2004-06-10 21:59:20 +00:00

545 lines
18 KiB
C++

//===-- Parser.h - Abstract Interface To Bytecode Parsing -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines the interface to the Bytecode Parser and the
// Bytecode Handler interface that it calls.
//
//===----------------------------------------------------------------------===//
#ifndef BYTECODE_PARSER_H
#define BYTECODE_PARSER_H
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Module.h"
#include <utility>
#include <vector>
#include <map>
namespace llvm {
class BytecodeHandler; ///< Forward declare the handler interface
/// This class defines the interface for parsing a buffer of bytecode. The
/// parser itself takes no action except to call the various functions of
/// the handler interface. The parser's sole responsibility is the correct
/// interpretation of the bytecode buffer. The handler is responsible for
/// instantiating and keeping track of all values. As a convenience, the parser
/// is responsible for materializing types and will pass them through the
/// handler interface as necessary.
/// @see BytecodeHandler
/// @brief Abstract Bytecode Parser interface
class AbstractBytecodeParser {
/// @name Constructors
/// @{
public:
AbstractBytecodeParser(
BytecodeHandler* h,
bool repAlignment = false,
bool repBlocks = false,
bool repVBR = false
) {
handler = h;
reportAlignment = repAlignment;
reportBlocks = repBlocks;
reportVBR = repVBR;
}
~AbstractBytecodeParser() { }
/// @}
/// @name Types
/// @{
public:
/// @brief A convenience type for the buffer pointer
typedef const unsigned char* BufPtr;
/// @brief The type used for vector of potentially abstract types
typedef std::vector<PATypeHolder> TypeListTy;
/// @brief
/// @}
/// @name Methods
/// @{
public:
/// @brief Main interface to parsing a bytecode buffer.
void ParseBytecode(const unsigned char *Buf, unsigned Length,
const std::string &ModuleID);
/// The ParseBytecode method lazily parses functions. Use this
/// method to cause the parser to actually parse all the function bodies
/// in the bytecode buffer.
/// @see ParseBytecode
/// @brief Parse all function bodies
void ParseAllFunctionBodies ();
/// The Parsebytecode method lazily parses functions. Use this
/// method to casue the parser to parse the next function of a given
/// types. Note that this will remove the function from what is to be
/// included by ParseAllFunctionBodies.
/// @see ParseAllFunctionBodies
/// @see ParseBytecode
/// @brief Parse the next function of specific type
void ParseNextFunction (Function* Func) ;
/// @}
/// @name Parsing Units For Subclasses
/// @{
protected:
/// @brief Parse whole module scope
void ParseModule ();
/// @brief Parse the version information block
void ParseVersionInfo ();
/// @brief Parse the ModuleGlobalInfo block
void ParseModuleGlobalInfo ();
/// @brief Parse a symbol table
void ParseSymbolTable ();
/// This function parses LLVM functions lazily. It obtains the type of the
/// function and records where the body of the function is in the bytecode
/// buffer. The caller can then use the ParseNextFunction and
/// ParseAllFunctionBodies to get handler events for the functions.
/// @brief Parse functions lazily.
void ParseFunctionLazily ();
/// @brief Parse a function body
void ParseFunctionBody (Function* Func);
/// @brief Parse a compaction table
void ParseCompactionTable ();
/// @brief Parse global types
void ParseGlobalTypes ();
/// @brief Parse a basic block (for LLVM 1.0 basic block blocks)
void ParseBasicBlock (unsigned BlockNo);
/// @brief parse an instruction list (for post LLVM 1.0 instruction lists
/// with blocks differentiated by terminating instructions.
unsigned ParseInstructionList();
/// @brief Parse an instruction.
bool ParseInstruction (std::vector<unsigned>& Args);
/// @brief Parse a constant pool
void ParseConstantPool (TypeListTy& List);
/// @brief Parse a constant value
void ParseConstantValue (unsigned TypeID);
/// @brief Parse a block of types.
void ParseTypeConstants (TypeListTy &Tab, unsigned NumEntries);
/// @brief Parse a single type.
const Type *ParseTypeConstant();
/// @brief Parse a string constants block
void ParseStringConstants (unsigned NumEntries);
/// @}
/// @name Data
/// @{
private:
BufPtr MemStart; ///< Start of the memory buffer
BufPtr MemEnd; ///< End of the memory buffer
BufPtr BlockStart; ///< Start of current block being parsed
BufPtr BlockEnd; ///< End of current block being parsed
BufPtr At; ///< Where we're currently parsing at
bool reportAlignment; ///< Parser should report alignment?
bool reportBlocks; ///< Parser should report blocks?
bool reportVBR; ///< Report VBR compression events
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
// Flags to distinguish LLVM 1.0 & 1.1 bytecode formats (revision #0)
// Revision #0 had an explicit alignment of data only for the ModuleGlobalInfo
// block. This was fixed to be like all other blocks in 1.2
bool hasInconsistentModuleGlobalInfo;
// Revision #0 also explicitly encoded zero values for primitive types like
// int/sbyte/etc.
bool hasExplicitPrimitiveZeros;
// Flags to control features specific the LLVM 1.2 and before (revision #1)
// LLVM 1.2 and earlier required that getelementptr structure indices were
// ubyte constants and that sequential type indices were longs.
bool hasRestrictedGEPTypes;
/// CompactionTable - If a compaction table is active in the current function,
/// this is the mapping that it contains.
std::vector<Type*> CompactionTypeTable;
// ConstantFwdRefs - This maintains a mapping between <Type, Slot #>'s and
// forward references to constants. Such values may be referenced before they
// are defined, and if so, the temporary object that they represent is held
// here.
//
typedef std::map<std::pair<const Type*,unsigned>, Constant*> ConstantRefsType;
ConstantRefsType ConstantFwdRefs;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
TypeListTy ModuleTypes;
TypeListTy FunctionTypes;
// When the ModuleGlobalInfo section is read, we create a FunctionType object
// for each function in the module. When the function is loaded, this type is
// used to instantiate the actual function object.
std::vector<Function*> FunctionSignatureList;
// Constant values are read in after global variables. Because of this, we
// must defer setting the initializers on global variables until after module
// level constants have been read. In the mean time, this list keeps track of
// what we must do.
//
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
/// @}
/// @name Implementation Details
/// @{
private:
/// This stores the parser's handler. It makes virtual function calls through
/// the BytecodeHandler to notify the handler of parsing events. What the
/// handler does with the events is completely orthogonal to the business of
/// parsing the bytecode.
/// @brief The handler of bytecode parsing events.
BytecodeHandler* handler;
/// For lazy reading-in of functions, we need to save away several pieces of
/// information about each function: its begin and end pointer in the buffer
/// and its FunctionSlot.
struct LazyFunctionInfo {
const unsigned char *Buf, *EndBuf;
LazyFunctionInfo(const unsigned char *B = 0, const unsigned char *EB = 0)
: Buf(B), EndBuf(EB) {}
};
typedef std::map<Function*, LazyFunctionInfo> LazyFunctionMap;
LazyFunctionMap LazyFunctionLoadMap;
private:
/// Is there more to parse in the current block?
inline bool moreInBlock();
/// Have we read past the end of the block
inline void checkPastBlockEnd(const char * block_name);
/// Align to 32 bits
inline void align32();
/// Reader interface
inline unsigned read_uint();
inline unsigned read_vbr_uint();
inline uint64_t read_vbr_uint64();
inline int64_t read_vbr_int64();
inline std::string read_str();
inline void read_data(void *Ptr, void *End);
/// Read a block header
inline void readBlock(unsigned &Type, unsigned &Size);
const Type *AbstractBytecodeParser::getType(unsigned ID);
/// getGlobalTableType - This is just like getType, but when a compaction
/// table is in use, it is ignored. Also, no forward references or other
/// fancy features are supported.
const Type *getGlobalTableType(unsigned Slot) {
if (Slot < Type::FirstDerivedTyID) {
const Type *Ty = Type::getPrimitiveType((Type::PrimitiveID)Slot);
assert(Ty && "Not a primitive type ID?");
return Ty;
}
Slot -= Type::FirstDerivedTyID;
if (Slot >= ModuleTypes.size())
throw std::string("Illegal compaction table type reference!");
return ModuleTypes[Slot];
}
unsigned getGlobalTableTypeSlot(const Type *Ty) {
if (Ty->isPrimitiveType())
return Ty->getPrimitiveID();
TypeListTy::iterator I = find(ModuleTypes.begin(),
ModuleTypes.end(), Ty);
if (I == ModuleTypes.end())
throw std::string("Didn't find type in ModuleTypes.");
return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
}
AbstractBytecodeParser(const AbstractBytecodeParser &); // DO NOT IMPLEMENT
void operator=(const AbstractBytecodeParser &); // DO NOT IMPLEMENT
/// @}
};
/// This class provides the interface for the handling bytecode events during
/// parsing. The methods on this interface are invoked by the
/// AbstractBytecodeParser as it discovers the content of a bytecode stream.
/// This class provides a a clear separation of concerns between recognizing
/// the semantic units of a bytecode file and deciding what to do with them.
/// The AbstractBytecodeParser recognizes the content of the bytecode file and
/// calls the BytecodeHandler methods to determine what should be done. This
/// arrangement allows Bytecode files to be read and handled for a number of
/// purposes simply by creating a subclass of BytecodeHandler. None of the
/// parsing details need to be understood, only the meaning of the calls
/// made on this interface.
///
/// Another paradigm that uses this design pattern is the XML SAX Parser. The
/// ContentHandler for SAX plays the same role as the BytecodeHandler here.
/// @see AbstractbytecodeParser
/// @brief Handle Bytecode Parsing Events
class BytecodeHandler {
/// @name Constructors And Operators
/// @{
public:
/// @brief Default constructor (empty)
BytecodeHandler() {}
/// @brief Virtual destructor (empty)
virtual ~BytecodeHandler() {}
private:
BytecodeHandler(const BytecodeHandler &); // DO NOT IMPLEMENT
void operator=(const BytecodeHandler &); // DO NOT IMPLEMENT
/// @}
/// @name Handler Methods
/// @{
public:
/// This method is called whenever the parser detects an error in the
/// bytecode formatting. Returning true will cause the parser to keep
/// going, however this is inadvisable in most cases. Returning false will
/// cause the parser to throw the message as a std::string.
/// @brief Handle parsing errors.
virtual bool handleError(const std::string& str );
/// This method is called at the beginning of a parse before anything is
/// read in order to give the handler a chance to initialize.
/// @brief Handle the start of a bytecode parse
virtual void handleStart();
/// This method is called at the end of a parse after everything has been
/// read in order to give the handler a chance to terminate.
/// @brief Handle the end of a bytecode parse
virtual void handleFinish();
/// This method is called at the start of a module to indicate that a
/// module is being parsed.
/// @brief Handle the start of a module.
virtual void handleModuleBegin(const std::string& id);
/// This method is called at the end of a module to indicate that the module
/// previously being parsed has concluded.
/// @brief Handle the end of a module.
virtual void handleModuleEnd(const std::string& id);
/// This method is called once the version information has been parsed. It
/// provides the information about the version of the bytecode file being
/// read.
/// @brief Handle the bytecode prolog
virtual void handleVersionInfo(
unsigned char RevisionNum, ///< Byte code revision number
Module::Endianness Endianness, ///< Endianness indicator
Module::PointerSize PointerSize ///< PointerSize indicator
);
/// This method is called at the start of a module globals block which
/// contains the global variables and the function placeholders
virtual void handleModuleGlobalsBegin();
/// This method is called when a non-initialized global variable is
/// recognized. Its type, constness, and linkage type are provided.
/// @brief Handle a non-initialized global variable
virtual void handleGlobalVariable(
const Type* ElemType, ///< The type of the global variable
bool isConstant, ///< Whether the GV is constant or not
GlobalValue::LinkageTypes ///< The linkage type of the GV
);
/// This method is called when an initialized global variable is recognized.
/// Its type constness, linkage type, and the slot number of the initializer
/// are provided.
/// @brief Handle an intialized global variable.
virtual void handleInitializedGV(
const Type* ElemType, ///< The type of the global variable
bool isConstant, ///< Whether the GV is constant or not
GlobalValue::LinkageTypes,///< The linkage type of the GV
unsigned initSlot ///< Slot number of GV's initializer
);
/// This method is called when a new type is recognized. The type is
/// converted from the bytecode and passed to this method.
/// @brief Handle a type
virtual void handleType( const Type* Ty );
/// This method is called when the function prototype for a function is
/// encountered in the module globals block.
virtual void handleFunctionDeclaration(
Function* Func,
const FunctionType* FuncType ///< The type of the function
);
/// This method is called at the end of the module globals block.
/// @brief Handle end of module globals block.
virtual void handleModuleGlobalsEnd();
/// This method is called at the beginning of a compaction table.
/// @brief Handle start of compaction table.
virtual void handleCompactionTableBegin();
/// @brief Handle start of a compaction table plane
virtual void handleCompactionTablePlane(
unsigned Ty,
unsigned NumEntries
);
/// @brief Handle a type entry in the compaction table
virtual void handleCompactionTableType(
unsigned i,
unsigned TypSlot,
const Type*
);
/// @brief Handle a value entry in the compaction table
virtual void handleCompactionTableValue(
unsigned i,
unsigned ValSlot,
const Type*
);
/// @brief Handle end of a compaction table
virtual void handleCompactionTableEnd();
/// @brief Handle start of a symbol table
virtual void handleSymbolTableBegin();
/// @brief Handle start of a symbol table plane
virtual void handleSymbolTablePlane(
unsigned Ty,
unsigned NumEntries,
const Type* Ty
);
/// @brief Handle a named type in the symbol table
virtual void handleSymbolTableType(
unsigned i,
unsigned slot,
const std::string& name
);
/// @brief Handle a named value in the symbol table
virtual void handleSymbolTableValue(
unsigned i,
unsigned slot,
const std::string& name
);
/// @brief Handle the end of a symbol table
virtual void handleSymbolTableEnd();
/// @brief Handle the beginning of a function body
virtual void handleFunctionBegin(
Function* Func, unsigned Size
);
/// @brief Handle the end of a function body
virtual void handleFunctionEnd(
Function* Func
);
/// @brief Handle the beginning of a basic block
virtual void handleBasicBlockBegin(
unsigned blocknum
);
/// This method is called for each instruction that is parsed.
/// @returns true if the instruction is a block terminating instruction
/// @brief Handle an instruction
virtual bool handleInstruction(
unsigned Opcode,
const Type* iType,
std::vector<unsigned>& Operands,
unsigned Length
);
/// @brief Handle the end of a basic block
virtual void handleBasicBlockEnd(unsigned blocknum);
/// @brief Handle start of global constants block.
virtual void handleGlobalConstantsBegin();
/// @brief Handle a constant expression
virtual void handleConstantExpression(
unsigned Opcode,
const Type* Typ,
std::vector<std::pair<const Type*,unsigned> > ArgVec
);
/// @brief Handle a constant array
virtual void handleConstantArray(
const ArrayType* AT,
std::vector<unsigned>& ElementSlots
);
/// @brief Handle a constant structure
virtual void handleConstantStruct(
const StructType* ST,
std::vector<unsigned>& ElementSlots
);
/// @brief Handle a constant pointer
virtual void handleConstantPointer(
const PointerType* PT,
unsigned Slot
);
/// @brief Handle a constant strings (array special case)
virtual void handleConstantString(
const ConstantArray* CA
);
/// @brief Handle a primitive constant value
virtual void handleConstantValue( Constant * c );
/// @brief Handle the end of the global constants
virtual void handleGlobalConstantsEnd();
/// @brief Handle an alignment event
virtual void handleAlignment(unsigned numBytes);
virtual void handleBlock(
unsigned BType, ///< The type of block
const unsigned char* StartPtr, ///< The start of the block
unsigned Size ///< The size of the block
);
virtual void handleVBR32(unsigned Size );
virtual void handleVBR64(unsigned Size );
/// @}
};
} // End llvm namespace
// vim: sw=2
#endif