mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Sorry for the massive commit, but I just wanted to knock this one down and it is really straightforward. There are still a couple trivial (i.e. not related to the content) things left to fix: - Use of raw HTML links where :doc:`...` and :ref:`...` could be used instead. If you are a newbie and want to help fix this it would make for some good bite-sized patches; more experienced developers should be focusing on adding new content (to this tutorial or elsewhere, but please _do not_ waste your time on formatting when there is such dire need for documentation (see docs/SphinxQuickstartTemplate.rst to get started writing)). - Highlighting of the kaleidoscope code blocks (currently left as bare `::`). I will be working on writing a custom Pygments highlighter for this, mostly as training for maintaining the `llvm` code-block's lexer in-tree. I want to do this because I am extremely unhappy with how it just "gives up" on the slightest deviation from the expected syntax and leaves the whole code-block un-highlighted. More generally I am looking at writing some Sphinx extensions and keeping them in-tree as well, to support common use cases that currently have no good solution (like "monospace text inside a link"). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169343 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2006 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			2006 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| =======================================================
 | |
| Kaleidoscope: Extending the Language: Mutable Variables
 | |
| =======================================================
 | |
| 
 | |
| .. contents::
 | |
|    :local:
 | |
| 
 | |
| Written by `Chris Lattner <mailto:sabre@nondot.org>`_
 | |
| 
 | |
| Chapter 7 Introduction
 | |
| ======================
 | |
| 
 | |
| Welcome to Chapter 7 of the "`Implementing a language with
 | |
| LLVM <index.html>`_" tutorial. In chapters 1 through 6, we've built a
 | |
| very respectable, albeit simple, `functional programming
 | |
| language <http://en.wikipedia.org/wiki/Functional_programming>`_. In our
 | |
| journey, we learned some parsing techniques, how to build and represent
 | |
| an AST, how to build LLVM IR, and how to optimize the resultant code as
 | |
| well as JIT compile it.
 | |
| 
 | |
| While Kaleidoscope is interesting as a functional language, the fact
 | |
| that it is functional makes it "too easy" to generate LLVM IR for it. In
 | |
| particular, a functional language makes it very easy to build LLVM IR
 | |
| directly in `SSA
 | |
| form <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
 | |
| Since LLVM requires that the input code be in SSA form, this is a very
 | |
| nice property and it is often unclear to newcomers how to generate code
 | |
| for an imperative language with mutable variables.
 | |
| 
 | |
| The short (and happy) summary of this chapter is that there is no need
 | |
| for your front-end to build SSA form: LLVM provides highly tuned and
 | |
| well tested support for this, though the way it works is a bit
 | |
| unexpected for some.
 | |
| 
 | |
| Why is this a hard problem?
 | |
| ===========================
 | |
| 
 | |
| To understand why mutable variables cause complexities in SSA
 | |
| construction, consider this extremely simple C example:
 | |
| 
 | |
| .. code-block:: c
 | |
| 
 | |
|     int G, H;
 | |
|     int test(_Bool Condition) {
 | |
|       int X;
 | |
|       if (Condition)
 | |
|         X = G;
 | |
|       else
 | |
|         X = H;
 | |
|       return X;
 | |
|     }
 | |
| 
 | |
| In this case, we have the variable "X", whose value depends on the path
 | |
| executed in the program. Because there are two different possible values
 | |
| for X before the return instruction, a PHI node is inserted to merge the
 | |
| two values. The LLVM IR that we want for this example looks like this:
 | |
| 
 | |
| .. code-block:: llvm
 | |
| 
 | |
|     @G = weak global i32 0   ; type of @G is i32*
 | |
|     @H = weak global i32 0   ; type of @H is i32*
 | |
| 
 | |
|     define i32 @test(i1 %Condition) {
 | |
|     entry:
 | |
|       br i1 %Condition, label %cond_true, label %cond_false
 | |
| 
 | |
|     cond_true:
 | |
|       %X.0 = load i32* @G
 | |
|       br label %cond_next
 | |
| 
 | |
|     cond_false:
 | |
|       %X.1 = load i32* @H
 | |
|       br label %cond_next
 | |
| 
 | |
|     cond_next:
 | |
|       %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
 | |
|       ret i32 %X.2
 | |
|     }
 | |
| 
 | |
| In this example, the loads from the G and H global variables are
 | |
| explicit in the LLVM IR, and they live in the then/else branches of the
 | |
| if statement (cond\_true/cond\_false). In order to merge the incoming
 | |
| values, the X.2 phi node in the cond\_next block selects the right value
 | |
| to use based on where control flow is coming from: if control flow comes
 | |
| from the cond\_false block, X.2 gets the value of X.1. Alternatively, if
 | |
| control flow comes from cond\_true, it gets the value of X.0. The intent
 | |
| of this chapter is not to explain the details of SSA form. For more
 | |
| information, see one of the many `online
 | |
| references <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_.
 | |
| 
 | |
| The question for this article is "who places the phi nodes when lowering
 | |
| assignments to mutable variables?". The issue here is that LLVM
 | |
| *requires* that its IR be in SSA form: there is no "non-ssa" mode for
 | |
| it. However, SSA construction requires non-trivial algorithms and data
 | |
| structures, so it is inconvenient and wasteful for every front-end to
 | |
| have to reproduce this logic.
 | |
| 
 | |
| Memory in LLVM
 | |
| ==============
 | |
| 
 | |
| The 'trick' here is that while LLVM does require all register values to
 | |
| be in SSA form, it does not require (or permit) memory objects to be in
 | |
| SSA form. In the example above, note that the loads from G and H are
 | |
| direct accesses to G and H: they are not renamed or versioned. This
 | |
| differs from some other compiler systems, which do try to version memory
 | |
| objects. In LLVM, instead of encoding dataflow analysis of memory into
 | |
| the LLVM IR, it is handled with `Analysis
 | |
| Passes <../WritingAnLLVMPass.html>`_ which are computed on demand.
 | |
| 
 | |
| With this in mind, the high-level idea is that we want to make a stack
 | |
| variable (which lives in memory, because it is on the stack) for each
 | |
| mutable object in a function. To take advantage of this trick, we need
 | |
| to talk about how LLVM represents stack variables.
 | |
| 
 | |
| In LLVM, all memory accesses are explicit with load/store instructions,
 | |
| and it is carefully designed not to have (or need) an "address-of"
 | |
| operator. Notice how the type of the @G/@H global variables is actually
 | |
| "i32\*" even though the variable is defined as "i32". What this means is
 | |
| that @G defines *space* for an i32 in the global data area, but its
 | |
| *name* actually refers to the address for that space. Stack variables
 | |
| work the same way, except that instead of being declared with global
 | |
| variable definitions, they are declared with the `LLVM alloca
 | |
| instruction <../LangRef.html#i_alloca>`_:
 | |
| 
 | |
| .. code-block:: llvm
 | |
| 
 | |
|     define i32 @example() {
 | |
|     entry:
 | |
|       %X = alloca i32           ; type of %X is i32*.
 | |
|       ...
 | |
|       %tmp = load i32* %X       ; load the stack value %X from the stack.
 | |
|       %tmp2 = add i32 %tmp, 1   ; increment it
 | |
|       store i32 %tmp2, i32* %X  ; store it back
 | |
|       ...
 | |
| 
 | |
| This code shows an example of how you can declare and manipulate a stack
 | |
| variable in the LLVM IR. Stack memory allocated with the alloca
 | |
| instruction is fully general: you can pass the address of the stack slot
 | |
| to functions, you can store it in other variables, etc. In our example
 | |
| above, we could rewrite the example to use the alloca technique to avoid
 | |
| using a PHI node:
 | |
| 
 | |
| .. code-block:: llvm
 | |
| 
 | |
|     @G = weak global i32 0   ; type of @G is i32*
 | |
|     @H = weak global i32 0   ; type of @H is i32*
 | |
| 
 | |
|     define i32 @test(i1 %Condition) {
 | |
|     entry:
 | |
|       %X = alloca i32           ; type of %X is i32*.
 | |
|       br i1 %Condition, label %cond_true, label %cond_false
 | |
| 
 | |
|     cond_true:
 | |
|       %X.0 = load i32* @G
 | |
|       store i32 %X.0, i32* %X   ; Update X
 | |
|       br label %cond_next
 | |
| 
 | |
|     cond_false:
 | |
|       %X.1 = load i32* @H
 | |
|       store i32 %X.1, i32* %X   ; Update X
 | |
|       br label %cond_next
 | |
| 
 | |
|     cond_next:
 | |
|       %X.2 = load i32* %X       ; Read X
 | |
|       ret i32 %X.2
 | |
|     }
 | |
| 
 | |
| With this, we have discovered a way to handle arbitrary mutable
 | |
| variables without the need to create Phi nodes at all:
 | |
| 
 | |
| #. Each mutable variable becomes a stack allocation.
 | |
| #. Each read of the variable becomes a load from the stack.
 | |
| #. Each update of the variable becomes a store to the stack.
 | |
| #. Taking the address of a variable just uses the stack address
 | |
|    directly.
 | |
| 
 | |
| While this solution has solved our immediate problem, it introduced
 | |
| another one: we have now apparently introduced a lot of stack traffic
 | |
| for very simple and common operations, a major performance problem.
 | |
| Fortunately for us, the LLVM optimizer has a highly-tuned optimization
 | |
| pass named "mem2reg" that handles this case, promoting allocas like this
 | |
| into SSA registers, inserting Phi nodes as appropriate. If you run this
 | |
| example through the pass, for example, you'll get:
 | |
| 
 | |
| .. code-block:: bash
 | |
| 
 | |
|     $ llvm-as < example.ll | opt -mem2reg | llvm-dis
 | |
|     @G = weak global i32 0
 | |
|     @H = weak global i32 0
 | |
| 
 | |
|     define i32 @test(i1 %Condition) {
 | |
|     entry:
 | |
|       br i1 %Condition, label %cond_true, label %cond_false
 | |
| 
 | |
|     cond_true:
 | |
|       %X.0 = load i32* @G
 | |
|       br label %cond_next
 | |
| 
 | |
|     cond_false:
 | |
|       %X.1 = load i32* @H
 | |
|       br label %cond_next
 | |
| 
 | |
|     cond_next:
 | |
|       %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
 | |
|       ret i32 %X.01
 | |
|     }
 | |
| 
 | |
| The mem2reg pass implements the standard "iterated dominance frontier"
 | |
| algorithm for constructing SSA form and has a number of optimizations
 | |
| that speed up (very common) degenerate cases. The mem2reg optimization
 | |
| pass is the answer to dealing with mutable variables, and we highly
 | |
| recommend that you depend on it. Note that mem2reg only works on
 | |
| variables in certain circumstances:
 | |
| 
 | |
| #. mem2reg is alloca-driven: it looks for allocas and if it can handle
 | |
|    them, it promotes them. It does not apply to global variables or heap
 | |
|    allocations.
 | |
| #. mem2reg only looks for alloca instructions in the entry block of the
 | |
|    function. Being in the entry block guarantees that the alloca is only
 | |
|    executed once, which makes analysis simpler.
 | |
| #. mem2reg only promotes allocas whose uses are direct loads and stores.
 | |
|    If the address of the stack object is passed to a function, or if any
 | |
|    funny pointer arithmetic is involved, the alloca will not be
 | |
|    promoted.
 | |
| #. mem2reg only works on allocas of `first
 | |
|    class <../LangRef.html#t_classifications>`_ values (such as pointers,
 | |
|    scalars and vectors), and only if the array size of the allocation is
 | |
|    1 (or missing in the .ll file). mem2reg is not capable of promoting
 | |
|    structs or arrays to registers. Note that the "scalarrepl" pass is
 | |
|    more powerful and can promote structs, "unions", and arrays in many
 | |
|    cases.
 | |
| 
 | |
| All of these properties are easy to satisfy for most imperative
 | |
| languages, and we'll illustrate it below with Kaleidoscope. The final
 | |
| question you may be asking is: should I bother with this nonsense for my
 | |
| front-end? Wouldn't it be better if I just did SSA construction
 | |
| directly, avoiding use of the mem2reg optimization pass? In short, we
 | |
| strongly recommend that you use this technique for building SSA form,
 | |
| unless there is an extremely good reason not to. Using this technique
 | |
| is:
 | |
| 
 | |
| -  Proven and well tested: llvm-gcc and clang both use this technique
 | |
|    for local mutable variables. As such, the most common clients of LLVM
 | |
|    are using this to handle a bulk of their variables. You can be sure
 | |
|    that bugs are found fast and fixed early.
 | |
| -  Extremely Fast: mem2reg has a number of special cases that make it
 | |
|    fast in common cases as well as fully general. For example, it has
 | |
|    fast-paths for variables that are only used in a single block,
 | |
|    variables that only have one assignment point, good heuristics to
 | |
|    avoid insertion of unneeded phi nodes, etc.
 | |
| -  Needed for debug info generation: `Debug information in
 | |
|    LLVM <../SourceLevelDebugging.html>`_ relies on having the address of
 | |
|    the variable exposed so that debug info can be attached to it. This
 | |
|    technique dovetails very naturally with this style of debug info.
 | |
| 
 | |
| If nothing else, this makes it much easier to get your front-end up and
 | |
| running, and is very simple to implement. Lets extend Kaleidoscope with
 | |
| mutable variables now!
 | |
| 
 | |
| Mutable Variables in Kaleidoscope
 | |
| =================================
 | |
| 
 | |
| Now that we know the sort of problem we want to tackle, lets see what
 | |
| this looks like in the context of our little Kaleidoscope language.
 | |
| We're going to add two features:
 | |
| 
 | |
| #. The ability to mutate variables with the '=' operator.
 | |
| #. The ability to define new variables.
 | |
| 
 | |
| While the first item is really what this is about, we only have
 | |
| variables for incoming arguments as well as for induction variables, and
 | |
| redefining those only goes so far :). Also, the ability to define new
 | |
| variables is a useful thing regardless of whether you will be mutating
 | |
| them. Here's a motivating example that shows how we could use these:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     # Define ':' for sequencing: as a low-precedence operator that ignores operands
 | |
|     # and just returns the RHS.
 | |
|     def binary : 1 (x y) y;
 | |
| 
 | |
|     # Recursive fib, we could do this before.
 | |
|     def fib(x)
 | |
|       if (x < 3) then
 | |
|         1
 | |
|       else
 | |
|         fib(x-1)+fib(x-2);
 | |
| 
 | |
|     # Iterative fib.
 | |
|     def fibi(x)
 | |
|       var a = 1, b = 1, c in
 | |
|       (for i = 3, i < x in
 | |
|          c = a + b :
 | |
|          a = b :
 | |
|          b = c) :
 | |
|       b;
 | |
| 
 | |
|     # Call it.
 | |
|     fibi(10);
 | |
| 
 | |
| In order to mutate variables, we have to change our existing variables
 | |
| to use the "alloca trick". Once we have that, we'll add our new
 | |
| operator, then extend Kaleidoscope to support new variable definitions.
 | |
| 
 | |
| Adjusting Existing Variables for Mutation
 | |
| =========================================
 | |
| 
 | |
| The symbol table in Kaleidoscope is managed at code generation time by
 | |
| the '``NamedValues``' map. This map currently keeps track of the LLVM
 | |
| "Value\*" that holds the double value for the named variable. In order
 | |
| to support mutation, we need to change this slightly, so that it
 | |
| ``NamedValues`` holds the *memory location* of the variable in question.
 | |
| Note that this change is a refactoring: it changes the structure of the
 | |
| code, but does not (by itself) change the behavior of the compiler. All
 | |
| of these changes are isolated in the Kaleidoscope code generator.
 | |
| 
 | |
| At this point in Kaleidoscope's development, it only supports variables
 | |
| for two things: incoming arguments to functions and the induction
 | |
| variable of 'for' loops. For consistency, we'll allow mutation of these
 | |
| variables in addition to other user-defined variables. This means that
 | |
| these will both need memory locations.
 | |
| 
 | |
| To start our transformation of Kaleidoscope, we'll change the
 | |
| NamedValues map so that it maps to AllocaInst\* instead of Value\*. Once
 | |
| we do this, the C++ compiler will tell us what parts of the code we need
 | |
| to update:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     static std::map<std::string, AllocaInst*> NamedValues;
 | |
| 
 | |
| Also, since we will need to create these alloca's, we'll use a helper
 | |
| function that ensures that the allocas are created in the entry block of
 | |
| the function:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
 | |
|     /// the function.  This is used for mutable variables etc.
 | |
|     static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 | |
|                                               const std::string &VarName) {
 | |
|       IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 | |
|                      TheFunction->getEntryBlock().begin());
 | |
|       return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
 | |
|                                VarName.c_str());
 | |
|     }
 | |
| 
 | |
| This funny looking code creates an IRBuilder object that is pointing at
 | |
| the first instruction (.begin()) of the entry block. It then creates an
 | |
| alloca with the expected name and returns it. Because all values in
 | |
| Kaleidoscope are doubles, there is no need to pass in a type to use.
 | |
| 
 | |
| With this in place, the first functionality change we want to make is to
 | |
| variable references. In our new scheme, variables live on the stack, so
 | |
| code generating a reference to them actually needs to produce a load
 | |
| from the stack slot:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     Value *VariableExprAST::Codegen() {
 | |
|       // Look this variable up in the function.
 | |
|       Value *V = NamedValues[Name];
 | |
|       if (V == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|       // Load the value.
 | |
|       return Builder.CreateLoad(V, Name.c_str());
 | |
|     }
 | |
| 
 | |
| As you can see, this is pretty straightforward. Now we need to update
 | |
| the things that define the variables to set up the alloca. We'll start
 | |
| with ``ForExprAST::Codegen`` (see the `full code listing <#code>`_ for
 | |
| the unabridged code):
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|       Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|       // Create an alloca for the variable in the entry block.
 | |
|       AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
| 
 | |
|         // Emit the start code first, without 'variable' in scope.
 | |
|       Value *StartVal = Start->Codegen();
 | |
|       if (StartVal == 0) return 0;
 | |
| 
 | |
|       // Store the value into the alloca.
 | |
|       Builder.CreateStore(StartVal, Alloca);
 | |
|       ...
 | |
| 
 | |
|       // Compute the end condition.
 | |
|       Value *EndCond = End->Codegen();
 | |
|       if (EndCond == 0) return EndCond;
 | |
| 
 | |
|       // Reload, increment, and restore the alloca.  This handles the case where
 | |
|       // the body of the loop mutates the variable.
 | |
|       Value *CurVar = Builder.CreateLoad(Alloca);
 | |
|       Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
 | |
|       Builder.CreateStore(NextVar, Alloca);
 | |
|       ...
 | |
| 
 | |
| This code is virtually identical to the code `before we allowed mutable
 | |
| variables <LangImpl5.html#forcodegen>`_. The big difference is that we
 | |
| no longer have to construct a PHI node, and we use load/store to access
 | |
| the variable as needed.
 | |
| 
 | |
| To support mutable argument variables, we need to also make allocas for
 | |
| them. The code for this is also pretty simple:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// CreateArgumentAllocas - Create an alloca for each argument and register the
 | |
|     /// argument in the symbol table so that references to it will succeed.
 | |
|     void PrototypeAST::CreateArgumentAllocas(Function *F) {
 | |
|       Function::arg_iterator AI = F->arg_begin();
 | |
|       for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
 | |
|         // Create an alloca for this variable.
 | |
|         AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
 | |
| 
 | |
|         // Store the initial value into the alloca.
 | |
|         Builder.CreateStore(AI, Alloca);
 | |
| 
 | |
|         // Add arguments to variable symbol table.
 | |
|         NamedValues[Args[Idx]] = Alloca;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| For each argument, we make an alloca, store the input value to the
 | |
| function into the alloca, and register the alloca as the memory location
 | |
| for the argument. This method gets invoked by ``FunctionAST::Codegen``
 | |
| right after it sets up the entry block for the function.
 | |
| 
 | |
| The final missing piece is adding the mem2reg pass, which allows us to
 | |
| get good codegen once again:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|         // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|         // target lays out data structures.
 | |
|         OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
 | |
|         // Promote allocas to registers.
 | |
|         OurFPM.add(createPromoteMemoryToRegisterPass());
 | |
|         // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|         OurFPM.add(createInstructionCombiningPass());
 | |
|         // Reassociate expressions.
 | |
|         OurFPM.add(createReassociatePass());
 | |
| 
 | |
| It is interesting to see what the code looks like before and after the
 | |
| mem2reg optimization runs. For example, this is the before/after code
 | |
| for our recursive fib function. Before the optimization:
 | |
| 
 | |
| .. code-block:: llvm
 | |
| 
 | |
|     define double @fib(double %x) {
 | |
|     entry:
 | |
|       %x1 = alloca double
 | |
|       store double %x, double* %x1
 | |
|       %x2 = load double* %x1
 | |
|       %cmptmp = fcmp ult double %x2, 3.000000e+00
 | |
|       %booltmp = uitofp i1 %cmptmp to double
 | |
|       %ifcond = fcmp one double %booltmp, 0.000000e+00
 | |
|       br i1 %ifcond, label %then, label %else
 | |
| 
 | |
|     then:       ; preds = %entry
 | |
|       br label %ifcont
 | |
| 
 | |
|     else:       ; preds = %entry
 | |
|       %x3 = load double* %x1
 | |
|       %subtmp = fsub double %x3, 1.000000e+00
 | |
|       %calltmp = call double @fib(double %subtmp)
 | |
|       %x4 = load double* %x1
 | |
|       %subtmp5 = fsub double %x4, 2.000000e+00
 | |
|       %calltmp6 = call double @fib(double %subtmp5)
 | |
|       %addtmp = fadd double %calltmp, %calltmp6
 | |
|       br label %ifcont
 | |
| 
 | |
|     ifcont:     ; preds = %else, %then
 | |
|       %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
 | |
|       ret double %iftmp
 | |
|     }
 | |
| 
 | |
| Here there is only one variable (x, the input argument) but you can
 | |
| still see the extremely simple-minded code generation strategy we are
 | |
| using. In the entry block, an alloca is created, and the initial input
 | |
| value is stored into it. Each reference to the variable does a reload
 | |
| from the stack. Also, note that we didn't modify the if/then/else
 | |
| expression, so it still inserts a PHI node. While we could make an
 | |
| alloca for it, it is actually easier to create a PHI node for it, so we
 | |
| still just make the PHI.
 | |
| 
 | |
| Here is the code after the mem2reg pass runs:
 | |
| 
 | |
| .. code-block:: llvm
 | |
| 
 | |
|     define double @fib(double %x) {
 | |
|     entry:
 | |
|       %cmptmp = fcmp ult double %x, 3.000000e+00
 | |
|       %booltmp = uitofp i1 %cmptmp to double
 | |
|       %ifcond = fcmp one double %booltmp, 0.000000e+00
 | |
|       br i1 %ifcond, label %then, label %else
 | |
| 
 | |
|     then:
 | |
|       br label %ifcont
 | |
| 
 | |
|     else:
 | |
|       %subtmp = fsub double %x, 1.000000e+00
 | |
|       %calltmp = call double @fib(double %subtmp)
 | |
|       %subtmp5 = fsub double %x, 2.000000e+00
 | |
|       %calltmp6 = call double @fib(double %subtmp5)
 | |
|       %addtmp = fadd double %calltmp, %calltmp6
 | |
|       br label %ifcont
 | |
| 
 | |
|     ifcont:     ; preds = %else, %then
 | |
|       %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
 | |
|       ret double %iftmp
 | |
|     }
 | |
| 
 | |
| This is a trivial case for mem2reg, since there are no redefinitions of
 | |
| the variable. The point of showing this is to calm your tension about
 | |
| inserting such blatent inefficiencies :).
 | |
| 
 | |
| After the rest of the optimizers run, we get:
 | |
| 
 | |
| .. code-block:: llvm
 | |
| 
 | |
|     define double @fib(double %x) {
 | |
|     entry:
 | |
|       %cmptmp = fcmp ult double %x, 3.000000e+00
 | |
|       %booltmp = uitofp i1 %cmptmp to double
 | |
|       %ifcond = fcmp ueq double %booltmp, 0.000000e+00
 | |
|       br i1 %ifcond, label %else, label %ifcont
 | |
| 
 | |
|     else:
 | |
|       %subtmp = fsub double %x, 1.000000e+00
 | |
|       %calltmp = call double @fib(double %subtmp)
 | |
|       %subtmp5 = fsub double %x, 2.000000e+00
 | |
|       %calltmp6 = call double @fib(double %subtmp5)
 | |
|       %addtmp = fadd double %calltmp, %calltmp6
 | |
|       ret double %addtmp
 | |
| 
 | |
|     ifcont:
 | |
|       ret double 1.000000e+00
 | |
|     }
 | |
| 
 | |
| Here we see that the simplifycfg pass decided to clone the return
 | |
| instruction into the end of the 'else' block. This allowed it to
 | |
| eliminate some branches and the PHI node.
 | |
| 
 | |
| Now that all symbol table references are updated to use stack variables,
 | |
| we'll add the assignment operator.
 | |
| 
 | |
| New Assignment Operator
 | |
| =======================
 | |
| 
 | |
| With our current framework, adding a new assignment operator is really
 | |
| simple. We will parse it just like any other binary operator, but handle
 | |
| it internally (instead of allowing the user to define it). The first
 | |
| step is to set a precedence:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|      int main() {
 | |
|        // Install standard binary operators.
 | |
|        // 1 is lowest precedence.
 | |
|        BinopPrecedence['='] = 2;
 | |
|        BinopPrecedence['<'] = 10;
 | |
|        BinopPrecedence['+'] = 20;
 | |
|        BinopPrecedence['-'] = 20;
 | |
| 
 | |
| Now that the parser knows the precedence of the binary operator, it
 | |
| takes care of all the parsing and AST generation. We just need to
 | |
| implement codegen for the assignment operator. This looks like:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     Value *BinaryExprAST::Codegen() {
 | |
|       // Special case '=' because we don't want to emit the LHS as an expression.
 | |
|       if (Op == '=') {
 | |
|         // Assignment requires the LHS to be an identifier.
 | |
|         VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
 | |
|         if (!LHSE)
 | |
|           return ErrorV("destination of '=' must be a variable");
 | |
| 
 | |
| Unlike the rest of the binary operators, our assignment operator doesn't
 | |
| follow the "emit LHS, emit RHS, do computation" model. As such, it is
 | |
| handled as a special case before the other binary operators are handled.
 | |
| The other strange thing is that it requires the LHS to be a variable. It
 | |
| is invalid to have "(x+1) = expr" - only things like "x = expr" are
 | |
| allowed.
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|         // Codegen the RHS.
 | |
|         Value *Val = RHS->Codegen();
 | |
|         if (Val == 0) return 0;
 | |
| 
 | |
|         // Look up the name.
 | |
|         Value *Variable = NamedValues[LHSE->getName()];
 | |
|         if (Variable == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|         Builder.CreateStore(Val, Variable);
 | |
|         return Val;
 | |
|       }
 | |
|       ...
 | |
| 
 | |
| Once we have the variable, codegen'ing the assignment is
 | |
| straightforward: we emit the RHS of the assignment, create a store, and
 | |
| return the computed value. Returning a value allows for chained
 | |
| assignments like "X = (Y = Z)".
 | |
| 
 | |
| Now that we have an assignment operator, we can mutate loop variables
 | |
| and arguments. For example, we can now run code like this:
 | |
| 
 | |
| ::
 | |
| 
 | |
|     # Function to print a double.
 | |
|     extern printd(x);
 | |
| 
 | |
|     # Define ':' for sequencing: as a low-precedence operator that ignores operands
 | |
|     # and just returns the RHS.
 | |
|     def binary : 1 (x y) y;
 | |
| 
 | |
|     def test(x)
 | |
|       printd(x) :
 | |
|       x = 4 :
 | |
|       printd(x);
 | |
| 
 | |
|     test(123);
 | |
| 
 | |
| When run, this example prints "123" and then "4", showing that we did
 | |
| actually mutate the value! Okay, we have now officially implemented our
 | |
| goal: getting this to work requires SSA construction in the general
 | |
| case. However, to be really useful, we want the ability to define our
 | |
| own local variables, lets add this next!
 | |
| 
 | |
| User-defined Local Variables
 | |
| ============================
 | |
| 
 | |
| Adding var/in is just like any other other extensions we made to
 | |
| Kaleidoscope: we extend the lexer, the parser, the AST and the code
 | |
| generator. The first step for adding our new 'var/in' construct is to
 | |
| extend the lexer. As before, this is pretty trivial, the code looks like
 | |
| this:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     enum Token {
 | |
|       ...
 | |
|       // var definition
 | |
|       tok_var = -13
 | |
|     ...
 | |
|     }
 | |
|     ...
 | |
|     static int gettok() {
 | |
|     ...
 | |
|         if (IdentifierStr == "in") return tok_in;
 | |
|         if (IdentifierStr == "binary") return tok_binary;
 | |
|         if (IdentifierStr == "unary") return tok_unary;
 | |
|         if (IdentifierStr == "var") return tok_var;
 | |
|         return tok_identifier;
 | |
|     ...
 | |
| 
 | |
| The next step is to define the AST node that we will construct. For
 | |
| var/in, it looks like this:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// VarExprAST - Expression class for var/in
 | |
|     class VarExprAST : public ExprAST {
 | |
|       std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
|       ExprAST *Body;
 | |
|     public:
 | |
|       VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
 | |
|                  ExprAST *body)
 | |
|       : VarNames(varnames), Body(body) {}
 | |
| 
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
| var/in allows a list of names to be defined all at once, and each name
 | |
| can optionally have an initializer value. As such, we capture this
 | |
| information in the VarNames vector. Also, var/in has a body, this body
 | |
| is allowed to access the variables defined by the var/in.
 | |
| 
 | |
| With this in place, we can define the parser pieces. The first thing we
 | |
| do is add it as a primary expression:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// primary
 | |
|     ///   ::= identifierexpr
 | |
|     ///   ::= numberexpr
 | |
|     ///   ::= parenexpr
 | |
|     ///   ::= ifexpr
 | |
|     ///   ::= forexpr
 | |
|     ///   ::= varexpr
 | |
|     static ExprAST *ParsePrimary() {
 | |
|       switch (CurTok) {
 | |
|       default: return Error("unknown token when expecting an expression");
 | |
|       case tok_identifier: return ParseIdentifierExpr();
 | |
|       case tok_number:     return ParseNumberExpr();
 | |
|       case '(':            return ParseParenExpr();
 | |
|       case tok_if:         return ParseIfExpr();
 | |
|       case tok_for:        return ParseForExpr();
 | |
|       case tok_var:        return ParseVarExpr();
 | |
|       }
 | |
|     }
 | |
| 
 | |
| Next we define ParseVarExpr:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     /// varexpr ::= 'var' identifier ('=' expression)?
 | |
|     //                    (',' identifier ('=' expression)?)* 'in' expression
 | |
|     static ExprAST *ParseVarExpr() {
 | |
|       getNextToken();  // eat the var.
 | |
| 
 | |
|       std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
| 
 | |
|       // At least one variable name is required.
 | |
|       if (CurTok != tok_identifier)
 | |
|         return Error("expected identifier after var");
 | |
| 
 | |
| The first part of this code parses the list of identifier/expr pairs
 | |
| into the local ``VarNames`` vector.
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|       while (1) {
 | |
|         std::string Name = IdentifierStr;
 | |
|         getNextToken();  // eat identifier.
 | |
| 
 | |
|         // Read the optional initializer.
 | |
|         ExprAST *Init = 0;
 | |
|         if (CurTok == '=') {
 | |
|           getNextToken(); // eat the '='.
 | |
| 
 | |
|           Init = ParseExpression();
 | |
|           if (Init == 0) return 0;
 | |
|         }
 | |
| 
 | |
|         VarNames.push_back(std::make_pair(Name, Init));
 | |
| 
 | |
|         // End of var list, exit loop.
 | |
|         if (CurTok != ',') break;
 | |
|         getNextToken(); // eat the ','.
 | |
| 
 | |
|         if (CurTok != tok_identifier)
 | |
|           return Error("expected identifier list after var");
 | |
|       }
 | |
| 
 | |
| Once all the variables are parsed, we then parse the body and create the
 | |
| AST node:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|       // At this point, we have to have 'in'.
 | |
|       if (CurTok != tok_in)
 | |
|         return Error("expected 'in' keyword after 'var'");
 | |
|       getNextToken();  // eat 'in'.
 | |
| 
 | |
|       ExprAST *Body = ParseExpression();
 | |
|       if (Body == 0) return 0;
 | |
| 
 | |
|       return new VarExprAST(VarNames, Body);
 | |
|     }
 | |
| 
 | |
| Now that we can parse and represent the code, we need to support
 | |
| emission of LLVM IR for it. This code starts out with:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     Value *VarExprAST::Codegen() {
 | |
|       std::vector<AllocaInst *> OldBindings;
 | |
| 
 | |
|       Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|       // Register all variables and emit their initializer.
 | |
|       for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 | |
|         const std::string &VarName = VarNames[i].first;
 | |
|         ExprAST *Init = VarNames[i].second;
 | |
| 
 | |
| Basically it loops over all the variables, installing them one at a
 | |
| time. For each variable we put into the symbol table, we remember the
 | |
| previous value that we replace in OldBindings.
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|         // Emit the initializer before adding the variable to scope, this prevents
 | |
|         // the initializer from referencing the variable itself, and permits stuff
 | |
|         // like this:
 | |
|         //  var a = 1 in
 | |
|         //    var a = a in ...   # refers to outer 'a'.
 | |
|         Value *InitVal;
 | |
|         if (Init) {
 | |
|           InitVal = Init->Codegen();
 | |
|           if (InitVal == 0) return 0;
 | |
|         } else { // If not specified, use 0.0.
 | |
|           InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
 | |
|         }
 | |
| 
 | |
|         AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
|         Builder.CreateStore(InitVal, Alloca);
 | |
| 
 | |
|         // Remember the old variable binding so that we can restore the binding when
 | |
|         // we unrecurse.
 | |
|         OldBindings.push_back(NamedValues[VarName]);
 | |
| 
 | |
|         // Remember this binding.
 | |
|         NamedValues[VarName] = Alloca;
 | |
|       }
 | |
| 
 | |
| There are more comments here than code. The basic idea is that we emit
 | |
| the initializer, create the alloca, then update the symbol table to
 | |
| point to it. Once all the variables are installed in the symbol table,
 | |
| we evaluate the body of the var/in expression:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|       // Codegen the body, now that all vars are in scope.
 | |
|       Value *BodyVal = Body->Codegen();
 | |
|       if (BodyVal == 0) return 0;
 | |
| 
 | |
| Finally, before returning, we restore the previous variable bindings:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|       // Pop all our variables from scope.
 | |
|       for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 | |
|         NamedValues[VarNames[i].first] = OldBindings[i];
 | |
| 
 | |
|       // Return the body computation.
 | |
|       return BodyVal;
 | |
|     }
 | |
| 
 | |
| The end result of all of this is that we get properly scoped variable
 | |
| definitions, and we even (trivially) allow mutation of them :).
 | |
| 
 | |
| With this, we completed what we set out to do. Our nice iterative fib
 | |
| example from the intro compiles and runs just fine. The mem2reg pass
 | |
| optimizes all of our stack variables into SSA registers, inserting PHI
 | |
| nodes where needed, and our front-end remains simple: no "iterated
 | |
| dominance frontier" computation anywhere in sight.
 | |
| 
 | |
| Full Code Listing
 | |
| =================
 | |
| 
 | |
| Here is the complete code listing for our running example, enhanced with
 | |
| mutable variables and var/in support. To build this example, use:
 | |
| 
 | |
| .. code-block:: bash
 | |
| 
 | |
|     # Compile
 | |
|     clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | |
|     # Run
 | |
|     ./toy
 | |
| 
 | |
| Here is the code:
 | |
| 
 | |
| .. code-block:: c++
 | |
| 
 | |
|     #include "llvm/DerivedTypes.h"
 | |
|     #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
|     #include "llvm/ExecutionEngine/JIT.h"
 | |
|     #include "llvm/IRBuilder.h"
 | |
|     #include "llvm/LLVMContext.h"
 | |
|     #include "llvm/Module.h"
 | |
|     #include "llvm/PassManager.h"
 | |
|     #include "llvm/Analysis/Verifier.h"
 | |
|     #include "llvm/Analysis/Passes.h"
 | |
|     #include "llvm/DataLayout.h"
 | |
|     #include "llvm/Transforms/Scalar.h"
 | |
|     #include "llvm/Support/TargetSelect.h"
 | |
|     #include <cstdio>
 | |
|     #include <string>
 | |
|     #include <map>
 | |
|     #include <vector>
 | |
|     using namespace llvm;
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Lexer
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
|     // of these for known things.
 | |
|     enum Token {
 | |
|       tok_eof = -1,
 | |
| 
 | |
|       // commands
 | |
|       tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|       // primary
 | |
|       tok_identifier = -4, tok_number = -5,
 | |
| 
 | |
|       // control
 | |
|       tok_if = -6, tok_then = -7, tok_else = -8,
 | |
|       tok_for = -9, tok_in = -10,
 | |
| 
 | |
|       // operators
 | |
|       tok_binary = -11, tok_unary = -12,
 | |
| 
 | |
|       // var definition
 | |
|       tok_var = -13
 | |
|     };
 | |
| 
 | |
|     static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
|     static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
|     /// gettok - Return the next token from standard input.
 | |
|     static int gettok() {
 | |
|       static int LastChar = ' ';
 | |
| 
 | |
|       // Skip any whitespace.
 | |
|       while (isspace(LastChar))
 | |
|         LastChar = getchar();
 | |
| 
 | |
|       if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|         IdentifierStr = LastChar;
 | |
|         while (isalnum((LastChar = getchar())))
 | |
|           IdentifierStr += LastChar;
 | |
| 
 | |
|         if (IdentifierStr == "def") return tok_def;
 | |
|         if (IdentifierStr == "extern") return tok_extern;
 | |
|         if (IdentifierStr == "if") return tok_if;
 | |
|         if (IdentifierStr == "then") return tok_then;
 | |
|         if (IdentifierStr == "else") return tok_else;
 | |
|         if (IdentifierStr == "for") return tok_for;
 | |
|         if (IdentifierStr == "in") return tok_in;
 | |
|         if (IdentifierStr == "binary") return tok_binary;
 | |
|         if (IdentifierStr == "unary") return tok_unary;
 | |
|         if (IdentifierStr == "var") return tok_var;
 | |
|         return tok_identifier;
 | |
|       }
 | |
| 
 | |
|       if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|         std::string NumStr;
 | |
|         do {
 | |
|           NumStr += LastChar;
 | |
|           LastChar = getchar();
 | |
|         } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|         NumVal = strtod(NumStr.c_str(), 0);
 | |
|         return tok_number;
 | |
|       }
 | |
| 
 | |
|       if (LastChar == '#') {
 | |
|         // Comment until end of line.
 | |
|         do LastChar = getchar();
 | |
|         while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
| 
 | |
|         if (LastChar != EOF)
 | |
|           return gettok();
 | |
|       }
 | |
| 
 | |
|       // Check for end of file.  Don't eat the EOF.
 | |
|       if (LastChar == EOF)
 | |
|         return tok_eof;
 | |
| 
 | |
|       // Otherwise, just return the character as its ascii value.
 | |
|       int ThisChar = LastChar;
 | |
|       LastChar = getchar();
 | |
|       return ThisChar;
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Abstract Syntax Tree (aka Parse Tree)
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     /// ExprAST - Base class for all expression nodes.
 | |
|     class ExprAST {
 | |
|     public:
 | |
|       virtual ~ExprAST() {}
 | |
|       virtual Value *Codegen() = 0;
 | |
|     };
 | |
| 
 | |
|     /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
|     class NumberExprAST : public ExprAST {
 | |
|       double Val;
 | |
|     public:
 | |
|       NumberExprAST(double val) : Val(val) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
|     class VariableExprAST : public ExprAST {
 | |
|       std::string Name;
 | |
|     public:
 | |
|       VariableExprAST(const std::string &name) : Name(name) {}
 | |
|       const std::string &getName() const { return Name; }
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// UnaryExprAST - Expression class for a unary operator.
 | |
|     class UnaryExprAST : public ExprAST {
 | |
|       char Opcode;
 | |
|       ExprAST *Operand;
 | |
|     public:
 | |
|       UnaryExprAST(char opcode, ExprAST *operand)
 | |
|         : Opcode(opcode), Operand(operand) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// BinaryExprAST - Expression class for a binary operator.
 | |
|     class BinaryExprAST : public ExprAST {
 | |
|       char Op;
 | |
|       ExprAST *LHS, *RHS;
 | |
|     public:
 | |
|       BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
 | |
|         : Op(op), LHS(lhs), RHS(rhs) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// CallExprAST - Expression class for function calls.
 | |
|     class CallExprAST : public ExprAST {
 | |
|       std::string Callee;
 | |
|       std::vector<ExprAST*> Args;
 | |
|     public:
 | |
|       CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|         : Callee(callee), Args(args) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// IfExprAST - Expression class for if/then/else.
 | |
|     class IfExprAST : public ExprAST {
 | |
|       ExprAST *Cond, *Then, *Else;
 | |
|     public:
 | |
|       IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | |
|       : Cond(cond), Then(then), Else(_else) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// ForExprAST - Expression class for for/in.
 | |
|     class ForExprAST : public ExprAST {
 | |
|       std::string VarName;
 | |
|       ExprAST *Start, *End, *Step, *Body;
 | |
|     public:
 | |
|       ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | |
|                  ExprAST *step, ExprAST *body)
 | |
|         : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// VarExprAST - Expression class for var/in
 | |
|     class VarExprAST : public ExprAST {
 | |
|       std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
|       ExprAST *Body;
 | |
|     public:
 | |
|       VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
 | |
|                  ExprAST *body)
 | |
|       : VarNames(varnames), Body(body) {}
 | |
| 
 | |
|       virtual Value *Codegen();
 | |
|     };
 | |
| 
 | |
|     /// PrototypeAST - This class represents the "prototype" for a function,
 | |
|     /// which captures its name, and its argument names (thus implicitly the number
 | |
|     /// of arguments the function takes), as well as if it is an operator.
 | |
|     class PrototypeAST {
 | |
|       std::string Name;
 | |
|       std::vector<std::string> Args;
 | |
|       bool isOperator;
 | |
|       unsigned Precedence;  // Precedence if a binary op.
 | |
|     public:
 | |
|       PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | |
|                    bool isoperator = false, unsigned prec = 0)
 | |
|       : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
 | |
| 
 | |
|       bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | |
|       bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | |
| 
 | |
|       char getOperatorName() const {
 | |
|         assert(isUnaryOp() || isBinaryOp());
 | |
|         return Name[Name.size()-1];
 | |
|       }
 | |
| 
 | |
|       unsigned getBinaryPrecedence() const { return Precedence; }
 | |
| 
 | |
|       Function *Codegen();
 | |
| 
 | |
|       void CreateArgumentAllocas(Function *F);
 | |
|     };
 | |
| 
 | |
|     /// FunctionAST - This class represents a function definition itself.
 | |
|     class FunctionAST {
 | |
|       PrototypeAST *Proto;
 | |
|       ExprAST *Body;
 | |
|     public:
 | |
|       FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|         : Proto(proto), Body(body) {}
 | |
| 
 | |
|       Function *Codegen();
 | |
|     };
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Parser
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
|     /// token the parser is looking at.  getNextToken reads another token from the
 | |
|     /// lexer and updates CurTok with its results.
 | |
|     static int CurTok;
 | |
|     static int getNextToken() {
 | |
|       return CurTok = gettok();
 | |
|     }
 | |
| 
 | |
|     /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
|     /// defined.
 | |
|     static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
|     /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
|     static int GetTokPrecedence() {
 | |
|       if (!isascii(CurTok))
 | |
|         return -1;
 | |
| 
 | |
|       // Make sure it's a declared binop.
 | |
|       int TokPrec = BinopPrecedence[CurTok];
 | |
|       if (TokPrec <= 0) return -1;
 | |
|       return TokPrec;
 | |
|     }
 | |
| 
 | |
|     /// Error* - These are little helper functions for error handling.
 | |
|     ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
|     PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
|     FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
|     static ExprAST *ParseExpression();
 | |
| 
 | |
|     /// identifierexpr
 | |
|     ///   ::= identifier
 | |
|     ///   ::= identifier '(' expression* ')'
 | |
|     static ExprAST *ParseIdentifierExpr() {
 | |
|       std::string IdName = IdentifierStr;
 | |
| 
 | |
|       getNextToken();  // eat identifier.
 | |
| 
 | |
|       if (CurTok != '(') // Simple variable ref.
 | |
|         return new VariableExprAST(IdName);
 | |
| 
 | |
|       // Call.
 | |
|       getNextToken();  // eat (
 | |
|       std::vector<ExprAST*> Args;
 | |
|       if (CurTok != ')') {
 | |
|         while (1) {
 | |
|           ExprAST *Arg = ParseExpression();
 | |
|           if (!Arg) return 0;
 | |
|           Args.push_back(Arg);
 | |
| 
 | |
|           if (CurTok == ')') break;
 | |
| 
 | |
|           if (CurTok != ',')
 | |
|             return Error("Expected ')' or ',' in argument list");
 | |
|           getNextToken();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Eat the ')'.
 | |
|       getNextToken();
 | |
| 
 | |
|       return new CallExprAST(IdName, Args);
 | |
|     }
 | |
| 
 | |
|     /// numberexpr ::= number
 | |
|     static ExprAST *ParseNumberExpr() {
 | |
|       ExprAST *Result = new NumberExprAST(NumVal);
 | |
|       getNextToken(); // consume the number
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     /// parenexpr ::= '(' expression ')'
 | |
|     static ExprAST *ParseParenExpr() {
 | |
|       getNextToken();  // eat (.
 | |
|       ExprAST *V = ParseExpression();
 | |
|       if (!V) return 0;
 | |
| 
 | |
|       if (CurTok != ')')
 | |
|         return Error("expected ')'");
 | |
|       getNextToken();  // eat ).
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     /// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | |
|     static ExprAST *ParseIfExpr() {
 | |
|       getNextToken();  // eat the if.
 | |
| 
 | |
|       // condition.
 | |
|       ExprAST *Cond = ParseExpression();
 | |
|       if (!Cond) return 0;
 | |
| 
 | |
|       if (CurTok != tok_then)
 | |
|         return Error("expected then");
 | |
|       getNextToken();  // eat the then
 | |
| 
 | |
|       ExprAST *Then = ParseExpression();
 | |
|       if (Then == 0) return 0;
 | |
| 
 | |
|       if (CurTok != tok_else)
 | |
|         return Error("expected else");
 | |
| 
 | |
|       getNextToken();
 | |
| 
 | |
|       ExprAST *Else = ParseExpression();
 | |
|       if (!Else) return 0;
 | |
| 
 | |
|       return new IfExprAST(Cond, Then, Else);
 | |
|     }
 | |
| 
 | |
|     /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | |
|     static ExprAST *ParseForExpr() {
 | |
|       getNextToken();  // eat the for.
 | |
| 
 | |
|       if (CurTok != tok_identifier)
 | |
|         return Error("expected identifier after for");
 | |
| 
 | |
|       std::string IdName = IdentifierStr;
 | |
|       getNextToken();  // eat identifier.
 | |
| 
 | |
|       if (CurTok != '=')
 | |
|         return Error("expected '=' after for");
 | |
|       getNextToken();  // eat '='.
 | |
| 
 | |
| 
 | |
|       ExprAST *Start = ParseExpression();
 | |
|       if (Start == 0) return 0;
 | |
|       if (CurTok != ',')
 | |
|         return Error("expected ',' after for start value");
 | |
|       getNextToken();
 | |
| 
 | |
|       ExprAST *End = ParseExpression();
 | |
|       if (End == 0) return 0;
 | |
| 
 | |
|       // The step value is optional.
 | |
|       ExprAST *Step = 0;
 | |
|       if (CurTok == ',') {
 | |
|         getNextToken();
 | |
|         Step = ParseExpression();
 | |
|         if (Step == 0) return 0;
 | |
|       }
 | |
| 
 | |
|       if (CurTok != tok_in)
 | |
|         return Error("expected 'in' after for");
 | |
|       getNextToken();  // eat 'in'.
 | |
| 
 | |
|       ExprAST *Body = ParseExpression();
 | |
|       if (Body == 0) return 0;
 | |
| 
 | |
|       return new ForExprAST(IdName, Start, End, Step, Body);
 | |
|     }
 | |
| 
 | |
|     /// varexpr ::= 'var' identifier ('=' expression)?
 | |
|     //                    (',' identifier ('=' expression)?)* 'in' expression
 | |
|     static ExprAST *ParseVarExpr() {
 | |
|       getNextToken();  // eat the var.
 | |
| 
 | |
|       std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
| 
 | |
|       // At least one variable name is required.
 | |
|       if (CurTok != tok_identifier)
 | |
|         return Error("expected identifier after var");
 | |
| 
 | |
|       while (1) {
 | |
|         std::string Name = IdentifierStr;
 | |
|         getNextToken();  // eat identifier.
 | |
| 
 | |
|         // Read the optional initializer.
 | |
|         ExprAST *Init = 0;
 | |
|         if (CurTok == '=') {
 | |
|           getNextToken(); // eat the '='.
 | |
| 
 | |
|           Init = ParseExpression();
 | |
|           if (Init == 0) return 0;
 | |
|         }
 | |
| 
 | |
|         VarNames.push_back(std::make_pair(Name, Init));
 | |
| 
 | |
|         // End of var list, exit loop.
 | |
|         if (CurTok != ',') break;
 | |
|         getNextToken(); // eat the ','.
 | |
| 
 | |
|         if (CurTok != tok_identifier)
 | |
|           return Error("expected identifier list after var");
 | |
|       }
 | |
| 
 | |
|       // At this point, we have to have 'in'.
 | |
|       if (CurTok != tok_in)
 | |
|         return Error("expected 'in' keyword after 'var'");
 | |
|       getNextToken();  // eat 'in'.
 | |
| 
 | |
|       ExprAST *Body = ParseExpression();
 | |
|       if (Body == 0) return 0;
 | |
| 
 | |
|       return new VarExprAST(VarNames, Body);
 | |
|     }
 | |
| 
 | |
|     /// primary
 | |
|     ///   ::= identifierexpr
 | |
|     ///   ::= numberexpr
 | |
|     ///   ::= parenexpr
 | |
|     ///   ::= ifexpr
 | |
|     ///   ::= forexpr
 | |
|     ///   ::= varexpr
 | |
|     static ExprAST *ParsePrimary() {
 | |
|       switch (CurTok) {
 | |
|       default: return Error("unknown token when expecting an expression");
 | |
|       case tok_identifier: return ParseIdentifierExpr();
 | |
|       case tok_number:     return ParseNumberExpr();
 | |
|       case '(':            return ParseParenExpr();
 | |
|       case tok_if:         return ParseIfExpr();
 | |
|       case tok_for:        return ParseForExpr();
 | |
|       case tok_var:        return ParseVarExpr();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// unary
 | |
|     ///   ::= primary
 | |
|     ///   ::= '!' unary
 | |
|     static ExprAST *ParseUnary() {
 | |
|       // If the current token is not an operator, it must be a primary expr.
 | |
|       if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | |
|         return ParsePrimary();
 | |
| 
 | |
|       // If this is a unary operator, read it.
 | |
|       int Opc = CurTok;
 | |
|       getNextToken();
 | |
|       if (ExprAST *Operand = ParseUnary())
 | |
|         return new UnaryExprAST(Opc, Operand);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// binoprhs
 | |
|     ///   ::= ('+' unary)*
 | |
|     static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|       // If this is a binop, find its precedence.
 | |
|       while (1) {
 | |
|         int TokPrec = GetTokPrecedence();
 | |
| 
 | |
|         // If this is a binop that binds at least as tightly as the current binop,
 | |
|         // consume it, otherwise we are done.
 | |
|         if (TokPrec < ExprPrec)
 | |
|           return LHS;
 | |
| 
 | |
|         // Okay, we know this is a binop.
 | |
|         int BinOp = CurTok;
 | |
|         getNextToken();  // eat binop
 | |
| 
 | |
|         // Parse the unary expression after the binary operator.
 | |
|         ExprAST *RHS = ParseUnary();
 | |
|         if (!RHS) return 0;
 | |
| 
 | |
|         // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|         // the pending operator take RHS as its LHS.
 | |
|         int NextPrec = GetTokPrecedence();
 | |
|         if (TokPrec < NextPrec) {
 | |
|           RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|           if (RHS == 0) return 0;
 | |
|         }
 | |
| 
 | |
|         // Merge LHS/RHS.
 | |
|         LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// expression
 | |
|     ///   ::= unary binoprhs
 | |
|     ///
 | |
|     static ExprAST *ParseExpression() {
 | |
|       ExprAST *LHS = ParseUnary();
 | |
|       if (!LHS) return 0;
 | |
| 
 | |
|       return ParseBinOpRHS(0, LHS);
 | |
|     }
 | |
| 
 | |
|     /// prototype
 | |
|     ///   ::= id '(' id* ')'
 | |
|     ///   ::= binary LETTER number? (id, id)
 | |
|     ///   ::= unary LETTER (id)
 | |
|     static PrototypeAST *ParsePrototype() {
 | |
|       std::string FnName;
 | |
| 
 | |
|       unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 | |
|       unsigned BinaryPrecedence = 30;
 | |
| 
 | |
|       switch (CurTok) {
 | |
|       default:
 | |
|         return ErrorP("Expected function name in prototype");
 | |
|       case tok_identifier:
 | |
|         FnName = IdentifierStr;
 | |
|         Kind = 0;
 | |
|         getNextToken();
 | |
|         break;
 | |
|       case tok_unary:
 | |
|         getNextToken();
 | |
|         if (!isascii(CurTok))
 | |
|           return ErrorP("Expected unary operator");
 | |
|         FnName = "unary";
 | |
|         FnName += (char)CurTok;
 | |
|         Kind = 1;
 | |
|         getNextToken();
 | |
|         break;
 | |
|       case tok_binary:
 | |
|         getNextToken();
 | |
|         if (!isascii(CurTok))
 | |
|           return ErrorP("Expected binary operator");
 | |
|         FnName = "binary";
 | |
|         FnName += (char)CurTok;
 | |
|         Kind = 2;
 | |
|         getNextToken();
 | |
| 
 | |
|         // Read the precedence if present.
 | |
|         if (CurTok == tok_number) {
 | |
|           if (NumVal < 1 || NumVal > 100)
 | |
|             return ErrorP("Invalid precedecnce: must be 1..100");
 | |
|           BinaryPrecedence = (unsigned)NumVal;
 | |
|           getNextToken();
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (CurTok != '(')
 | |
|         return ErrorP("Expected '(' in prototype");
 | |
| 
 | |
|       std::vector<std::string> ArgNames;
 | |
|       while (getNextToken() == tok_identifier)
 | |
|         ArgNames.push_back(IdentifierStr);
 | |
|       if (CurTok != ')')
 | |
|         return ErrorP("Expected ')' in prototype");
 | |
| 
 | |
|       // success.
 | |
|       getNextToken();  // eat ')'.
 | |
| 
 | |
|       // Verify right number of names for operator.
 | |
|       if (Kind && ArgNames.size() != Kind)
 | |
|         return ErrorP("Invalid number of operands for operator");
 | |
| 
 | |
|       return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
 | |
|     }
 | |
| 
 | |
|     /// definition ::= 'def' prototype expression
 | |
|     static FunctionAST *ParseDefinition() {
 | |
|       getNextToken();  // eat def.
 | |
|       PrototypeAST *Proto = ParsePrototype();
 | |
|       if (Proto == 0) return 0;
 | |
| 
 | |
|       if (ExprAST *E = ParseExpression())
 | |
|         return new FunctionAST(Proto, E);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// toplevelexpr ::= expression
 | |
|     static FunctionAST *ParseTopLevelExpr() {
 | |
|       if (ExprAST *E = ParseExpression()) {
 | |
|         // Make an anonymous proto.
 | |
|         PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|         return new FunctionAST(Proto, E);
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// external ::= 'extern' prototype
 | |
|     static PrototypeAST *ParseExtern() {
 | |
|       getNextToken();  // eat extern.
 | |
|       return ParsePrototype();
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Code Generation
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     static Module *TheModule;
 | |
|     static IRBuilder<> Builder(getGlobalContext());
 | |
|     static std::map<std::string, AllocaInst*> NamedValues;
 | |
|     static FunctionPassManager *TheFPM;
 | |
| 
 | |
|     Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
|     /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
 | |
|     /// the function.  This is used for mutable variables etc.
 | |
|     static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 | |
|                                               const std::string &VarName) {
 | |
|       IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 | |
|                      TheFunction->getEntryBlock().begin());
 | |
|       return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
 | |
|                                VarName.c_str());
 | |
|     }
 | |
| 
 | |
|     Value *NumberExprAST::Codegen() {
 | |
|       return ConstantFP::get(getGlobalContext(), APFloat(Val));
 | |
|     }
 | |
| 
 | |
|     Value *VariableExprAST::Codegen() {
 | |
|       // Look this variable up in the function.
 | |
|       Value *V = NamedValues[Name];
 | |
|       if (V == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|       // Load the value.
 | |
|       return Builder.CreateLoad(V, Name.c_str());
 | |
|     }
 | |
| 
 | |
|     Value *UnaryExprAST::Codegen() {
 | |
|       Value *OperandV = Operand->Codegen();
 | |
|       if (OperandV == 0) return 0;
 | |
| 
 | |
|       Function *F = TheModule->getFunction(std::string("unary")+Opcode);
 | |
|       if (F == 0)
 | |
|         return ErrorV("Unknown unary operator");
 | |
| 
 | |
|       return Builder.CreateCall(F, OperandV, "unop");
 | |
|     }
 | |
| 
 | |
|     Value *BinaryExprAST::Codegen() {
 | |
|       // Special case '=' because we don't want to emit the LHS as an expression.
 | |
|       if (Op == '=') {
 | |
|         // Assignment requires the LHS to be an identifier.
 | |
|         VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
 | |
|         if (!LHSE)
 | |
|           return ErrorV("destination of '=' must be a variable");
 | |
|         // Codegen the RHS.
 | |
|         Value *Val = RHS->Codegen();
 | |
|         if (Val == 0) return 0;
 | |
| 
 | |
|         // Look up the name.
 | |
|         Value *Variable = NamedValues[LHSE->getName()];
 | |
|         if (Variable == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|         Builder.CreateStore(Val, Variable);
 | |
|         return Val;
 | |
|       }
 | |
| 
 | |
|       Value *L = LHS->Codegen();
 | |
|       Value *R = RHS->Codegen();
 | |
|       if (L == 0 || R == 0) return 0;
 | |
| 
 | |
|       switch (Op) {
 | |
|       case '+': return Builder.CreateFAdd(L, R, "addtmp");
 | |
|       case '-': return Builder.CreateFSub(L, R, "subtmp");
 | |
|       case '*': return Builder.CreateFMul(L, R, "multmp");
 | |
|       case '<':
 | |
|         L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|         // Convert bool 0/1 to double 0.0 or 1.0
 | |
|         return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
 | |
|                                     "booltmp");
 | |
|       default: break;
 | |
|       }
 | |
| 
 | |
|       // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | |
|       // a call to it.
 | |
|       Function *F = TheModule->getFunction(std::string("binary")+Op);
 | |
|       assert(F && "binary operator not found!");
 | |
| 
 | |
|       Value *Ops[2] = { L, R };
 | |
|       return Builder.CreateCall(F, Ops, "binop");
 | |
|     }
 | |
| 
 | |
|     Value *CallExprAST::Codegen() {
 | |
|       // Look up the name in the global module table.
 | |
|       Function *CalleeF = TheModule->getFunction(Callee);
 | |
|       if (CalleeF == 0)
 | |
|         return ErrorV("Unknown function referenced");
 | |
| 
 | |
|       // If argument mismatch error.
 | |
|       if (CalleeF->arg_size() != Args.size())
 | |
|         return ErrorV("Incorrect # arguments passed");
 | |
| 
 | |
|       std::vector<Value*> ArgsV;
 | |
|       for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|         ArgsV.push_back(Args[i]->Codegen());
 | |
|         if (ArgsV.back() == 0) return 0;
 | |
|       }
 | |
| 
 | |
|       return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
 | |
|     }
 | |
| 
 | |
|     Value *IfExprAST::Codegen() {
 | |
|       Value *CondV = Cond->Codegen();
 | |
|       if (CondV == 0) return 0;
 | |
| 
 | |
|       // Convert condition to a bool by comparing equal to 0.0.
 | |
|       CondV = Builder.CreateFCmpONE(CondV,
 | |
|                                   ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                     "ifcond");
 | |
| 
 | |
|       Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|       // Create blocks for the then and else cases.  Insert the 'then' block at the
 | |
|       // end of the function.
 | |
|       BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | |
|       BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | |
|       BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | |
| 
 | |
|       Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | |
| 
 | |
|       // Emit then value.
 | |
|       Builder.SetInsertPoint(ThenBB);
 | |
| 
 | |
|       Value *ThenV = Then->Codegen();
 | |
|       if (ThenV == 0) return 0;
 | |
| 
 | |
|       Builder.CreateBr(MergeBB);
 | |
|       // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | |
|       ThenBB = Builder.GetInsertBlock();
 | |
| 
 | |
|       // Emit else block.
 | |
|       TheFunction->getBasicBlockList().push_back(ElseBB);
 | |
|       Builder.SetInsertPoint(ElseBB);
 | |
| 
 | |
|       Value *ElseV = Else->Codegen();
 | |
|       if (ElseV == 0) return 0;
 | |
| 
 | |
|       Builder.CreateBr(MergeBB);
 | |
|       // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | |
|       ElseBB = Builder.GetInsertBlock();
 | |
| 
 | |
|       // Emit merge block.
 | |
|       TheFunction->getBasicBlockList().push_back(MergeBB);
 | |
|       Builder.SetInsertPoint(MergeBB);
 | |
|       PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
 | |
|                                       "iftmp");
 | |
| 
 | |
|       PN->addIncoming(ThenV, ThenBB);
 | |
|       PN->addIncoming(ElseV, ElseBB);
 | |
|       return PN;
 | |
|     }
 | |
| 
 | |
|     Value *ForExprAST::Codegen() {
 | |
|       // Output this as:
 | |
|       //   var = alloca double
 | |
|       //   ...
 | |
|       //   start = startexpr
 | |
|       //   store start -> var
 | |
|       //   goto loop
 | |
|       // loop:
 | |
|       //   ...
 | |
|       //   bodyexpr
 | |
|       //   ...
 | |
|       // loopend:
 | |
|       //   step = stepexpr
 | |
|       //   endcond = endexpr
 | |
|       //
 | |
|       //   curvar = load var
 | |
|       //   nextvar = curvar + step
 | |
|       //   store nextvar -> var
 | |
|       //   br endcond, loop, endloop
 | |
|       // outloop:
 | |
| 
 | |
|       Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|       // Create an alloca for the variable in the entry block.
 | |
|       AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
| 
 | |
|       // Emit the start code first, without 'variable' in scope.
 | |
|       Value *StartVal = Start->Codegen();
 | |
|       if (StartVal == 0) return 0;
 | |
| 
 | |
|       // Store the value into the alloca.
 | |
|       Builder.CreateStore(StartVal, Alloca);
 | |
| 
 | |
|       // Make the new basic block for the loop header, inserting after current
 | |
|       // block.
 | |
|       BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | |
| 
 | |
|       // Insert an explicit fall through from the current block to the LoopBB.
 | |
|       Builder.CreateBr(LoopBB);
 | |
| 
 | |
|       // Start insertion in LoopBB.
 | |
|       Builder.SetInsertPoint(LoopBB);
 | |
| 
 | |
|       // Within the loop, the variable is defined equal to the PHI node.  If it
 | |
|       // shadows an existing variable, we have to restore it, so save it now.
 | |
|       AllocaInst *OldVal = NamedValues[VarName];
 | |
|       NamedValues[VarName] = Alloca;
 | |
| 
 | |
|       // Emit the body of the loop.  This, like any other expr, can change the
 | |
|       // current BB.  Note that we ignore the value computed by the body, but don't
 | |
|       // allow an error.
 | |
|       if (Body->Codegen() == 0)
 | |
|         return 0;
 | |
| 
 | |
|       // Emit the step value.
 | |
|       Value *StepVal;
 | |
|       if (Step) {
 | |
|         StepVal = Step->Codegen();
 | |
|         if (StepVal == 0) return 0;
 | |
|       } else {
 | |
|         // If not specified, use 1.0.
 | |
|         StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | |
|       }
 | |
| 
 | |
|       // Compute the end condition.
 | |
|       Value *EndCond = End->Codegen();
 | |
|       if (EndCond == 0) return EndCond;
 | |
| 
 | |
|       // Reload, increment, and restore the alloca.  This handles the case where
 | |
|       // the body of the loop mutates the variable.
 | |
|       Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
 | |
|       Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
 | |
|       Builder.CreateStore(NextVar, Alloca);
 | |
| 
 | |
|       // Convert condition to a bool by comparing equal to 0.0.
 | |
|       EndCond = Builder.CreateFCmpONE(EndCond,
 | |
|                                   ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                       "loopcond");
 | |
| 
 | |
|       // Create the "after loop" block and insert it.
 | |
|       BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | |
| 
 | |
|       // Insert the conditional branch into the end of LoopEndBB.
 | |
|       Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | |
| 
 | |
|       // Any new code will be inserted in AfterBB.
 | |
|       Builder.SetInsertPoint(AfterBB);
 | |
| 
 | |
|       // Restore the unshadowed variable.
 | |
|       if (OldVal)
 | |
|         NamedValues[VarName] = OldVal;
 | |
|       else
 | |
|         NamedValues.erase(VarName);
 | |
| 
 | |
| 
 | |
|       // for expr always returns 0.0.
 | |
|       return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
 | |
|     }
 | |
| 
 | |
|     Value *VarExprAST::Codegen() {
 | |
|       std::vector<AllocaInst *> OldBindings;
 | |
| 
 | |
|       Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|       // Register all variables and emit their initializer.
 | |
|       for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 | |
|         const std::string &VarName = VarNames[i].first;
 | |
|         ExprAST *Init = VarNames[i].second;
 | |
| 
 | |
|         // Emit the initializer before adding the variable to scope, this prevents
 | |
|         // the initializer from referencing the variable itself, and permits stuff
 | |
|         // like this:
 | |
|         //  var a = 1 in
 | |
|         //    var a = a in ...   # refers to outer 'a'.
 | |
|         Value *InitVal;
 | |
|         if (Init) {
 | |
|           InitVal = Init->Codegen();
 | |
|           if (InitVal == 0) return 0;
 | |
|         } else { // If not specified, use 0.0.
 | |
|           InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
 | |
|         }
 | |
| 
 | |
|         AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
|         Builder.CreateStore(InitVal, Alloca);
 | |
| 
 | |
|         // Remember the old variable binding so that we can restore the binding when
 | |
|         // we unrecurse.
 | |
|         OldBindings.push_back(NamedValues[VarName]);
 | |
| 
 | |
|         // Remember this binding.
 | |
|         NamedValues[VarName] = Alloca;
 | |
|       }
 | |
| 
 | |
|       // Codegen the body, now that all vars are in scope.
 | |
|       Value *BodyVal = Body->Codegen();
 | |
|       if (BodyVal == 0) return 0;
 | |
| 
 | |
|       // Pop all our variables from scope.
 | |
|       for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 | |
|         NamedValues[VarNames[i].first] = OldBindings[i];
 | |
| 
 | |
|       // Return the body computation.
 | |
|       return BodyVal;
 | |
|     }
 | |
| 
 | |
|     Function *PrototypeAST::Codegen() {
 | |
|       // Make the function type:  double(double,double) etc.
 | |
|       std::vector<Type*> Doubles(Args.size(),
 | |
|                                  Type::getDoubleTy(getGlobalContext()));
 | |
|       FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
 | |
|                                            Doubles, false);
 | |
| 
 | |
|       Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | |
| 
 | |
|       // If F conflicted, there was already something named 'Name'.  If it has a
 | |
|       // body, don't allow redefinition or reextern.
 | |
|       if (F->getName() != Name) {
 | |
|         // Delete the one we just made and get the existing one.
 | |
|         F->eraseFromParent();
 | |
|         F = TheModule->getFunction(Name);
 | |
| 
 | |
|         // If F already has a body, reject this.
 | |
|         if (!F->empty()) {
 | |
|           ErrorF("redefinition of function");
 | |
|           return 0;
 | |
|         }
 | |
| 
 | |
|         // If F took a different number of args, reject.
 | |
|         if (F->arg_size() != Args.size()) {
 | |
|           ErrorF("redefinition of function with different # args");
 | |
|           return 0;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Set names for all arguments.
 | |
|       unsigned Idx = 0;
 | |
|       for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | |
|            ++AI, ++Idx)
 | |
|         AI->setName(Args[Idx]);
 | |
| 
 | |
|       return F;
 | |
|     }
 | |
| 
 | |
|     /// CreateArgumentAllocas - Create an alloca for each argument and register the
 | |
|     /// argument in the symbol table so that references to it will succeed.
 | |
|     void PrototypeAST::CreateArgumentAllocas(Function *F) {
 | |
|       Function::arg_iterator AI = F->arg_begin();
 | |
|       for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
 | |
|         // Create an alloca for this variable.
 | |
|         AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
 | |
| 
 | |
|         // Store the initial value into the alloca.
 | |
|         Builder.CreateStore(AI, Alloca);
 | |
| 
 | |
|         // Add arguments to variable symbol table.
 | |
|         NamedValues[Args[Idx]] = Alloca;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Function *FunctionAST::Codegen() {
 | |
|       NamedValues.clear();
 | |
| 
 | |
|       Function *TheFunction = Proto->Codegen();
 | |
|       if (TheFunction == 0)
 | |
|         return 0;
 | |
| 
 | |
|       // If this is an operator, install it.
 | |
|       if (Proto->isBinaryOp())
 | |
|         BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
 | |
| 
 | |
|       // Create a new basic block to start insertion into.
 | |
|       BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|       Builder.SetInsertPoint(BB);
 | |
| 
 | |
|       // Add all arguments to the symbol table and create their allocas.
 | |
|       Proto->CreateArgumentAllocas(TheFunction);
 | |
| 
 | |
|       if (Value *RetVal = Body->Codegen()) {
 | |
|         // Finish off the function.
 | |
|         Builder.CreateRet(RetVal);
 | |
| 
 | |
|         // Validate the generated code, checking for consistency.
 | |
|         verifyFunction(*TheFunction);
 | |
| 
 | |
|         // Optimize the function.
 | |
|         TheFPM->run(*TheFunction);
 | |
| 
 | |
|         return TheFunction;
 | |
|       }
 | |
| 
 | |
|       // Error reading body, remove function.
 | |
|       TheFunction->eraseFromParent();
 | |
| 
 | |
|       if (Proto->isBinaryOp())
 | |
|         BinopPrecedence.erase(Proto->getOperatorName());
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Top-Level parsing and JIT Driver
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     static ExecutionEngine *TheExecutionEngine;
 | |
| 
 | |
|     static void HandleDefinition() {
 | |
|       if (FunctionAST *F = ParseDefinition()) {
 | |
|         if (Function *LF = F->Codegen()) {
 | |
|           fprintf(stderr, "Read function definition:");
 | |
|           LF->dump();
 | |
|         }
 | |
|       } else {
 | |
|         // Skip token for error recovery.
 | |
|         getNextToken();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     static void HandleExtern() {
 | |
|       if (PrototypeAST *P = ParseExtern()) {
 | |
|         if (Function *F = P->Codegen()) {
 | |
|           fprintf(stderr, "Read extern: ");
 | |
|           F->dump();
 | |
|         }
 | |
|       } else {
 | |
|         // Skip token for error recovery.
 | |
|         getNextToken();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     static void HandleTopLevelExpression() {
 | |
|       // Evaluate a top-level expression into an anonymous function.
 | |
|       if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|         if (Function *LF = F->Codegen()) {
 | |
|           // JIT the function, returning a function pointer.
 | |
|           void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | |
| 
 | |
|           // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|           // can call it as a native function.
 | |
|           double (*FP)() = (double (*)())(intptr_t)FPtr;
 | |
|           fprintf(stderr, "Evaluated to %f\n", FP());
 | |
|         }
 | |
|       } else {
 | |
|         // Skip token for error recovery.
 | |
|         getNextToken();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// top ::= definition | external | expression | ';'
 | |
|     static void MainLoop() {
 | |
|       while (1) {
 | |
|         fprintf(stderr, "ready> ");
 | |
|         switch (CurTok) {
 | |
|         case tok_eof:    return;
 | |
|         case ';':        getNextToken(); break;  // ignore top-level semicolons.
 | |
|         case tok_def:    HandleDefinition(); break;
 | |
|         case tok_extern: HandleExtern(); break;
 | |
|         default:         HandleTopLevelExpression(); break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // "Library" functions that can be "extern'd" from user code.
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     /// putchard - putchar that takes a double and returns 0.
 | |
|     extern "C"
 | |
|     double putchard(double X) {
 | |
|       putchar((char)X);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// printd - printf that takes a double prints it as "%f\n", returning 0.
 | |
|     extern "C"
 | |
|     double printd(double X) {
 | |
|       printf("%f\n", X);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     //===----------------------------------------------------------------------===//
 | |
|     // Main driver code.
 | |
|     //===----------------------------------------------------------------------===//
 | |
| 
 | |
|     int main() {
 | |
|       InitializeNativeTarget();
 | |
|       LLVMContext &Context = getGlobalContext();
 | |
| 
 | |
|       // Install standard binary operators.
 | |
|       // 1 is lowest precedence.
 | |
|       BinopPrecedence['='] = 2;
 | |
|       BinopPrecedence['<'] = 10;
 | |
|       BinopPrecedence['+'] = 20;
 | |
|       BinopPrecedence['-'] = 20;
 | |
|       BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|       // Prime the first token.
 | |
|       fprintf(stderr, "ready> ");
 | |
|       getNextToken();
 | |
| 
 | |
|       // Make the module, which holds all the code.
 | |
|       TheModule = new Module("my cool jit", Context);
 | |
| 
 | |
|       // Create the JIT.  This takes ownership of the module.
 | |
|       std::string ErrStr;
 | |
|       TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
 | |
|       if (!TheExecutionEngine) {
 | |
|         fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
 | |
|         exit(1);
 | |
|       }
 | |
| 
 | |
|       FunctionPassManager OurFPM(TheModule);
 | |
| 
 | |
|       // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|       // target lays out data structures.
 | |
|       OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
 | |
|       // Provide basic AliasAnalysis support for GVN.
 | |
|       OurFPM.add(createBasicAliasAnalysisPass());
 | |
|       // Promote allocas to registers.
 | |
|       OurFPM.add(createPromoteMemoryToRegisterPass());
 | |
|       // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|       OurFPM.add(createInstructionCombiningPass());
 | |
|       // Reassociate expressions.
 | |
|       OurFPM.add(createReassociatePass());
 | |
|       // Eliminate Common SubExpressions.
 | |
|       OurFPM.add(createGVNPass());
 | |
|       // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|       OurFPM.add(createCFGSimplificationPass());
 | |
| 
 | |
|       OurFPM.doInitialization();
 | |
| 
 | |
|       // Set the global so the code gen can use this.
 | |
|       TheFPM = &OurFPM;
 | |
| 
 | |
|       // Run the main "interpreter loop" now.
 | |
|       MainLoop();
 | |
| 
 | |
|       TheFPM = 0;
 | |
| 
 | |
|       // Print out all of the generated code.
 | |
|       TheModule->dump();
 | |
| 
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
| `Next: Conclusion and other useful LLVM tidbits <LangImpl8.html>`_
 | |
| 
 |