mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2517 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			521 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			521 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
 | 
						|
//
 | 
						|
// This file implements sparse conditional constant propogation and merging:
 | 
						|
//
 | 
						|
// Specifically, this:
 | 
						|
//   * Assumes values are constant unless proven otherwise
 | 
						|
//   * Assumes BasicBlocks are dead unless proven otherwise
 | 
						|
//   * Proves values to be constant, and replaces them with constants
 | 
						|
//   * Proves conditional branches constant, and unconditionalizes them
 | 
						|
//   * Folds multiple identical constants in the constant pool together
 | 
						|
//
 | 
						|
// Notice that:
 | 
						|
//   * This pass has a habit of making definitions be dead.  It is a good idea
 | 
						|
//     to to run a DCE pass sometime after running this pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/ConstantProp.h"
 | 
						|
#include "llvm/ConstantHandling.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <set>
 | 
						|
#include <iostream>
 | 
						|
using std::cerr;
 | 
						|
 | 
						|
#if 0    // Enable this to get SCCP debug output
 | 
						|
#define DEBUG_SCCP(X) X
 | 
						|
#else
 | 
						|
#define DEBUG_SCCP(X)
 | 
						|
#endif
 | 
						|
 | 
						|
// InstVal class - This class represents the different lattice values that an 
 | 
						|
// instruction may occupy.  It is a simple class with value semantics.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
class InstVal {
 | 
						|
  enum { 
 | 
						|
    undefined,           // This instruction has no known value
 | 
						|
    constant,            // This instruction has a constant value
 | 
						|
    // Range,            // This instruction is known to fall within a range
 | 
						|
    overdefined          // This instruction has an unknown value
 | 
						|
  } LatticeValue;        // The current lattice position
 | 
						|
  Constant *ConstantVal; // If Constant value, the current value
 | 
						|
public:
 | 
						|
  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
 | 
						|
 | 
						|
  // markOverdefined - Return true if this is a new status to be in...
 | 
						|
  inline bool markOverdefined() {
 | 
						|
    if (LatticeValue != overdefined) {
 | 
						|
      LatticeValue = overdefined;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // markConstant - Return true if this is a new status for us...
 | 
						|
  inline bool markConstant(Constant *V) {
 | 
						|
    if (LatticeValue != constant) {
 | 
						|
      LatticeValue = constant;
 | 
						|
      ConstantVal = V;
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      assert(ConstantVal == V && "Marking constant with different value");
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool isUndefined()   const { return LatticeValue == undefined; }
 | 
						|
  inline bool isConstant()    const { return LatticeValue == constant; }
 | 
						|
  inline bool isOverdefined() const { return LatticeValue == overdefined; }
 | 
						|
 | 
						|
  inline Constant *getConstant() const { return ConstantVal; }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SCCP Class
 | 
						|
//
 | 
						|
// This class does all of the work of Sparse Conditional Constant Propogation.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
class SCCP : public FunctionPass, public InstVisitor<SCCP> {
 | 
						|
  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
 | 
						|
  std::map<Value*, InstVal> ValueState;  // The state each value is in...
 | 
						|
 | 
						|
  std::vector<Instruction*> InstWorkList;// The instruction work list
 | 
						|
  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
 | 
						|
public:
 | 
						|
 | 
						|
  const char *getPassName() const {
 | 
						|
    return "Sparse Conditional Constant Propogation";
 | 
						|
  }
 | 
						|
 | 
						|
  // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm,
 | 
						|
  // and return true if the function was modified.
 | 
						|
  //
 | 
						|
  bool runOnFunction(Function *F);
 | 
						|
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    AU.preservesCFG();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // The implementation of this class
 | 
						|
  //
 | 
						|
private:
 | 
						|
  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
 | 
						|
 | 
						|
  // markValueOverdefined - Make a value be marked as "constant".  If the value
 | 
						|
  // is not already a constant, add it to the instruction work list so that 
 | 
						|
  // the users of the instruction are updated later.
 | 
						|
  //
 | 
						|
  inline bool markConstant(Instruction *I, Constant *V) {
 | 
						|
    DEBUG_SCCP(cerr << "markConstant: " << V << " = " << I);
 | 
						|
 | 
						|
    if (ValueState[I].markConstant(V)) {
 | 
						|
      InstWorkList.push_back(I);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // markValueOverdefined - Make a value be marked as "overdefined". If the
 | 
						|
  // value is not already overdefined, add it to the instruction work list so
 | 
						|
  // that the users of the instruction are updated later.
 | 
						|
  //
 | 
						|
  inline bool markOverdefined(Value *V) {
 | 
						|
    if (ValueState[V].markOverdefined()) {
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
	DEBUG_SCCP(cerr << "markOverdefined: " << V);
 | 
						|
	InstWorkList.push_back(I);  // Only instructions go on the work list
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // getValueState - Return the InstVal object that corresponds to the value.
 | 
						|
  // This function is neccesary because not all values should start out in the
 | 
						|
  // underdefined state... Argument's should be overdefined, and
 | 
						|
  // constants should be marked as constants.  If a value is not known to be an
 | 
						|
  // Instruction object, then use this accessor to get its value from the map.
 | 
						|
  //
 | 
						|
  inline InstVal &getValueState(Value *V) {
 | 
						|
    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
 | 
						|
    if (I != ValueState.end()) return I->second;  // Common case, in the map
 | 
						|
      
 | 
						|
    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
 | 
						|
      ValueState[CPV].markConstant(CPV);
 | 
						|
    } else if (isa<Argument>(V)) {                // Arguments are overdefined
 | 
						|
      ValueState[V].markOverdefined();
 | 
						|
    } 
 | 
						|
    // All others are underdefined by default...
 | 
						|
    return ValueState[V];
 | 
						|
  }
 | 
						|
 | 
						|
  // markExecutable - Mark a basic block as executable, adding it to the BB 
 | 
						|
  // work list if it is not already executable...
 | 
						|
  // 
 | 
						|
  void markExecutable(BasicBlock *BB) {
 | 
						|
    if (BBExecutable.count(BB)) return;
 | 
						|
    DEBUG_SCCP(cerr << "Marking BB Executable: " << BB);
 | 
						|
    BBExecutable.insert(BB);   // Basic block is executable!
 | 
						|
    BBWorkList.push_back(BB);  // Add the block to the work list!
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // visit implementations - Something changed in this instruction... Either an 
 | 
						|
  // operand made a transition, or the instruction is newly executable.  Change
 | 
						|
  // the value type of I to reflect these changes if appropriate.
 | 
						|
  //
 | 
						|
  void visitPHINode(PHINode *I);
 | 
						|
 | 
						|
  // Terminators
 | 
						|
  void visitReturnInst(ReturnInst *I) { /*does not have an effect*/ }
 | 
						|
  void visitTerminatorInst(TerminatorInst *TI);
 | 
						|
 | 
						|
  void visitUnaryOperator(Instruction *I);
 | 
						|
  void visitCastInst(CastInst *I) { visitUnaryOperator(I); }
 | 
						|
  void visitBinaryOperator(Instruction *I);
 | 
						|
  void visitShiftInst(ShiftInst *I) { visitBinaryOperator(I); }
 | 
						|
 | 
						|
  // Instructions that cannot be folded away...
 | 
						|
  void visitStoreInst     (Instruction *I) { /*returns void*/ }
 | 
						|
  void visitMemAccessInst (Instruction *I) { markOverdefined(I); }
 | 
						|
  void visitCallInst      (Instruction *I) { markOverdefined(I); }
 | 
						|
  void visitInvokeInst    (Instruction *I) { markOverdefined(I); }
 | 
						|
  void visitAllocationInst(Instruction *I) { markOverdefined(I); }
 | 
						|
  void visitFreeInst      (Instruction *I) { /*returns void*/ }
 | 
						|
 | 
						|
  void visitInstruction(Instruction *I) {
 | 
						|
    // If a new instruction is added to LLVM that we don't handle...
 | 
						|
    cerr << "SCCP: Don't know how to handle: " << I;
 | 
						|
    markOverdefined(I);   // Just in case
 | 
						|
  }
 | 
						|
 | 
						|
  // getFeasibleSuccessors - Return a vector of booleans to indicate which
 | 
						|
  // successors are reachable from a given terminator instruction.
 | 
						|
  //
 | 
						|
  void getFeasibleSuccessors(TerminatorInst *I, std::vector<bool> &Succs);
 | 
						|
 | 
						|
  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | 
						|
  // block to the 'To' basic block is currently feasible...
 | 
						|
  //
 | 
						|
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
 | 
						|
 | 
						|
  // OperandChangedState - This method is invoked on all of the users of an
 | 
						|
  // instruction that was just changed state somehow....  Based on this
 | 
						|
  // information, we need to update the specified user of this instruction.
 | 
						|
  //
 | 
						|
  void OperandChangedState(User *U) {
 | 
						|
    // Only instructions use other variable values!
 | 
						|
    Instruction *I = cast<Instruction>(U);
 | 
						|
    if (!BBExecutable.count(I->getParent())) return;// Inst not executable yet!
 | 
						|
    visit(I);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
// createSCCPPass - This is the public interface to this file...
 | 
						|
//
 | 
						|
Pass *createSCCPPass() {
 | 
						|
  return new SCCP();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SCCP Class Implementation
 | 
						|
 | 
						|
 | 
						|
// runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm,
 | 
						|
// and return true if the function was modified.
 | 
						|
//
 | 
						|
bool SCCP::runOnFunction(Function *F) {
 | 
						|
  // Mark the first block of the function as being executable...
 | 
						|
  markExecutable(F->front());
 | 
						|
 | 
						|
  // Process the work lists until their are empty!
 | 
						|
  while (!BBWorkList.empty() || !InstWorkList.empty()) {
 | 
						|
    // Process the instruction work list...
 | 
						|
    while (!InstWorkList.empty()) {
 | 
						|
      Instruction *I = InstWorkList.back();
 | 
						|
      InstWorkList.pop_back();
 | 
						|
 | 
						|
      DEBUG_SCCP(cerr << "\nPopped off I-WL: " << I);
 | 
						|
 | 
						|
      
 | 
						|
      // "I" got into the work list because it either made the transition from
 | 
						|
      // bottom to constant, or to Overdefined.
 | 
						|
      //
 | 
						|
      // Update all of the users of this instruction's value...
 | 
						|
      //
 | 
						|
      for_each(I->use_begin(), I->use_end(),
 | 
						|
	       bind_obj(this, &SCCP::OperandChangedState));
 | 
						|
    }
 | 
						|
 | 
						|
    // Process the basic block work list...
 | 
						|
    while (!BBWorkList.empty()) {
 | 
						|
      BasicBlock *BB = BBWorkList.back();
 | 
						|
      BBWorkList.pop_back();
 | 
						|
 | 
						|
      DEBUG_SCCP(cerr << "\nPopped off BBWL: " << BB);
 | 
						|
 | 
						|
      // If this block only has a single successor, mark it as executable as
 | 
						|
      // well... if not, terminate the do loop.
 | 
						|
      //
 | 
						|
      if (BB->getTerminator()->getNumSuccessors() == 1)
 | 
						|
        markExecutable(BB->getTerminator()->getSuccessor(0));
 | 
						|
 | 
						|
      // Notify all instructions in this basic block that they are newly
 | 
						|
      // executable.
 | 
						|
      visit(BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#if 0
 | 
						|
  for (Function::iterator BBI = F->begin(), BBEnd = F->end();
 | 
						|
       BBI != BBEnd; ++BBI)
 | 
						|
    if (!BBExecutable.count(*BBI))
 | 
						|
      cerr << "BasicBlock Dead:" << *BBI;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
  // Iterate over all of the instructions in a function, replacing them with
 | 
						|
  // constants if we have found them to be of constant values.
 | 
						|
  //
 | 
						|
  bool MadeChanges = false;
 | 
						|
  for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
 | 
						|
    BasicBlock *BB = *FI;
 | 
						|
    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
 | 
						|
      Instruction *Inst = *BI;
 | 
						|
      InstVal &IV = ValueState[Inst];
 | 
						|
      if (IV.isConstant()) {
 | 
						|
        Constant *Const = IV.getConstant();
 | 
						|
        DEBUG_SCCP(cerr << "Constant: " << Inst << "  is: " << Const);
 | 
						|
 | 
						|
        // Replaces all of the uses of a variable with uses of the constant.
 | 
						|
        Inst->replaceAllUsesWith(Const);
 | 
						|
 | 
						|
        // Remove the operator from the list of definitions... and delete it.
 | 
						|
        delete BB->getInstList().remove(BI);
 | 
						|
 | 
						|
        // Hey, we just changed something!
 | 
						|
        MadeChanges = true;
 | 
						|
      } else {
 | 
						|
        ++BI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Reset state so that the next invocation will have empty data structures
 | 
						|
  BBExecutable.clear();
 | 
						|
  ValueState.clear();
 | 
						|
 | 
						|
  return MadeChanges;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
 | 
						|
// successors are reachable from a given terminator instruction.
 | 
						|
//
 | 
						|
void SCCP::getFeasibleSuccessors(TerminatorInst *TI, std::vector<bool> &Succs) {
 | 
						|
  assert(Succs.size() == TI->getNumSuccessors() && "Succs vector wrong size!");
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
    if (BI->isUnconditional()) {
 | 
						|
      Succs[0] = true;
 | 
						|
    } else {
 | 
						|
      InstVal &BCValue = getValueState(BI->getCondition());
 | 
						|
      if (BCValue.isOverdefined()) {
 | 
						|
        // Overdefined condition variables mean the branch could go either way.
 | 
						|
        Succs[0] = Succs[1] = true;
 | 
						|
      } else if (BCValue.isConstant()) {
 | 
						|
        // Constant condition variables mean the branch can only go a single way
 | 
						|
        Succs[BCValue.getConstant() == ConstantBool::False] = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
 | 
						|
    // Invoke instructions successors are always executable.
 | 
						|
    Succs[0] = Succs[1] = true;
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
    InstVal &SCValue = getValueState(SI->getCondition());
 | 
						|
    if (SCValue.isOverdefined()) {  // Overdefined condition?
 | 
						|
      // All destinations are executable!
 | 
						|
      Succs.assign(TI->getNumSuccessors(), true);
 | 
						|
    } else if (SCValue.isConstant()) {
 | 
						|
      Constant *CPV = SCValue.getConstant();
 | 
						|
      // Make sure to skip the "default value" which isn't a value
 | 
						|
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
 | 
						|
        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
 | 
						|
          Succs[i] = true;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Constant value not equal to any of the branches... must execute
 | 
						|
      // default branch then...
 | 
						|
      Succs[0] = true;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    cerr << "SCCP: Don't know how to handle: " << TI;
 | 
						|
    Succs.assign(TI->getNumSuccessors(), true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | 
						|
// block to the 'To' basic block is currently feasible...
 | 
						|
//
 | 
						|
bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
 | 
						|
  assert(BBExecutable.count(To) && "Dest should always be alive!");
 | 
						|
 | 
						|
  // Make sure the source basic block is executable!!
 | 
						|
  if (!BBExecutable.count(From)) return false;
 | 
						|
  
 | 
						|
  // Check to make sure this edge itself is actually feasible now...
 | 
						|
  TerminatorInst *FT = From->getTerminator();
 | 
						|
  std::vector<bool> SuccFeasible(FT->getNumSuccessors());
 | 
						|
  getFeasibleSuccessors(FT, SuccFeasible);
 | 
						|
 | 
						|
  // Check all edges from From to To.  If any are feasible, return true.
 | 
						|
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
 | 
						|
    if (FT->getSuccessor(i) == To && SuccFeasible[i])
 | 
						|
      return true;
 | 
						|
    
 | 
						|
  // Otherwise, none of the edges are actually feasible at this time...
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// visit Implementations - Something changed in this instruction... Either an
 | 
						|
// operand made a transition, or the instruction is newly executable.  Change
 | 
						|
// the value type of I to reflect these changes if appropriate.  This method
 | 
						|
// makes sure to do the following actions:
 | 
						|
//
 | 
						|
// 1. If a phi node merges two constants in, and has conflicting value coming
 | 
						|
//    from different branches, or if the PHI node merges in an overdefined
 | 
						|
//    value, then the PHI node becomes overdefined.
 | 
						|
// 2. If a phi node merges only constants in, and they all agree on value, the
 | 
						|
//    PHI node becomes a constant value equal to that.
 | 
						|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
 | 
						|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
 | 
						|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
 | 
						|
// 6. If a conditional branch has a value that is constant, make the selected
 | 
						|
//    destination executable
 | 
						|
// 7. If a conditional branch has a value that is overdefined, make all
 | 
						|
//    successors executable.
 | 
						|
//
 | 
						|
 | 
						|
void SCCP::visitPHINode(PHINode *PN) {
 | 
						|
  unsigned NumValues = PN->getNumIncomingValues(), i;
 | 
						|
  InstVal *OperandIV = 0;
 | 
						|
 | 
						|
  // Look at all of the executable operands of the PHI node.  If any of them
 | 
						|
  // are overdefined, the PHI becomes overdefined as well.  If they are all
 | 
						|
  // constant, and they agree with each other, the PHI becomes the identical
 | 
						|
  // constant.  If they are constant and don't agree, the PHI is overdefined.
 | 
						|
  // If there are no executable operands, the PHI remains undefined.
 | 
						|
  //
 | 
						|
  for (i = 0; i < NumValues; ++i) {
 | 
						|
    if (isEdgeFeasible(PN->getIncomingBlock(i), PN->getParent())) {
 | 
						|
      InstVal &IV = getValueState(PN->getIncomingValue(i));
 | 
						|
      if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
 | 
						|
      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
 | 
						|
        markOverdefined(PN);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (OperandIV == 0) {   // Grab the first value...
 | 
						|
        OperandIV = &IV;
 | 
						|
      } else {                // Another value is being merged in!
 | 
						|
        // There is already a reachable operand.  If we conflict with it,
 | 
						|
        // then the PHI node becomes overdefined.  If we agree with it, we
 | 
						|
        // can continue on.
 | 
						|
 | 
						|
        // Check to see if there are two different constants merging...
 | 
						|
        if (IV.getConstant() != OperandIV->getConstant()) {
 | 
						|
          // Yes there is.  This means the PHI node is not constant.
 | 
						|
          // You must be overdefined poor PHI.
 | 
						|
          //
 | 
						|
          markOverdefined(PN);         // The PHI node now becomes overdefined
 | 
						|
          return;    // I'm done analyzing you
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we exited the loop, this means that the PHI node only has constant
 | 
						|
  // arguments that agree with each other(and OperandIV is a pointer to one
 | 
						|
  // of their InstVal's) or OperandIV is null because there are no defined
 | 
						|
  // incoming arguments.  If this is the case, the PHI remains undefined.
 | 
						|
  //
 | 
						|
  if (OperandIV) {
 | 
						|
    assert(OperandIV->isConstant() && "Should only be here for constants!");
 | 
						|
    markConstant(PN, OperandIV->getConstant());  // Aquire operand value
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SCCP::visitTerminatorInst(TerminatorInst *TI) {
 | 
						|
  std::vector<bool> SuccFeasible(TI->getNumSuccessors());
 | 
						|
  getFeasibleSuccessors(TI, SuccFeasible);
 | 
						|
 | 
						|
  // Mark all feasible successors executable...
 | 
						|
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
 | 
						|
    if (SuccFeasible[i])
 | 
						|
      markExecutable(TI->getSuccessor(i));
 | 
						|
}
 | 
						|
 | 
						|
void SCCP::visitUnaryOperator(Instruction *I) {
 | 
						|
  Value *V = I->getOperand(0);
 | 
						|
  InstVal &VState = getValueState(V);
 | 
						|
  if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
 | 
						|
    markOverdefined(I);
 | 
						|
  } else if (VState.isConstant()) {    // Propogate constant value
 | 
						|
    Constant *Result = isa<CastInst>(I)
 | 
						|
      ? ConstantFoldCastInstruction(VState.getConstant(), I->getType())
 | 
						|
      : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant());
 | 
						|
 | 
						|
    if (Result) {
 | 
						|
      // This instruction constant folds!
 | 
						|
      markConstant(I, Result);
 | 
						|
    } else {
 | 
						|
      markOverdefined(I);   // Don't know how to fold this instruction.  :(
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Handle BinaryOperators and Shift Instructions...
 | 
						|
void SCCP::visitBinaryOperator(Instruction *I) {
 | 
						|
  InstVal &V1State = getValueState(I->getOperand(0));
 | 
						|
  InstVal &V2State = getValueState(I->getOperand(1));
 | 
						|
  if (V1State.isOverdefined() || V2State.isOverdefined()) {
 | 
						|
    markOverdefined(I);
 | 
						|
  } else if (V1State.isConstant() && V2State.isConstant()) {
 | 
						|
    Constant *Result = 0;
 | 
						|
    if (isa<BinaryOperator>(I))
 | 
						|
      Result = ConstantFoldBinaryInstruction(I->getOpcode(),
 | 
						|
                                             V1State.getConstant(),
 | 
						|
                                             V2State.getConstant());
 | 
						|
    else if (isa<ShiftInst>(I))
 | 
						|
      Result = ConstantFoldShiftInstruction(I->getOpcode(),
 | 
						|
                                            V1State.getConstant(),
 | 
						|
                                            V2State.getConstant());
 | 
						|
    if (Result)
 | 
						|
      markConstant(I, Result);      // This instruction constant folds!
 | 
						|
    else
 | 
						|
      markOverdefined(I);   // Don't know how to fold this instruction.  :(
 | 
						|
  }
 | 
						|
}
 |