|
|
: state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
|
|
LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
|
|
}
|
|
|
|
~JITResolver();
|
|
|
|
/// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
|
|
/// lazy-compilation stub if it has already been created.
|
|
void *getLazyFunctionStubIfAvailable(Function *F);
|
|
|
|
/// getLazyFunctionStub - This returns a pointer to a function's
|
|
/// lazy-compilation stub, creating one on demand as needed.
|
|
void *getLazyFunctionStub(Function *F);
|
|
|
|
/// getExternalFunctionStub - Return a stub for the function at the
|
|
/// specified address, created lazily on demand.
|
|
void *getExternalFunctionStub(void *FnAddr);
|
|
|
|
/// getGlobalValueIndirectSym - Return an indirect symbol containing the
|
|
/// specified GV address.
|
|
void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
|
|
|
|
/// getGOTIndexForAddress - Return a new or existing index in the GOT for
|
|
/// an address. This function only manages slots, it does not manage the
|
|
/// contents of the slots or the memory associated with the GOT.
|
|
unsigned getGOTIndexForAddr(void *addr);
|
|
|
|
/// JITCompilerFn - This function is called to resolve a stub to a compiled
|
|
/// address. If the LLVM Function corresponding to the stub has not yet
|
|
/// been compiled, this function compiles it first.
|
|
static void *JITCompilerFn(void *Stub);
|
|
};
|
|
|
|
class StubToResolverMapTy {
|
|
/// Map a stub address to a specific instance of a JITResolver so that
|
|
/// lazily-compiled functions can find the right resolver to use.
|
|
///
|
|
/// Guarded by Lock.
|
|
std::map<void*, JITResolver*> Map;
|
|
|
|
/// Guards Map from concurrent accesses.
|
|
mutable sys::Mutex Lock;
|
|
|
|
public:
|
|
/// Registers a Stub to be resolved by Resolver.
|
|
void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
|
|
MutexGuard guard(Lock);
|
|
Map.insert(std::make_pair(Stub, Resolver));
|
|
}
|
|
/// Unregisters the Stub when it's invalidated.
|
|
void UnregisterStubResolver(void *Stub) {
|
|
MutexGuard guard(Lock);
|
|
Map.erase(Stub);
|
|
}
|
|
/// Returns the JITResolver instance that owns the Stub.
|
|
JITResolver *getResolverFromStub(void *Stub) const {
|
|
MutexGuard guard(Lock);
|
|
// The address given to us for the stub may not be exactly right, it might
|
|
// be a little bit after the stub. As such, use upper_bound to find it.
|
|
// This is the same trick as in LookupFunctionFromCallSite from
|
|
// JITResolverState.
|
|
std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
|
|
assert(I != Map.begin() && "This is not a known stub!");
|
|
--I;
|
|
return I->second;
|
|
}
|
|
/// True if any stubs refer to the given resolver. Only used in an assert().
|
|
/// O(N)
|
|
bool ResolverHasStubs(JITResolver* Resolver) const {
|
|
MutexGuard guard(Lock);
|
|
for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
|
|
E = Map.end(); I != E; ++I) {
|
|
if (I->second == Resolver)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
/// This needs to be static so that a lazy call stub can access it with no
|
|
/// context except the address of the stub.
|
|
ManagedStatic<StubToResolverMapTy> StubToResolverMap;
|
|
|
|
/// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
|
|
/// used to output functions to memory for execution.
|
|
class JITEmitter : public JITCodeEmitter {
|
|
JITMemoryManager *MemMgr;
|
|
|
|
// When outputting a function stub in the context of some other function, we
|
|
// save BufferBegin/BufferEnd/CurBufferPtr here.
|
|
uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
|
|
|
|
// When reattempting to JIT a function after running out of space, we store
|
|
// the estimated size of the function we're trying to JIT here, so we can
|
|
// ask the memory manager for at least this much space. When we
|
|
// successfully emit the function, we reset this back to zero.
|
|
uintptr_t SizeEstimate;
|
|
|
|
/// Relocations - These are the relocations that the function needs, as
|
|
/// emitted.
|
|
std::vector<MachineRelocation> Relocations;
|
|
|
|
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
|
|
/// It is filled in by the StartMachineBasicBlock callback and queried by
|
|
/// the getMachineBasicBlockAddress callback.
|
|
std::vector<uintptr_t> MBBLocations;
|
|
|
|
/// ConstantPool - The constant pool for the current function.
|
|
///
|
|
MachineConstantPool *ConstantPool;
|
|
|
|
/// ConstantPoolBase - A pointer to the first entry in the constant pool.
|
|
///
|
|
void *ConstantPoolBase;
|
|
|
|
/// ConstPoolAddresses - Addresses of individual constant pool entries.
|
|
///
|
|
SmallVector<uintptr_t, 8> ConstPoolAddresses;
|
|
|
|
/// JumpTable - The jump tables for the current function.
|
|
///
|
|
MachineJumpTableInfo *JumpTable;
|
|
|
|
/// JumpTableBase - A pointer to the first entry in the jump table.
|
|
///
|
|
void *JumpTableBase;
|
|
|
|
/// Resolver - This contains info about the currently resolved functions.
|
|
JITResolver Resolver;
|
|
|
|
/// DE - The dwarf emitter for the jit.
|
|
OwningPtr<JITDwarfEmitter> DE;
|
|
|
|
/// LabelLocations - This vector is a mapping from Label ID's to their
|
|
/// address.
|
|
DenseMap<MCSymbol*, uintptr_t> LabelLocations;
|
|
|
|
/// MMI - Machine module info for exception informations
|
|
MachineModuleInfo* MMI;
|
|
|
|
// CurFn - The llvm function being emitted. Only valid during
|
|
// finishFunction().
|
|
const Function *CurFn;
|
|
|
|
/// Information about emitted code, which is passed to the
|
|
/// JITEventListeners. This is reset in startFunction and used in
|
|
/// finishFunction.
|
|
JITEvent_EmittedFunctionDetails EmissionDetails;
|
|
|
|
struct EmittedCode {
|
|
void *FunctionBody; // Beginning of the function's allocation.
|
|
void *Code; // The address the function's code actually starts at.
|
|
void *ExceptionTable;
|
|
EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
|
|
};
|
|
struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
|
|
typedef JITEmitter *ExtraData;
|
|
static void onDelete(JITEmitter *, const Function*);
|
|
static void onRAUW(JITEmitter *, const Function*, const Function*);
|
|
};
|
|
ValueMap<const Function *, EmittedCode,
|
|
EmittedFunctionConfig> EmittedFunctions;
|
|
|
|
DebugLoc PrevDL;
|
|
|
|
/// Instance of the JIT
|
|
JIT *TheJIT;
|
|
|
|
bool JITExceptionHandling;
|
|
|
|
public:
|
|
JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
|
|
: SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
|
|
EmittedFunctions(this), TheJIT(&jit),
|
|
JITExceptionHandling(TM.Options.JITExceptionHandling) {
|
|
MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
|
|
if (jit.getJITInfo().needsGOT()) {
|
|
MemMgr->AllocateGOT();
|
|
DEBUG(dbgs() << "JIT is managing a GOT\n");
|
|
}
|
|
|
|
if (JITExceptionHandling) {
|
|
DE.reset(new JITDwarfEmitter(jit));
|
|
}
|
|
}
|
|
~JITEmitter() {
|
|
delete MemMgr;
|
|
}
|
|
|
|
JITResolver &getJITResolver() { return Resolver; }
|
|
|
|
virtual void startFunction(MachineFunction &F);
|
|
virtual bool finishFunction(MachineFunction &F);
|
|
|
|
void emitConstantPool(MachineConstantPool *MCP);
|
|
void initJumpTableInfo(MachineJumpTableInfo *MJTI);
|
|
void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
|
|
|
|
void startGVStub(const GlobalValue* GV,
|
|
unsigned StubSize, unsigned Alignment = 1);
|
|
void startGVStub(void *Buffer, unsigned StubSize);
|
|
void finishGVStub();
|
|
virtual void *allocIndirectGV(const GlobalValue *GV,
|
|
const uint8_t *Buffer, size_t Size,
|
|
unsigned Alignment);
|
|
|
|
/// allocateSpace - Reserves space in the current block if any, or
|
|
/// allocate a new one of the given size.
|
|
virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
|
|
|
|
/// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
|
|
/// this method does not allocate memory in the current output buffer,
|
|
/// because a global may live longer than the current function.
|
|
virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
|
|
|
|
virtual void addRelocation(const MachineRelocation &MR) {
|
|
Relocations.push_back(MR);
|
|
}
|
|
|
|
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
|
|
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
|
|
MBBLocations.resize((MBB->getNumber()+1)*2);
|
|
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
|
|
if (MBB->hasAddressTaken())
|
|
TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
|
|
(void*)getCurrentPCValue());
|
|
DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
|
|
<< (void*) getCurrentPCValue() << "]\n");
|
|
}
|
|
|
|
virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
|
|
virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
|
|
|
|
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
|
|
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
|
|
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
|
|
return MBBLocations[MBB->getNumber()];
|
|
}
|
|
|
|
/// retryWithMoreMemory - Log a retry and deallocate all memory for the
|
|
/// given function. Increase the minimum allocation size so that we get
|
|
/// more memory next time.
|
|
void retryWithMoreMemory(MachineFunction &F);
|
|
|
|
/// deallocateMemForFunction - Deallocate all memory for the specified
|
|
/// function body.
|
|
void deallocateMemForFunction(const Function *F);
|
|
|
|
virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
|
|
|
|
virtual void emitLabel(MCSymbol *Label) {
|
|
LabelLocations[Label] = getCurrentPCValue();
|
|
}
|
|
|
|
virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
|
|
return &LabelLocations;
|
|
}
|
|
|
|
virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
|
|
assert(LabelLocations.count(Label) && "Label not emitted!");
|
|
return LabelLocations.find(Label)->second;
|
|
}
|
|
|
|
virtual void setModuleInfo(MachineModuleInfo* Info) {
|
|
MMI = Info;
|
|
if (DE.get()) DE->setModuleInfo(Info);
|
|
}
|
|
|
|
private:
|
|
void *getPointerToGlobal(GlobalValue *GV, void *Reference,
|
|
bool MayNeedFarStub);
|
|
void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
|
|
};
|
|
}
|
|
|
|
void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
|
|
JRS->EraseAllCallSitesForPrelocked(F);
|
|
}
|
|
|
|
void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
|
|
FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
|
|
if (F2C == FunctionToCallSitesMap.end())
|
|
return;
|
|
StubToResolverMapTy &S2RMap = *StubToResolverMap;
|
|
for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
|
|
E = F2C->second.end(); I != E; ++I) {
|
|
S2RMap.UnregisterStubResolver(*I);
|
|
bool Erased = CallSiteToFunctionMap.erase(*I);
|
|
(void)Erased;
|
|
assert(Erased && "Missing call site->function mapping");
|
|
}
|
|
FunctionToCallSitesMap.erase(F2C);
|
|
}
|
|
|
|
void JITResolverState::EraseAllCallSitesPrelocked() {
|
|
StubToResolverMapTy &S2RMap = *StubToResolverMap;
|
|
for (CallSiteToFunctionMapTy::const_iterator
|
|
I = CallSiteToFunctionMap.begin(),
|
|
E = CallSiteToFunctionMap.end(); I != E; ++I) {
|
|
S2RMap.UnregisterStubResolver(I->first);
|
|
}
|
|
CallSiteToFunctionMap.clear();
|
|
FunctionToCallSitesMap.clear();
|
|
}
|
|
|
|
JITResolver::~JITResolver() {
|
|
// No need to lock because we're in the destructor, and state isn't shared.
|
|
state.EraseAllCallSitesPrelocked();
|
|
assert(!StubToResolverMap->ResolverHasStubs(this) &&
|
|
"Resolver destroyed with stubs still alive.");
|
|
}
|
|
|
|
/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
|
|
/// if it has already been created.
|
|
void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// If we already have a stub for this function, recycle it.
|
|
return state.getFunctionToLazyStubMap(locked).lookup(F);
|
|
}
|
|
|
|
/// getFunctionStub - This returns a pointer to a function stub, creating
|
|
/// one on demand as needed.
|
|
void *JITResolver::getLazyFunctionStub(Function *F) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// If we already have a lazy stub for this function, recycle it.
|
|
void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
|
|
if (Stub) return Stub;
|
|
|
|
// Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
|
|
// must resolve the symbol now.
|
|
void *Actual = TheJIT->isCompilingLazily()
|
|
? (void *)(intptr_t)LazyResolverFn : (void *)0;
|
|
|
|
// If this is an external declaration, attempt to resolve the address now
|
|
// to place in the stub.
|
|
if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
|
|
Actual = TheJIT->getPointerToFunction(F);
|
|
|
|
// If we resolved the symbol to a null address (eg. a weak external)
|
|
// don't emit a stub. Return a null pointer to the application.
|
|
if (!Actual) return 0;
|
|
}
|
|
|
|
TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
|
|
JE.startGVStub(F, SL.Size, SL.Alignment);
|
|
// Codegen a new stub, calling the lazy resolver or the actual address of the
|
|
// external function, if it was resolved.
|
|
Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
|
|
JE.finishGVStub();
|
|
|
|
if (Actual != (void*)(intptr_t)LazyResolverFn) {
|
|
// If we are getting the stub for an external function, we really want the
|
|
// address of the stub in the GlobalAddressMap for the JIT, not the address
|
|
// of the external function.
|
|
TheJIT->updateGlobalMapping(F, Stub);
|
|
}
|
|
|
|
DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
|
|
<< F->getName() << "'\n");
|
|
|
|
if (TheJIT->isCompilingLazily()) {
|
|
// Register this JITResolver as the one corresponding to this call site so
|
|
// JITCompilerFn will be able to find it.
|
|
StubToResolverMap->RegisterStubResolver(Stub, this);
|
|
|
|
// Finally, keep track of the stub-to-Function mapping so that the
|
|
// JITCompilerFn knows which function to compile!
|
|
state.AddCallSite(locked, Stub, F);
|
|
} else if (!Actual) {
|
|
// If we are JIT'ing non-lazily but need to call a function that does not
|
|
// exist yet, add it to the JIT's work list so that we can fill in the
|
|
// stub address later.
|
|
assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
|
|
"'Actual' should have been set above.");
|
|
TheJIT->addPendingFunction(F);
|
|
}
|
|
|
|
return Stub;
|
|
}
|
|
|
|
/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
|
|
/// GV address.
|
|
void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// If we already have a stub for this global variable, recycle it.
|
|
void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
|
|
if (IndirectSym) return IndirectSym;
|
|
|
|
// Otherwise, codegen a new indirect symbol.
|
|
IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
|
|
JE);
|
|
|
|
DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
|
|
<< "] for GV '" << GV->getName() << "'\n");
|
|
|
|
return IndirectSym;
|
|
}
|
|
|
|
/// getExternalFunctionStub - Return a stub for the function at the
|
|
/// specified address, created lazily on demand.
|
|
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
|
|
// If we already have a stub for this function, recycle it.
|
|
void *&Stub = ExternalFnToStubMap[FnAddr];
|
|
if (Stub) return Stub;
|
|
|
|
TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
|
|
JE.startGVStub(0, SL.Size, SL.Alignment);
|
|
Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
|
|
JE.finishGVStub();
|
|
|
|
DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
|
|
<< "] for external function at '" << FnAddr << "'\n");
|
|
return Stub;
|
|
}
|
|
|
|
unsigned JITResolver::getGOTIndexForAddr(void* addr) {
|
|
unsigned idx = revGOTMap[addr];
|
|
if (!idx) {
|
|
idx = ++nextGOTIndex;
|
|
revGOTMap[addr] = idx;
|
|
DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
|
|
<< addr << "]\n");
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
/// JITCompilerFn - This function is called when a lazy compilation stub has
|
|
/// been entered. It looks up which function this stub corresponds to, compiles
|
|
/// it if necessary, then returns the resultant function pointer.
|
|
void *JITResolver::JITCompilerFn(void *Stub) {
|
|
JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
|
|
assert(JR && "Unable to find the corresponding JITResolver to the call site");
|
|
|
|
Function* F = 0;
|
|
void* ActualPtr = 0;
|
|
|
|
{
|
|
// Only lock for getting the Function. The call getPointerToFunction made
|
|
// in this function might trigger function materializing, which requires
|
|
// JIT lock to be unlocked.
|
|
MutexGuard locked(JR->TheJIT->lock);
|
|
|
|
// The address given to us for the stub may not be exactly right, it might
|
|
// be a little bit after the stub. As such, use upper_bound to find it.
|
|
std::pair<void*, Function*> I =
|
|
JR->state.LookupFunctionFromCallSite(locked, Stub);
|
|
F = I.second;
|
|
ActualPtr = I.first;
|
|
}
|
|
|
|
// If we have already code generated the function, just return the address.
|
|
void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
|
|
|
|
if (!Result) {
|
|
// Otherwise we don't have it, do lazy compilation now.
|
|
|
|
// If lazy compilation is disabled, emit a useful error message and abort.
|
|
if (!JR->TheJIT->isCompilingLazily()) {
|
|
report_fatal_error("LLVM JIT requested to do lazy compilation of"
|
|
" function '"
|
|
+ F->getName() + "' when lazy compiles are disabled!");
|
|
}
|
|
|
|
DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
|
|
<< "' In stub ptr = " << Stub << " actual ptr = "
|
|
<< ActualPtr << "\n");
|
|
(void)ActualPtr;
|
|
|
|
Result = JR->TheJIT->getPointerToFunction(F);
|
|
}
|
|
|
|
// Reacquire the lock to update the GOT map.
|
|
MutexGuard locked(JR->TheJIT->lock);
|
|
|
|
// We might like to remove the call site from the CallSiteToFunction map, but
|
|
// we can't do that! Multiple threads could be stuck, waiting to acquire the
|
|
// lock above. As soon as the 1st function finishes compiling the function,
|
|
// the next one will be released, and needs to be able to find the function it
|
|
// needs to call.
|
|
|
|
// FIXME: We could rewrite all references to this stub if we knew them.
|
|
|
|
// What we will do is set the compiled function address to map to the
|
|
// same GOT entry as the stub so that later clients may update the GOT
|
|
// if they see it still using the stub address.
|
|
// Note: this is done so the Resolver doesn't have to manage GOT memory
|
|
// Do this without allocating map space if the target isn't using a GOT
|
|
if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
|
|
JR->revGOTMap[Result] = JR->revGOTMap[Stub];
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JITEmitter code.
|
|
//
|
|
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
|
|
bool MayNeedFarStub) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return TheJIT->getOrEmitGlobalVariable(GV);
|
|
|
|
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
|
|
return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
|
|
|
|
// If we have already compiled the function, return a pointer to its body.
|
|
Function *F = cast<Function>(V);
|
|
|
|
void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
|
|
if (FnStub) {
|
|
// Return the function stub if it's already created. We do this first so
|
|
// that we're returning the same address for the function as any previous
|
|
// call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
|
|
// close enough to call.
|
|
return FnStub;
|
|
}
|
|
|
|
// If we know the target can handle arbitrary-distance calls, try to
|
|
// return a direct pointer.
|
|
if (!MayNeedFarStub) {
|
|
// If we have code, go ahead and return that.
|
|
void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
|
|
if (ResultPtr) return ResultPtr;
|
|
|
|
// If this is an external function pointer, we can force the JIT to
|
|
// 'compile' it, which really just adds it to the map.
|
|
if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
|
|
return TheJIT->getPointerToFunction(F);
|
|
}
|
|
|
|
// Otherwise, we may need a to emit a stub, and, conservatively, we always do
|
|
// so. Note that it's possible to return null from getLazyFunctionStub in the
|
|
// case of a weak extern that fails to resolve.
|
|
return Resolver.getLazyFunctionStub(F);
|
|
}
|
|
|
|
void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
|
|
// Make sure GV is emitted first, and create a stub containing the fully
|
|
// resolved address.
|
|
void *GVAddress = getPointerToGlobal(V, Reference, false);
|
|
void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
|
|
return StubAddr;
|
|
}
|
|
|
|
void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
|
|
if (DL.isUnknown()) return;
|
|
if (!BeforePrintingInsn) return;
|
|
|
|
const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
|
|
|
|
if (DL.getScope(Context) != 0 && PrevDL != DL) {
|
|
JITEvent_EmittedFunctionDetails::LineStart NextLine;
|
|
NextLine.Address = getCurrentPCValue();
|
|
NextLine.Loc = DL;
|
|
EmissionDetails.LineStarts.push_back(NextLine);
|
|
}
|
|
|
|
PrevDL = DL;
|
|
}
|
|
|
|
static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
|
|
const DataLayout *TD) {
|
|
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
|
|
if (Constants.empty()) return 0;
|
|
|
|
unsigned Size = 0;
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
|
|
MachineConstantPoolEntry CPE = Constants[i];
|
|
unsigned AlignMask = CPE.getAlignment() - 1;
|
|
Size = (Size + AlignMask) & ~AlignMask;
|
|
Type *Ty = CPE.getType();
|
|
Size += TD->getTypeAllocSize(Ty);
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
void JITEmitter::startFunction(MachineFunction &F) {
|
|
DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
|
|
<< F.getName() << "\n");
|
|
|
|
uintptr_t ActualSize = 0;
|
|
// Set the memory writable, if it's not already
|
|
MemMgr->setMemoryWritable();
|
|
|
|
if (SizeEstimate > 0) {
|
|
// SizeEstimate will be non-zero on reallocation attempts.
|
|
ActualSize = SizeEstimate;
|
|
}
|
|
|
|
BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
|
|
ActualSize);
|
|
BufferEnd = BufferBegin+ActualSize;
|
|
EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
|
|
|
|
// Ensure the constant pool/jump table info is at least 4-byte aligned.
|
|
emitAlignment(16);
|
|
|
|
emitConstantPool(F.getConstantPool());
|
|
if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
|
|
initJumpTableInfo(MJTI);
|
|
|
|
// About to start emitting the machine code for the function.
|
|
emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
|
|
TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
|
|
EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
|
|
|
|
MBBLocations.clear();
|
|
|
|
EmissionDetails.MF = &F;
|
|
EmissionDetails.LineStarts.clear();
|
|
}
|
|
|
|
bool JITEmitter::finishFunction(MachineFunction &F) {
|
|
if (CurBufferPtr == BufferEnd) {
|
|
// We must call endFunctionBody before retrying, because
|
|
// deallocateMemForFunction requires it.
|
|
MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
|
|
retryWithMoreMemory(F);
|
|
return true;
|
|
}
|
|
|
|
if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
|
|
emitJumpTableInfo(MJTI);
|
|
|
|
// FnStart is the start of the text, not the start of the constant pool and
|
|
// other per-function data.
|
|
uint8_t *FnStart =
|
|
(uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
|
|
|
|
// FnEnd is the end of the function's machine code.
|
|
uint8_t *FnEnd = CurBufferPtr;
|
|
|
|
if (!Relocations.empty()) {
|
|
CurFn = F.getFunction();
|
|
NumRelos += Relocations.size();
|
|
|
|
// Resolve the relocations to concrete pointers.
|
|
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
|
|
MachineRelocation &MR = Relocations[i];
|
|
void *ResultPtr = 0;
|
|
if (!MR.letTargetResolve()) {
|
|
if (MR.isExternalSymbol()) {
|
|
ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
|
|
false);
|
|
DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
|
|
<< ResultPtr << "]\n");
|
|
|
|
// If the target REALLY wants a stub for this function, emit it now.
|
|
if (MR.mayNeedFarStub()) {
|
|
ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
|
|
}
|
|
} else if (MR.isGlobalValue()) {
|
|
ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
|
|
BufferBegin+MR.getMachineCodeOffset(),
|
|
MR.mayNeedFarStub());
|
|
} else if (MR.isIndirectSymbol()) {
|
|
ResultPtr = getPointerToGVIndirectSym(
|
|
MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
|
|
} else if (MR.isBasicBlock()) {
|
|
ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
|
|
} else if (MR.isConstantPoolIndex()) {
|
|
ResultPtr =
|
|
(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
|
|
} else {
|
|
assert(MR.isJumpTableIndex());
|
|
ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
|
|
}
|
|
|
|
MR.setResultPointer(ResultPtr);
|
|
}
|
|
|
|
// if we are managing the GOT and the relocation wants an index,
|
|
// give it one
|
|
if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
|
|
unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
|
|
MR.setGOTIndex(idx);
|
|
if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
|
|
DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
|
|
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
|
|
<< "\n");
|
|
((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
|
|
}
|
|
}
|
|
}
|
|
|
|
CurFn = 0;
|
|
TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
|
|
Relocations.size(), MemMgr->getGOTBase());
|
|
}
|
|
|
|
// Update the GOT entry for F to point to the new code.
|
|
if (MemMgr->isManagingGOT()) {
|
|
unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
|
|
if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
|
|
DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
|
|
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
|
|
<< "\n");
|
|
((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
|
|
}
|
|
}
|
|
|
|
// CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
|
|
// global variables that were referenced in the relocations.
|
|
MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
|
|
|
|
if (CurBufferPtr == BufferEnd) {
|
|
retryWithMoreMemory(F);
|
|
return true;
|
|
} else {
|
|
// Now that we've succeeded in emitting the function, reset the
|
|
// SizeEstimate back down to zero.
|
|
SizeEstimate = 0;
|
|
}
|
|
|
|
BufferBegin = CurBufferPtr = 0;
|
|
NumBytes += FnEnd-FnStart;
|
|
|
|
// Invalidate the icache if necessary.
|
|
sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
|
|
|
|
TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
|
|
EmissionDetails);
|
|
|
|
// Reset the previous debug location.
|
|
PrevDL = DebugLoc();
|
|
|
|
DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
|
|
<< "] Function: " << F.getName()
|
|
<< ": " << (FnEnd-FnStart) << " bytes of text, "
|
|
<< Relocations.size() << " relocations\n");
|
|
|
|
Relocations.clear();
|
|
ConstPoolAddresses.clear();
|
|
|
|
// Mark code region readable and executable if it's not so already.
|
|
MemMgr->setMemoryExecutable();
|
|
|
|
DEBUG({
|
|
if (sys::hasDisassembler()) {
|
|
dbgs() << "JIT: Disassembled code:\n";
|
|
dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
|
|
(uintptr_t)FnStart);
|
|
} else {
|
|
dbgs() << "JIT: Binary code:\n";
|
|
uint8_t* q = FnStart;
|
|
for (int i = 0; q < FnEnd; q += 4, ++i) {
|
|
if (i == 4)
|
|
i = 0;
|
|
if (i == 0)
|
|
dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
|
|
bool Done = false;
|
|
for (int j = 3; j >= 0; --j) {
|
|
if (q + j >= FnEnd)
|
|
Done = true;
|
|
else
|
|
dbgs() << (unsigned short)q[j];
|
|
}
|
|
if (Done)
|
|
break;
|
|
dbgs() << ' ';
|
|
if (i == 3)
|
|
dbgs() << '\n';
|
|
}
|
|
dbgs()<< '\n';
|
|
}
|
|
});
|
|
|
|
if (JITExceptionHandling) {
|
|
uintptr_t ActualSize = 0;
|
|
SavedBufferBegin = BufferBegin;
|
|
SavedBufferEnd = BufferEnd;
|
|
SavedCurBufferPtr = CurBufferPtr;
|
|
|
|
BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
|
|
ActualSize);
|
|
BufferEnd = BufferBegin+ActualSize;
|
|
EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
|
|
uint8_t *EhStart;
|
|
uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
|
|
EhStart);
|
|
MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
|
|
FrameRegister);
|
|
BufferBegin = SavedBufferBegin;
|
|
BufferEnd = SavedBufferEnd;
|
|
CurBufferPtr = SavedCurBufferPtr;
|
|
|
|
if (JITExceptionHandling) {
|
|
TheJIT->RegisterTable(F.getFunction(), FrameRegister);
|
|
}
|
|
}
|
|
|
|
if (MMI)
|
|
MMI->EndFunction();
|
|
|
|
return false;
|
|
}
|
|
|
|
void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
|
|
DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
|
|
Relocations.clear(); // Clear the old relocations or we'll reapply them.
|
|
ConstPoolAddresses.clear();
|
|
++NumRetries;
|
|
deallocateMemForFunction(F.getFunction());
|
|
// Try again with at least twice as much free space.
|
|
SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
|
|
|
|
for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
|
|
if (MBB->hasAddressTaken())
|
|
TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
|
|
}
|
|
}
|
|
|
|
/// deallocateMemForFunction - Deallocate all memory for the specified
|
|
/// function body. Also drop any references the function has to stubs.
|
|
/// May be called while the Function is being destroyed inside ~Value().
|
|
void JITEmitter::deallocateMemForFunction(const Function *F) {
|
|
ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
|
|
Emitted = EmittedFunctions.find(F);
|
|
if (Emitted != EmittedFunctions.end()) {
|
|
MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
|
|
MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
|
|
TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
|
|
|
|
EmittedFunctions.erase(Emitted);
|
|
}
|
|
|
|
if (JITExceptionHandling) {
|
|
TheJIT->DeregisterTable(F);
|
|
}
|
|
}
|
|
|
|
|
|
void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
|
|
if (BufferBegin)
|
|
return JITCodeEmitter::allocateSpace(Size, Alignment);
|
|
|
|
// create a new memory block if there is no active one.
|
|
// care must be taken so that BufferBegin is invalidated when a
|
|
// block is trimmed
|
|
BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
|
|
BufferEnd = BufferBegin+Size;
|
|
return CurBufferPtr;
|
|
}
|
|
|
|
void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
|
|
// Delegate this call through the memory manager.
|
|
return MemMgr->allocateGlobal(Size, Alignment);
|
|
}
|
|
|
|
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
|
|
if (TheJIT->getJITInfo().hasCustomConstantPool())
|
|
return;
|
|
|
|
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
|
|
if (Constants.empty()) return;
|
|
|
|
unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
|
|
unsigned Align = MCP->getConstantPoolAlignment();
|
|
ConstantPoolBase = allocateSpace(Size, Align);
|
|
ConstantPool = MCP;
|
|
|
|
if (ConstantPoolBase == 0) return; // Buffer overflow.
|
|
|
|
DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
|
|
<< "] (size: " << Size << ", alignment: " << Align << ")\n");
|
|
|
|
// Initialize the memory for all of the constant pool entries.
|
|
unsigned Offset = 0;
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
|
|
MachineConstantPoolEntry CPE = Constants[i];
|
|
unsigned AlignMask = CPE.getAlignment() - 1;
|
|
Offset = (Offset + AlignMask) & ~AlignMask;
|
|
|
|
uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
|
|
ConstPoolAddresses.push_back(CAddr);
|
|
if (CPE.isMachineConstantPoolEntry()) {
|
|
// FIXME: add support to lower machine constant pool values into bytes!
|
|
report_fatal_error("Initialize memory with machine specific constant pool"
|
|
"entry has not been implemented!");
|
|
}
|
|
TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
|
|
DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
|
|
dbgs().write_hex(CAddr) << "]\n");
|
|
|
|
Type *Ty = CPE.Val.ConstVal->getType();
|
|
Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
|
|
}
|
|
}
|
|
|
|
void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
|
|
if (TheJIT->getJITInfo().hasCustomJumpTables())
|
|
return;
|
|
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
|
|
return;
|
|
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return;
|
|
|
|
unsigned NumEntries = 0;
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i)
|
|
NumEntries += JT[i].MBBs.size();
|
|
|
|
unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
|
|
|
|
// Just allocate space for all the jump tables now. We will fix up the actual
|
|
// MBB entries in the tables after we emit the code for each block, since then
|
|
// we will know the final locations of the MBBs in memory.
|
|
JumpTable = MJTI;
|
|
JumpTableBase = allocateSpace(NumEntries * EntrySize,
|
|
MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
|
|
}
|
|
|
|
void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
|
|
if (TheJIT->getJITInfo().hasCustomJumpTables())
|
|
return;
|
|
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty() || JumpTableBase == 0) return;
|
|
|
|
|
|
switch (MJTI->getEntryKind()) {
|
|
case MachineJumpTableInfo::EK_Inline:
|
|
return;
|
|
case MachineJumpTableInfo::EK_BlockAddress: {
|
|
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
|
|
// .word LBB123
|
|
assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
|
|
"Cross JIT'ing?");
|
|
|
|
// For each jump table, map each target in the jump table to the address of
|
|
// an emitted MachineBasicBlock.
|
|
intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
|
|
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
|
|
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
|
|
// Store the address of the basic block for this jump table slot in the
|
|
// memory we allocated for the jump table in 'initJumpTableInfo'
|
|
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
|
|
*SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MachineJumpTableInfo::EK_Custom32:
|
|
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
|
|
case MachineJumpTableInfo::EK_LabelDifference32: {
|
|
assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
|
|
// For each jump table, place the offset from the beginning of the table
|
|
// to the target address.
|
|
int *SlotPtr = (int*)JumpTableBase;
|
|
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
|
|
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
|
|
// Store the offset of the basic block for this jump table slot in the
|
|
// memory we allocated for the jump table in 'initJumpTableInfo'
|
|
uintptr_t Base = (uintptr_t)SlotPtr;
|
|
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
|
|
uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
|
|
/// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
|
|
*SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
|
|
llvm_unreachable(
|
|
"JT Info emission not implemented for GPRel64BlockAddress yet.");
|
|
}
|
|
}
|
|
|
|
void JITEmitter::startGVStub(const GlobalValue* GV,
|
|
unsigned StubSize, unsigned Alignment) {
|
|
SavedBufferBegin = BufferBegin;
|
|
SavedBufferEnd = BufferEnd;
|
|
SavedCurBufferPtr = CurBufferPtr;
|
|
|
|
BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
|
|
BufferEnd = BufferBegin+StubSize+1;
|
|
}
|
|
|
|
void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
|
|
SavedBufferBegin = BufferBegin;
|
|
SavedBufferEnd = BufferEnd;
|
|
SavedCurBufferPtr = CurBufferPtr;
|
|
|
|
BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
|
|
BufferEnd = BufferBegin+StubSize+1;
|
|
}
|
|
|
|
void JITEmitter::finishGVStub() {
|
|
assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
|
|
NumBytes += getCurrentPCOffset();
|
|
BufferBegin = SavedBufferBegin;
|
|
BufferEnd = SavedBufferEnd;
|
|
CurBufferPtr = SavedCurBufferPtr;
|
|
}
|
|
|
|
void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
|
|
const uint8_t *Buffer, size_t Size,
|
|
unsigned Alignment) {
|
|
uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
|
|
memcpy(IndGV, Buffer, Size);
|
|
return IndGV;
|
|
}
|
|
|
|
// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
|
|
// in the constant pool that was last emitted with the 'emitConstantPool'
|
|
// method.
|
|
//
|
|
uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
|
|
assert(ConstantNum < ConstantPool->getConstants().size() &&
|
|
"Invalid ConstantPoolIndex!");
|
|
return ConstPoolAddresses[ConstantNum];
|
|
}
|
|
|
|
// getJumpTableEntryAddress - Return the address of the JumpTable with index
|
|
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
|
|
//
|
|
uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
|
|
const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
|
|
assert(Index < JT.size() && "Invalid jump table index!");
|
|
|
|
unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
|
|
|
|
unsigned Offset = 0;
|
|
for (unsigned i = 0; i < Index; ++i)
|
|
Offset += JT[i].MBBs.size();
|
|
|
|
Offset *= EntrySize;
|
|
|
|
return (uintptr_t)((char *)JumpTableBase + Offset);
|
|
}
|
|
|
|
void JITEmitter::EmittedFunctionConfig::onDelete(
|
|
JITEmitter *Emitter, const Function *F) {
|
|
Emitter->deallocateMemForFunction(F);
|
|
}
|
|
void JITEmitter::EmittedFunctionConfig::onRAUW(
|
|
JITEmitter *, const Function*, const Function*) {
|
|
llvm_unreachable("The JIT doesn't know how to handle a"
|
|
" RAUW on a value it has emitted.");
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public interface to this file
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
|
|
TargetMachine &tm) {
|
|
return new JITEmitter(jit, JMM, tm);
|
|
}
|
|
|
|
// getPointerToFunctionOrStub - If the specified function has been
|
|
// code-gen'd, return a pointer to the function. If not, compile it, or use
|
|
// a stub to implement lazy compilation if available.
|
|
//
|
|
void *JIT::getPointerToFunctionOrStub(Function *F) {
|
|
// If we have already code generated the function, just return the address.
|
|
if (void *Addr = getPointerToGlobalIfAvailable(F))
|
|
return Addr;
|
|
|
|
// Get a stub if the target supports it.
|
|
JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
|
|
return JE->getJITResolver().getLazyFunctionStub(F);
|
|
}
|
|
|
|
void JIT::updateFunctionStub(Function *F) {
|
|
// Get the empty stub we generated earlier.
|
|
JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
|
|
void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
|
|
void *Addr = getPointerToGlobalIfAvailable(F);
|
|
assert(Addr != Stub && "Function must have non-stub address to be updated.");
|
|
|
|
// Tell the target jit info to rewrite the stub at the specified address,
|
|
// rather than creating a new one.
|
|
TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
|
|
JE->startGVStub(Stub, layout.Size);
|
|
getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
|
|
JE->finishGVStub();
|
|
}
|
|
|
|
/// freeMachineCodeForFunction - release machine code memory for given Function.
|
|
///
|
|
void JIT::freeMachineCodeForFunction(Function *F) {
|
|
// Delete translation for this from the ExecutionEngine, so it will get
|
|
// retranslated next time it is used.
|
|
updateGlobalMapping(F, 0);
|
|
|
|
// Free the actual memory for the function body and related stuff.
|
|
static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
|
|
}
|