mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24627 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1274 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1274 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Chris Lattner and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a pattern matching instruction selector for PowerPC,
 | 
						|
// converting from a legalized dag to a PPC dag.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "PPCISelLowering.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
 | 
						|
  Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
 | 
						|
    
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | 
						|
  /// instructions for SelectionDAG operations.
 | 
						|
  ///
 | 
						|
  class PPCDAGToDAGISel : public SelectionDAGISel {
 | 
						|
    PPCTargetLowering PPCLowering;
 | 
						|
    unsigned GlobalBaseReg;
 | 
						|
  public:
 | 
						|
    PPCDAGToDAGISel(TargetMachine &TM)
 | 
						|
      : SelectionDAGISel(PPCLowering), PPCLowering(TM) {}
 | 
						|
    
 | 
						|
    virtual bool runOnFunction(Function &Fn) {
 | 
						|
      // Make sure we re-emit a set of the global base reg if necessary
 | 
						|
      GlobalBaseReg = 0;
 | 
						|
      return SelectionDAGISel::runOnFunction(Fn);
 | 
						|
    }
 | 
						|
   
 | 
						|
    /// getI32Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i32.
 | 
						|
    inline SDOperand getI32Imm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | 
						|
    /// base register.  Return the virtual register that holds this value.
 | 
						|
    SDOperand getGlobalBaseReg();
 | 
						|
    
 | 
						|
    // Select - Convert the specified operand from a target-independent to a
 | 
						|
    // target-specific node if it hasn't already been changed.
 | 
						|
    SDOperand Select(SDOperand Op);
 | 
						|
    
 | 
						|
    SDNode *SelectBitfieldInsert(SDNode *N);
 | 
						|
 | 
						|
    /// SelectCC - Select a comparison of the specified values with the
 | 
						|
    /// specified condition code, returning the CR# of the expression.
 | 
						|
    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
 | 
						|
 | 
						|
    /// SelectAddr - Given the specified address, return the two operands for a
 | 
						|
    /// load/store instruction, and return true if it should be an indexed [r+r]
 | 
						|
    /// operation.
 | 
						|
    bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
 | 
						|
    
 | 
						|
    /// SelectAddrIndexed - Given the specified addressed, force it to be
 | 
						|
    /// represented as an indexed [r+r] operation, rather than possibly
 | 
						|
    /// returning [r+imm] as SelectAddr may.
 | 
						|
    void SelectAddrIndexed(SDOperand Addr, SDOperand &Op1, SDOperand &Op2);
 | 
						|
 | 
						|
    SDOperand BuildSDIVSequence(SDNode *N);
 | 
						|
    SDOperand BuildUDIVSequence(SDNode *N);
 | 
						|
    
 | 
						|
    /// InstructionSelectBasicBlock - This callback is invoked by
 | 
						|
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
 | 
						|
    
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "PowerPC DAG->DAG Pattern Instruction Selection";
 | 
						|
    } 
 | 
						|
 | 
						|
// Include the pieces autogenerated from the target description.
 | 
						|
#include "PPCGenDAGISel.inc"
 | 
						|
    
 | 
						|
private:
 | 
						|
    SDOperand SelectDYNAMIC_STACKALLOC(SDOperand Op);
 | 
						|
    SDOperand SelectADD_PARTS(SDOperand Op);
 | 
						|
    SDOperand SelectSUB_PARTS(SDOperand Op);
 | 
						|
    SDOperand SelectSETCC(SDOperand Op);
 | 
						|
    SDOperand SelectCALL(SDOperand Op);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// InstructionSelectBasicBlock - This callback is invoked by
 | 
						|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | 
						|
  DEBUG(BB->dump());
 | 
						|
  
 | 
						|
  // The selection process is inherently a bottom-up recursive process (users
 | 
						|
  // select their uses before themselves).  Given infinite stack space, we
 | 
						|
  // could just start selecting on the root and traverse the whole graph.  In
 | 
						|
  // practice however, this causes us to run out of stack space on large basic
 | 
						|
  // blocks.  To avoid this problem, select the entry node, then all its uses,
 | 
						|
  // iteratively instead of recursively.
 | 
						|
  std::vector<SDOperand> Worklist;
 | 
						|
  Worklist.push_back(DAG.getEntryNode());
 | 
						|
  
 | 
						|
  // Note that we can do this in the PPC target (scanning forward across token
 | 
						|
  // chain edges) because no nodes ever get folded across these edges.  On a
 | 
						|
  // target like X86 which supports load/modify/store operations, this would
 | 
						|
  // have to be more careful.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    SDOperand Node = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
    
 | 
						|
    // Chose from the least deep of the top two nodes.
 | 
						|
    if (!Worklist.empty() &&
 | 
						|
        Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
 | 
						|
      std::swap(Worklist.back(), Node);
 | 
						|
    
 | 
						|
    if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
 | 
						|
         Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) ||
 | 
						|
        CodeGenMap.count(Node)) continue;
 | 
						|
    
 | 
						|
    for (SDNode::use_iterator UI = Node.Val->use_begin(),
 | 
						|
         E = Node.Val->use_end(); UI != E; ++UI) {
 | 
						|
      // Scan the values.  If this use has a value that is a token chain, add it
 | 
						|
      // to the worklist.
 | 
						|
      SDNode *User = *UI;
 | 
						|
      for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
 | 
						|
        if (User->getValueType(i) == MVT::Other) {
 | 
						|
          Worklist.push_back(SDOperand(User, i));
 | 
						|
          break; 
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, legalize this node.
 | 
						|
    Select(Node);
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Select target instructions for the DAG.
 | 
						|
  DAG.setRoot(Select(DAG.getRoot()));
 | 
						|
  CodeGenMap.clear();
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
  
 | 
						|
  // Emit machine code to BB. 
 | 
						|
  ScheduleAndEmitDAG(DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalBaseReg - Output the instructions required to put the
 | 
						|
/// base address to use for accessing globals into a register.
 | 
						|
///
 | 
						|
SDOperand PPCDAGToDAGISel::getGlobalBaseReg() {
 | 
						|
  if (!GlobalBaseReg) {
 | 
						|
    // Insert the set of GlobalBaseReg into the first MBB of the function
 | 
						|
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | 
						|
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | 
						|
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
 | 
						|
    // FIXME: when we get to LP64, we will need to create the appropriate
 | 
						|
    // type of register here.
 | 
						|
    GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
 | 
						|
    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
 | 
						|
    BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
 | 
						|
  }
 | 
						|
  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isIntImmediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isIntImmediate(SDNode *N, unsigned& Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isOprShiftImm - Returns true if the specified operand is a shift opcode with
 | 
						|
// a immediate shift count less than 32.
 | 
						|
static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) {
 | 
						|
  Opc = N->getOpcode();
 | 
						|
  return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
 | 
						|
    isIntImmediate(N->getOperand(1).Val, SH) && SH < 32;
 | 
						|
}
 | 
						|
 | 
						|
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | 
						|
// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | 
						|
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | 
						|
// not, since all 1s are not contiguous.
 | 
						|
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | 
						|
  if (isShiftedMask_32(Val)) {
 | 
						|
    // look for the first non-zero bit
 | 
						|
    MB = CountLeadingZeros_32(Val);
 | 
						|
    // look for the first zero bit after the run of ones
 | 
						|
    ME = CountLeadingZeros_32((Val - 1) ^ Val);
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    Val = ~Val; // invert mask
 | 
						|
    if (isShiftedMask_32(Val)) {
 | 
						|
      // effectively look for the first zero bit
 | 
						|
      ME = CountLeadingZeros_32(Val) - 1;
 | 
						|
      // effectively look for the first one bit after the run of zeros
 | 
						|
      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // no run present
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
 | 
						|
// and mask opcode and mask operation.
 | 
						|
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
 | 
						|
                            unsigned &SH, unsigned &MB, unsigned &ME) {
 | 
						|
  // Don't even go down this path for i64, since different logic will be
 | 
						|
  // necessary for rldicl/rldicr/rldimi.
 | 
						|
  if (N->getValueType(0) != MVT::i32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Shift  = 32;
 | 
						|
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (N->getNumOperands() != 2 ||
 | 
						|
      !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (Opcode == ISD::SHL) {
 | 
						|
    // apply shift left to mask if it comes first
 | 
						|
    if (IsShiftMask) Mask = Mask << Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu << Shift);
 | 
						|
  } else if (Opcode == ISD::SRL) { 
 | 
						|
    // apply shift right to mask if it comes first
 | 
						|
    if (IsShiftMask) Mask = Mask >> Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | 
						|
    // adjust for the left rotate
 | 
						|
    Shift = 32 - Shift;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // if the mask doesn't intersect any Indeterminant bits
 | 
						|
  if (Mask && !(Mask & Indeterminant)) {
 | 
						|
    SH = Shift;
 | 
						|
    // make sure the mask is still a mask (wrap arounds may not be)
 | 
						|
    return isRunOfOnes(Mask, MB, ME);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
 | 
						|
// opcode and that it has a immediate integer right operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | 
						|
  return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
 | 
						|
}
 | 
						|
 | 
						|
// isOprNot - Returns true if the specified operand is an xor with immediate -1.
 | 
						|
static bool isOprNot(SDNode *N) {
 | 
						|
  unsigned Imm;
 | 
						|
  return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
 | 
						|
}
 | 
						|
 | 
						|
// Immediate constant composers.
 | 
						|
// Lo16 - grabs the lo 16 bits from a 32 bit constant.
 | 
						|
// Hi16 - grabs the hi 16 bits from a 32 bit constant.
 | 
						|
// HA16 - computes the hi bits required if the lo bits are add/subtracted in
 | 
						|
// arithmethically.
 | 
						|
static unsigned Lo16(unsigned x)  { return x & 0x0000FFFF; }
 | 
						|
static unsigned Hi16(unsigned x)  { return Lo16(x >> 16); }
 | 
						|
static unsigned HA16(unsigned x)  { return Hi16((signed)x - (signed short)x); }
 | 
						|
 | 
						|
// isIntImmediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    Imm = (unsigned)CN->getSignExtended();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectBitfieldInsert - turn an or of two masked values into
 | 
						|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
 | 
						|
/// Returns true on success, false if the caller still needs to select OR.
 | 
						|
///
 | 
						|
/// Patterns matched:
 | 
						|
/// 1. or shl, and   5. or and, and
 | 
						|
/// 2. or and, shl   6. or shl, shr
 | 
						|
/// 3. or shr, and   7. or shr, shl
 | 
						|
/// 4. or and, shr
 | 
						|
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | 
						|
  bool IsRotate = false;
 | 
						|
  unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
 | 
						|
  unsigned Value;
 | 
						|
  
 | 
						|
  SDOperand Op0 = N->getOperand(0);
 | 
						|
  SDOperand Op1 = N->getOperand(1);
 | 
						|
  
 | 
						|
  unsigned Op0Opc = Op0.getOpcode();
 | 
						|
  unsigned Op1Opc = Op1.getOpcode();
 | 
						|
  
 | 
						|
  // Verify that we have the correct opcodes
 | 
						|
  if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
 | 
						|
    return false;
 | 
						|
  if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Generate Mask value for Target
 | 
						|
  if (isIntImmediate(Op0.getOperand(1), Value)) {
 | 
						|
    switch(Op0Opc) {
 | 
						|
    case ISD::SHL: TgtMask <<= Value; break;
 | 
						|
    case ISD::SRL: TgtMask >>= Value; break;
 | 
						|
    case ISD::AND: TgtMask &= Value; break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Generate Mask value for Insert
 | 
						|
  if (!isIntImmediate(Op1.getOperand(1), Value))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  switch(Op1Opc) {
 | 
						|
  case ISD::SHL:
 | 
						|
    SH = Value;
 | 
						|
    InsMask <<= SH;
 | 
						|
    if (Op0Opc == ISD::SRL) IsRotate = true;
 | 
						|
    break;
 | 
						|
  case ISD::SRL:
 | 
						|
    SH = Value;
 | 
						|
    InsMask >>= SH;
 | 
						|
    SH = 32-SH;
 | 
						|
    if (Op0Opc == ISD::SHL) IsRotate = true;
 | 
						|
    break;
 | 
						|
  case ISD::AND:
 | 
						|
    InsMask &= Value;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If both of the inputs are ANDs and one of them has a logical shift by
 | 
						|
  // constant as its input, make that AND the inserted value so that we can
 | 
						|
  // combine the shift into the rotate part of the rlwimi instruction
 | 
						|
  bool IsAndWithShiftOp = false;
 | 
						|
  if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | 
						|
    if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
 | 
						|
        Op1.getOperand(0).getOpcode() == ISD::SRL) {
 | 
						|
      if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
 | 
						|
        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
 | 
						|
        IsAndWithShiftOp = true;
 | 
						|
      }
 | 
						|
    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | 
						|
               Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | 
						|
      if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
        std::swap(TgtMask, InsMask);
 | 
						|
        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
 | 
						|
        IsAndWithShiftOp = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Verify that the Target mask and Insert mask together form a full word mask
 | 
						|
  // and that the Insert mask is a run of set bits (which implies both are runs
 | 
						|
  // of set bits).  Given that, Select the arguments and generate the rlwimi
 | 
						|
  // instruction.
 | 
						|
  unsigned MB, ME;
 | 
						|
  if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
 | 
						|
    bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
 | 
						|
    bool Op0IsAND = Op0Opc == ISD::AND;
 | 
						|
    // Check for rotlwi / rotrwi here, a special case of bitfield insert
 | 
						|
    // where both bitfield halves are sourced from the same value.
 | 
						|
    if (IsRotate && fullMask &&
 | 
						|
        N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
 | 
						|
      Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32,
 | 
						|
                                  Select(N->getOperand(0).getOperand(0)),
 | 
						|
                                  getI32Imm(SH), getI32Imm(0), getI32Imm(31));
 | 
						|
      return Op0.Val;
 | 
						|
    }
 | 
						|
    SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0))
 | 
						|
                                            : Select(Op0);
 | 
						|
    SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0)) 
 | 
						|
                                      : Select(Op1.getOperand(0));
 | 
						|
    Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
 | 
						|
                                getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
 | 
						|
    return Op0.Val;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddr - Given the specified address, return the two operands for a
 | 
						|
/// load/store instruction, and return true if it should be an indexed [r+r]
 | 
						|
/// operation.
 | 
						|
bool PPCDAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1, 
 | 
						|
                                 SDOperand &Op2) {
 | 
						|
  unsigned imm = 0;
 | 
						|
  if (Addr.getOpcode() == ISD::ADD) {
 | 
						|
    if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) {
 | 
						|
      Op1 = getI32Imm(Lo16(imm));
 | 
						|
      if (FrameIndexSDNode *FI =
 | 
						|
            dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
 | 
						|
        ++FrameOff;
 | 
						|
        Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | 
						|
      } else {
 | 
						|
        Op2 = Select(Addr.getOperand(0));
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    } else if (Addr.getOperand(1).getOpcode() == PPCISD::Lo) {
 | 
						|
      // Match LOAD (ADD (X, Lo(G))).
 | 
						|
      assert(!cast<ConstantSDNode>(Addr.getOperand(1).getOperand(1))->getValue()
 | 
						|
             && "Cannot handle constant offsets yet!");
 | 
						|
      Op1 = Addr.getOperand(1).getOperand(0);  // The global address.
 | 
						|
      assert(Op1.getOpcode() == ISD::TargetGlobalAddress);
 | 
						|
      Op2 = Select(Addr.getOperand(0));
 | 
						|
      return false;   // [&g+r]
 | 
						|
    } else {
 | 
						|
      Op1 = Select(Addr.getOperand(0));
 | 
						|
      Op2 = Select(Addr.getOperand(1));
 | 
						|
      return true;   // [r+r]
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) {
 | 
						|
    Op1 = getI32Imm(0);
 | 
						|
    Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | 
						|
    return false;
 | 
						|
  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Addr)) {
 | 
						|
    Op1 = Addr;
 | 
						|
    if (PICEnabled)
 | 
						|
      Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1);
 | 
						|
    else
 | 
						|
      Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Op1 = getI32Imm(0);
 | 
						|
  Op2 = Select(Addr);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddrIndexed - Given the specified addressed, force it to be
 | 
						|
/// represented as an indexed [r+r] operation, rather than possibly
 | 
						|
/// returning [r+imm] as SelectAddr may.
 | 
						|
void PPCDAGToDAGISel::SelectAddrIndexed(SDOperand Addr, SDOperand &Op1, 
 | 
						|
                                        SDOperand &Op2) {
 | 
						|
  if (Addr.getOpcode() == ISD::ADD) {
 | 
						|
    Op1 = Select(Addr.getOperand(0));
 | 
						|
    Op2 = Select(Addr.getOperand(1));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) {
 | 
						|
    Op1 = CurDAG->getTargetNode(PPC::LI, MVT::i32, getI32Imm(0));
 | 
						|
    Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  Op1 = CurDAG->getTargetNode(PPC::LI, MVT::i32, getI32Imm(0));
 | 
						|
  Op2 = Select(Addr);
 | 
						|
}
 | 
						|
 | 
						|
/// SelectCC - Select a comparison of the specified values with the specified
 | 
						|
/// condition code, returning the CR# of the expression.
 | 
						|
SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
 | 
						|
                                    ISD::CondCode CC) {
 | 
						|
  // Always select the LHS.
 | 
						|
  LHS = Select(LHS);
 | 
						|
 | 
						|
  // Use U to determine whether the SETCC immediate range is signed or not.
 | 
						|
  if (MVT::isInteger(LHS.getValueType())) {
 | 
						|
    bool U = ISD::isUnsignedIntSetCC(CC);
 | 
						|
    unsigned Imm;
 | 
						|
    if (isIntImmediate(RHS, Imm) && 
 | 
						|
        ((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
 | 
						|
      return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32,
 | 
						|
                                   LHS, getI32Imm(Lo16(Imm)));
 | 
						|
    return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
 | 
						|
                                 LHS, Select(RHS));
 | 
						|
  } else if (LHS.getValueType() == MVT::f32) {
 | 
						|
    return CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, Select(RHS));
 | 
						|
  } else {
 | 
						|
    return CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, Select(RHS));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
 | 
						|
/// to Condition.
 | 
						|
static unsigned getBCCForSetCC(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Unknown condition!"); abort();
 | 
						|
  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETEQ:  return PPC::BEQ;
 | 
						|
  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETNE:  return PPC::BNE;
 | 
						|
  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:  return PPC::BLT;
 | 
						|
  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  return PPC::BLE;
 | 
						|
  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:  return PPC::BGT;
 | 
						|
  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  return PPC::BGE;
 | 
						|
    
 | 
						|
  case ISD::SETO:   return PPC::BUN;
 | 
						|
  case ISD::SETUO:  return PPC::BNU;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getCRIdxForSetCC - Return the index of the condition register field
 | 
						|
/// associated with the SetCC condition, and whether or not the field is
 | 
						|
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | 
						|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Unknown condition!"); abort();
 | 
						|
  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:  Inv = false;  return 0;
 | 
						|
  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  Inv = true;   return 0;
 | 
						|
  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:  Inv = false;  return 1;
 | 
						|
  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  Inv = true;   return 1;
 | 
						|
  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETEQ:  Inv = false;  return 2;
 | 
						|
  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETNE:  Inv = true;   return 2;
 | 
						|
  case ISD::SETO:   Inv = true;   return 3;
 | 
						|
  case ISD::SETUO:  Inv = false;  return 3;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
SDOperand PPCDAGToDAGISel::SelectDYNAMIC_STACKALLOC(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
 | 
						|
  // FIXME: We are currently ignoring the requested alignment for handling
 | 
						|
  // greater than the stack alignment.  This will need to be revisited at some
 | 
						|
  // point.  Align = N.getOperand(2);
 | 
						|
  if (!isa<ConstantSDNode>(N->getOperand(2)) ||
 | 
						|
      cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) {
 | 
						|
    std::cerr << "Cannot allocate stack object with greater alignment than"
 | 
						|
    << " the stack alignment yet!";
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  SDOperand Chain = Select(N->getOperand(0));
 | 
						|
  SDOperand Amt   = Select(N->getOperand(1));
 | 
						|
  
 | 
						|
  SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32);
 | 
						|
  
 | 
						|
  SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
 | 
						|
  Chain = R1Val.getValue(1);
 | 
						|
  
 | 
						|
  // Subtract the amount (guaranteed to be a multiple of the stack alignment)
 | 
						|
  // from the stack pointer, giving us the result pointer.
 | 
						|
  SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val);
 | 
						|
  
 | 
						|
  // Copy this result back into R1.
 | 
						|
  Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result);
 | 
						|
  
 | 
						|
  // Copy this result back out of R1 to make sure we're not using the stack
 | 
						|
  // space without decrementing the stack pointer.
 | 
						|
  Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32);
 | 
						|
  
 | 
						|
  // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg.
 | 
						|
  CodeGenMap[Op.getValue(0)] = Result;
 | 
						|
  CodeGenMap[Op.getValue(1)] = Result.getValue(1);
 | 
						|
  return SDOperand(Result.Val, Op.ResNo);
 | 
						|
}
 | 
						|
 | 
						|
SDOperand PPCDAGToDAGISel::SelectADD_PARTS(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  SDOperand LHSL = Select(N->getOperand(0));
 | 
						|
  SDOperand LHSH = Select(N->getOperand(1));
 | 
						|
  
 | 
						|
  unsigned Imm;
 | 
						|
  bool ME = false, ZE = false;
 | 
						|
  if (isIntImmediate(N->getOperand(3), Imm)) {
 | 
						|
    ME = (signed)Imm == -1;
 | 
						|
    ZE = Imm == 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  std::vector<SDOperand> Result;
 | 
						|
  SDOperand CarryFromLo;
 | 
						|
  if (isIntImmediate(N->getOperand(2), Imm) &&
 | 
						|
      ((signed)Imm >= -32768 || (signed)Imm < 32768)) {
 | 
						|
    // Codegen the low 32 bits of the add.  Interestingly, there is no
 | 
						|
    // shifted form of add immediate carrying.
 | 
						|
    CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                        LHSL, getI32Imm(Imm));
 | 
						|
  } else {
 | 
						|
    CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag,
 | 
						|
                                        LHSL, Select(N->getOperand(2)));
 | 
						|
  }
 | 
						|
  CarryFromLo = CarryFromLo.getValue(1);
 | 
						|
  
 | 
						|
  // Codegen the high 32 bits, adding zero, minus one, or the full value
 | 
						|
  // along with the carry flag produced by addc/addic.
 | 
						|
  SDOperand ResultHi;
 | 
						|
  if (ZE)
 | 
						|
    ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo);
 | 
						|
  else if (ME)
 | 
						|
    ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo);
 | 
						|
  else
 | 
						|
    ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH,
 | 
						|
                                     Select(N->getOperand(3)), CarryFromLo);
 | 
						|
  Result.push_back(CarryFromLo.getValue(0));
 | 
						|
  Result.push_back(ResultHi);
 | 
						|
  
 | 
						|
  CodeGenMap[Op.getValue(0)] = Result[0];
 | 
						|
  CodeGenMap[Op.getValue(1)] = Result[1];
 | 
						|
  return Result[Op.ResNo];
 | 
						|
}
 | 
						|
SDOperand PPCDAGToDAGISel::SelectSUB_PARTS(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  SDOperand LHSL = Select(N->getOperand(0));
 | 
						|
  SDOperand LHSH = Select(N->getOperand(1));
 | 
						|
  SDOperand RHSL = Select(N->getOperand(2));
 | 
						|
  SDOperand RHSH = Select(N->getOperand(3));
 | 
						|
  
 | 
						|
  std::vector<SDOperand> Result;
 | 
						|
  Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag,
 | 
						|
                                         RHSL, LHSL));
 | 
						|
  Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH,
 | 
						|
                                         Result[0].getValue(1)));
 | 
						|
  CodeGenMap[Op.getValue(0)] = Result[0];
 | 
						|
  CodeGenMap[Op.getValue(1)] = Result[1];
 | 
						|
  return Result[Op.ResNo];
 | 
						|
}
 | 
						|
 | 
						|
SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  unsigned Imm;
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  if (isIntImmediate(N->getOperand(1), Imm)) {
 | 
						|
    // We can codegen setcc op, imm very efficiently compared to a brcond.
 | 
						|
    // Check for those cases here.
 | 
						|
    // setcc op, 0
 | 
						|
    if (Imm == 0) {
 | 
						|
      SDOperand Op = Select(N->getOperand(0));
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ:
 | 
						|
        Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
 | 
						|
                                    getI32Imm(5), getI32Imm(31));
 | 
						|
      case ISD::SETNE: {
 | 
						|
        SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                             Op, getI32Imm(~0U));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
 | 
						|
                                    AD.getValue(1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT:
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
 | 
						|
                                    getI32Imm(31), getI32Imm(31));
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op);
 | 
						|
        T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);;
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
 | 
						|
                                    getI32Imm(31), getI32Imm(31));
 | 
						|
      }
 | 
						|
      }
 | 
						|
    } else if (Imm == ~0U) {        // setcc op, -1
 | 
						|
      SDOperand Op = Select(N->getOperand(0));
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ:
 | 
						|
        Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                   Op, getI32Imm(1));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | 
						|
                                    CurDAG->getTargetNode(PPC::LI, MVT::i32,
 | 
						|
                                                          getI32Imm(0)),
 | 
						|
                                    Op.getValue(1));
 | 
						|
      case ISD::SETNE: {
 | 
						|
        Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op);
 | 
						|
        SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                             Op, getI32Imm(~0U));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
 | 
						|
                                    AD.getValue(1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
 | 
						|
                                             getI32Imm(1));
 | 
						|
        SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
 | 
						|
                                    getI32Imm(31), getI32Imm(31));
 | 
						|
      }
 | 
						|
      case ISD::SETGT:
 | 
						|
        Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
 | 
						|
                                   getI32Imm(31), getI32Imm(31));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool Inv;
 | 
						|
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | 
						|
  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | 
						|
  SDOperand IntCR;
 | 
						|
  
 | 
						|
  // Force the ccreg into CR7.
 | 
						|
  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | 
						|
  
 | 
						|
  SDOperand InFlag(0, 0);  // Null incoming flag value.
 | 
						|
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, 
 | 
						|
                               InFlag).getValue(1);
 | 
						|
  
 | 
						|
  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
 | 
						|
    IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg);
 | 
						|
  else
 | 
						|
    IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg);
 | 
						|
  
 | 
						|
  if (!Inv) {
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
 | 
						|
                                getI32Imm((32-(3-Idx)) & 31),
 | 
						|
                                getI32Imm(31), getI32Imm(31));
 | 
						|
  } else {
 | 
						|
    SDOperand Tmp =
 | 
						|
    CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
 | 
						|
                          getI32Imm((32-(3-Idx)) & 31),
 | 
						|
                          getI32Imm(31),getI32Imm(31));
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isCallCompatibleAddress - Return true if the specified 32-bit value is
 | 
						|
/// representable in the immediate field of a Bx instruction.
 | 
						|
static bool isCallCompatibleAddress(ConstantSDNode *C) {
 | 
						|
  int Addr = C->getValue();
 | 
						|
  if (Addr & 3) return false;  // Low 2 bits are implicitly zero.
 | 
						|
  return (Addr << 6 >> 6) == Addr;  // Top 6 bits have to be sext of immediate.
 | 
						|
}
 | 
						|
 | 
						|
SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  SDOperand Chain = Select(N->getOperand(0));
 | 
						|
  
 | 
						|
  unsigned CallOpcode;
 | 
						|
  std::vector<SDOperand> CallOperands;
 | 
						|
  
 | 
						|
  if (GlobalAddressSDNode *GASD =
 | 
						|
      dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
 | 
						|
    CallOpcode = PPC::BL;
 | 
						|
    CallOperands.push_back(N->getOperand(1));
 | 
						|
  } else if (ExternalSymbolSDNode *ESSDN =
 | 
						|
             dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
 | 
						|
    CallOpcode = PPC::BL;
 | 
						|
    CallOperands.push_back(N->getOperand(1));
 | 
						|
  } else if (isa<ConstantSDNode>(N->getOperand(1)) &&
 | 
						|
             isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) {
 | 
						|
    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
    CallOpcode = PPC::BLA;
 | 
						|
    CallOperands.push_back(getI32Imm((int)C->getValue() >> 2));
 | 
						|
  } else {
 | 
						|
    // Copy the callee address into the CTR register.
 | 
						|
    SDOperand Callee = Select(N->getOperand(1));
 | 
						|
    Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain);
 | 
						|
    
 | 
						|
    // Copy the callee address into R12 on darwin.
 | 
						|
    SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
 | 
						|
    Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
 | 
						|
 | 
						|
    CallOperands.push_back(R12);
 | 
						|
    CallOpcode = PPC::BCTRL;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0;
 | 
						|
  static const unsigned GPR[] = {
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  static const unsigned FPR[] = {
 | 
						|
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | 
						|
  };
 | 
						|
  
 | 
						|
  SDOperand InFlag;  // Null incoming flag value.
 | 
						|
  
 | 
						|
  for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    unsigned DestReg = 0;
 | 
						|
    MVT::ValueType RegTy = N->getOperand(i).getValueType();
 | 
						|
    if (RegTy == MVT::i32) {
 | 
						|
      assert(GPR_idx < 8 && "Too many int args");
 | 
						|
      DestReg = GPR[GPR_idx++];
 | 
						|
    } else {
 | 
						|
      assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
 | 
						|
             "Unpromoted integer arg?");
 | 
						|
      assert(FPR_idx < 13 && "Too many fp args");
 | 
						|
      DestReg = FPR[FPR_idx++];
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
 | 
						|
      SDOperand Val = Select(N->getOperand(i));
 | 
						|
      Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
 | 
						|
      InFlag = Chain.getValue(1);
 | 
						|
      CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finally, once everything is in registers to pass to the call, emit the
 | 
						|
  // call itself.
 | 
						|
  if (InFlag.Val)
 | 
						|
    CallOperands.push_back(InFlag);   // Strong dep on register copies.
 | 
						|
  else
 | 
						|
    CallOperands.push_back(Chain);    // Weak dep on whatever occurs before
 | 
						|
  Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
 | 
						|
                                CallOperands);
 | 
						|
  
 | 
						|
  std::vector<SDOperand> CallResults;
 | 
						|
  
 | 
						|
  // If the call has results, copy the values out of the ret val registers.
 | 
						|
  switch (N->getValueType(0)) {
 | 
						|
    default: assert(0 && "Unexpected ret value!");
 | 
						|
    case MVT::Other: break;
 | 
						|
    case MVT::i32:
 | 
						|
      if (N->getValueType(1) == MVT::i32) {
 | 
						|
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, 
 | 
						|
                                       Chain.getValue(1)).getValue(1);
 | 
						|
        CallResults.push_back(Chain.getValue(0));
 | 
						|
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
 | 
						|
                                       Chain.getValue(2)).getValue(1);
 | 
						|
        CallResults.push_back(Chain.getValue(0));
 | 
						|
      } else {
 | 
						|
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
 | 
						|
                                       Chain.getValue(1)).getValue(1);
 | 
						|
        CallResults.push_back(Chain.getValue(0));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
 | 
						|
                                     Chain.getValue(1)).getValue(1);
 | 
						|
      CallResults.push_back(Chain.getValue(0));
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  CallResults.push_back(Chain);
 | 
						|
  for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
 | 
						|
    CodeGenMap[Op.getValue(i)] = CallResults[i];
 | 
						|
  return CallResults[Op.ResNo];
 | 
						|
}
 | 
						|
 | 
						|
// Select - Convert the specified operand from a target-independent to a
 | 
						|
// target-specific node if it hasn't already been changed.
 | 
						|
SDOperand PPCDAGToDAGISel::Select(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
 | 
						|
      N->getOpcode() < PPCISD::FIRST_NUMBER)
 | 
						|
    return Op;   // Already selected.
 | 
						|
 | 
						|
  // If this has already been converted, use it.
 | 
						|
  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
 | 
						|
  if (CGMI != CodeGenMap.end()) return CGMI->second;
 | 
						|
  
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::BasicBlock:         return CodeGenMap[Op] = Op;
 | 
						|
  case ISD::DYNAMIC_STACKALLOC: return SelectDYNAMIC_STACKALLOC(Op);
 | 
						|
  case ISD::ADD_PARTS:          return SelectADD_PARTS(Op);
 | 
						|
  case ISD::SUB_PARTS:          return SelectSUB_PARTS(Op);
 | 
						|
  case ISD::SETCC:              return SelectSETCC(Op);
 | 
						|
  case ISD::CALL:               return SelectCALL(Op);
 | 
						|
  case ISD::TAILCALL:           return SelectCALL(Op);
 | 
						|
  case PPCISD::GlobalBaseReg:   return getGlobalBaseReg();
 | 
						|
    
 | 
						|
  case ISD::FrameIndex: {
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    if (N->hasOneUse())
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
 | 
						|
                                  CurDAG->getTargetFrameIndex(FI, MVT::i32),
 | 
						|
                                  getI32Imm(0));
 | 
						|
    return CodeGenMap[Op] = 
 | 
						|
      CurDAG->getTargetNode(PPC::ADDI, MVT::i32,
 | 
						|
                            CurDAG->getTargetFrameIndex(FI, MVT::i32),
 | 
						|
                            getI32Imm(0));
 | 
						|
  }
 | 
						|
  case ISD::ConstantPool: {
 | 
						|
    Constant *C = cast<ConstantPoolSDNode>(N)->get();
 | 
						|
    SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32);
 | 
						|
    if (PICEnabled)
 | 
						|
      Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI);
 | 
						|
    else
 | 
						|
      Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI);
 | 
						|
    if (N->hasOneUse())
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI);
 | 
						|
    return CodeGenMap[Op] = CurDAG->getTargetNode(PPC::LA, MVT::i32, Tmp, CPI);
 | 
						|
  }
 | 
						|
  case ISD::FADD: {
 | 
						|
    MVT::ValueType Ty = N->getValueType(0);
 | 
						|
    if (!NoExcessFPPrecision) {  // Match FMA ops
 | 
						|
      if (N->getOperand(0).getOpcode() == ISD::FMUL &&
 | 
						|
          N->getOperand(0).Val->hasOneUse()) {
 | 
						|
        ++FusedFP; // Statistic
 | 
						|
        return CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD :PPC::FMADDS,
 | 
						|
                                    Ty, Select(N->getOperand(0).getOperand(0)),
 | 
						|
                                    Select(N->getOperand(0).getOperand(1)),
 | 
						|
                                    Select(N->getOperand(1)));
 | 
						|
      } else if (N->getOperand(1).getOpcode() == ISD::FMUL &&
 | 
						|
                 N->getOperand(1).hasOneUse()) {
 | 
						|
        ++FusedFP; // Statistic
 | 
						|
        return CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD :PPC::FMADDS,
 | 
						|
                                    Ty, Select(N->getOperand(1).getOperand(0)),
 | 
						|
                                    Select(N->getOperand(1).getOperand(1)),
 | 
						|
                                    Select(N->getOperand(0)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::FSUB: {
 | 
						|
    MVT::ValueType Ty = N->getValueType(0);
 | 
						|
    
 | 
						|
    if (!NoExcessFPPrecision) {  // Match FMA ops
 | 
						|
      if (N->getOperand(0).getOpcode() == ISD::FMUL &&
 | 
						|
          N->getOperand(0).Val->hasOneUse()) {
 | 
						|
        ++FusedFP; // Statistic
 | 
						|
        return CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB:PPC::FMSUBS,
 | 
						|
                                    Ty, Select(N->getOperand(0).getOperand(0)),
 | 
						|
                                    Select(N->getOperand(0).getOperand(1)),
 | 
						|
                                    Select(N->getOperand(1)));
 | 
						|
      } else if (N->getOperand(1).getOpcode() == ISD::FMUL &&
 | 
						|
                 N->getOperand(1).Val->hasOneUse()) {
 | 
						|
        ++FusedFP; // Statistic
 | 
						|
        return CurDAG->SelectNodeTo(N, Ty == MVT::f64 ?PPC::FNMSUB:PPC::FNMSUBS, 
 | 
						|
                                    Ty, Select(N->getOperand(1).getOperand(0)),
 | 
						|
                                    Select(N->getOperand(1).getOperand(1)),
 | 
						|
                                    Select(N->getOperand(0)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SDIV: {
 | 
						|
    // FIXME: since this depends on the setting of the carry flag from the srawi
 | 
						|
    //        we should really be making notes about that for the scheduler.
 | 
						|
    // FIXME: It sure would be nice if we could cheaply recognize the 
 | 
						|
    //        srl/add/sra pattern the dag combiner will generate for this as
 | 
						|
    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
 | 
						|
    unsigned Imm;
 | 
						|
    if (isIntImmediate(N->getOperand(1), Imm)) {
 | 
						|
      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
 | 
						|
        SDOperand Op =
 | 
						|
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | 
						|
                                Select(N->getOperand(0)),
 | 
						|
                                getI32Imm(Log2_32(Imm)));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | 
						|
                                    Op.getValue(0), Op.getValue(1));
 | 
						|
      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
 | 
						|
        SDOperand Op =
 | 
						|
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | 
						|
                                Select(N->getOperand(0)),
 | 
						|
                                getI32Imm(Log2_32(-Imm)));
 | 
						|
        SDOperand PT =
 | 
						|
          CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0),
 | 
						|
                                Op.getValue(1));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::AND: {
 | 
						|
    unsigned Imm;
 | 
						|
    // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | 
						|
    // with a mask, emit rlwinm
 | 
						|
    if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
 | 
						|
                                                  isShiftedMask_32(~Imm))) {
 | 
						|
      SDOperand Val;
 | 
						|
      unsigned SH, MB, ME;
 | 
						|
      if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
 | 
						|
        Val = Select(N->getOperand(0).getOperand(0));
 | 
						|
      } else if (Imm == 0) {
 | 
						|
        // AND X, 0 -> 0, not "rlwinm 32".
 | 
						|
        return Select(N->getOperand(1));
 | 
						|
      } else {        
 | 
						|
        Val = Select(N->getOperand(0));
 | 
						|
        isRunOfOnes(Imm, MB, ME);
 | 
						|
        SH = 0;
 | 
						|
      }
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH),
 | 
						|
                                  getI32Imm(MB), getI32Imm(ME));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::OR:
 | 
						|
    if (SDNode *I = SelectBitfieldInsert(N))
 | 
						|
      return CodeGenMap[Op] = SDOperand(I, 0);
 | 
						|
      
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  case ISD::SHL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
 | 
						|
                                  Select(N->getOperand(0).getOperand(0)),
 | 
						|
                                  getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SRL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
 | 
						|
                                  Select(N->getOperand(0).getOperand(0)),
 | 
						|
                                  getI32Imm(SH & 0x1F), getI32Imm(MB),
 | 
						|
                                  getI32Imm(ME));
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::FNEG: {
 | 
						|
    SDOperand Val = Select(N->getOperand(0));
 | 
						|
    MVT::ValueType Ty = N->getValueType(0);
 | 
						|
    if (N->getOperand(0).Val->hasOneUse()) {
 | 
						|
      unsigned Opc;
 | 
						|
      switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) {
 | 
						|
      default:          Opc = 0;            break;
 | 
						|
      case PPC::FABSS:  Opc = PPC::FNABSS;  break;
 | 
						|
      case PPC::FABSD:  Opc = PPC::FNABSD;  break;
 | 
						|
      case PPC::FMADD:  Opc = PPC::FNMADD;  break;
 | 
						|
      case PPC::FMADDS: Opc = PPC::FNMADDS; break;
 | 
						|
      case PPC::FMSUB:  Opc = PPC::FNMSUB;  break;
 | 
						|
      case PPC::FMSUBS: Opc = PPC::FNMSUBS; break;
 | 
						|
      }
 | 
						|
      // If we inverted the opcode, then emit the new instruction with the
 | 
						|
      // inverted opcode and the original instruction's operands.  Otherwise, 
 | 
						|
      // fall through and generate a fneg instruction.
 | 
						|
      if (Opc) {
 | 
						|
        if (Opc == PPC::FNABSS || Opc == PPC::FNABSD)
 | 
						|
          return CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0));
 | 
						|
        else
 | 
						|
          return CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0),
 | 
						|
                                      Val.getOperand(1), Val.getOperand(2));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::LOAD:
 | 
						|
  case ISD::EXTLOAD:
 | 
						|
  case ISD::ZEXTLOAD:
 | 
						|
  case ISD::SEXTLOAD: {
 | 
						|
    SDOperand Op1, Op2;
 | 
						|
    // If this is a vector load, then force this to be indexed addressing, since
 | 
						|
    // altivec does not have immediate offsets for loads.
 | 
						|
    bool isIdx = true;
 | 
						|
    if (N->getOpcode() == ISD::LOAD && MVT::isVector(N->getValueType(0))) { 
 | 
						|
      SelectAddrIndexed(N->getOperand(1), Op1, Op2);
 | 
						|
    } else {
 | 
						|
      isIdx = SelectAddr(N->getOperand(1), Op1, Op2);
 | 
						|
    }
 | 
						|
    MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ?
 | 
						|
      N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT();
 | 
						|
 | 
						|
    unsigned Opc;
 | 
						|
    switch (TypeBeingLoaded) {
 | 
						|
    default: N->dump(); assert(0 && "Cannot load this type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = isIdx ? PPC::LBZX : PPC::LBZ; break;
 | 
						|
    case MVT::i16:
 | 
						|
      if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load?
 | 
						|
        Opc = isIdx ? PPC::LHAX : PPC::LHA;
 | 
						|
      } else {
 | 
						|
        Opc = isIdx ? PPC::LHZX : PPC::LHZ;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break;
 | 
						|
    case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break;
 | 
						|
    case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break;
 | 
						|
    case MVT::v4f32: Opc = PPC::LVX; break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an f32 -> f64 load, emit the f32 load, then use an 'extending
 | 
						|
    // copy'.
 | 
						|
    if (TypeBeingLoaded != MVT::f32 || N->getOpcode() == ISD::LOAD) {
 | 
						|
      return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
 | 
						|
                                  Op1, Op2, Select(N->getOperand(0))).
 | 
						|
                    getValue(Op.ResNo);
 | 
						|
    } else {
 | 
						|
      std::vector<SDOperand> Ops;
 | 
						|
      Ops.push_back(Op1);
 | 
						|
      Ops.push_back(Op2);
 | 
						|
      Ops.push_back(Select(N->getOperand(0)));
 | 
						|
      SDOperand Res = CurDAG->getTargetNode(Opc, MVT::f32, MVT::Other, Ops);
 | 
						|
      SDOperand Ext = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Res);
 | 
						|
      CodeGenMap[Op.getValue(0)] = Ext;
 | 
						|
      CodeGenMap[Op.getValue(1)] = Res.getValue(1);
 | 
						|
      if (Op.ResNo)
 | 
						|
        return Res.getValue(1);
 | 
						|
      else
 | 
						|
        return Ext;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ISD::TRUNCSTORE:
 | 
						|
  case ISD::STORE: {
 | 
						|
    SDOperand AddrOp1, AddrOp2;
 | 
						|
    // If this is a vector store, then force this to be indexed addressing,
 | 
						|
    // since altivec does not have immediate offsets for stores.
 | 
						|
    bool isIdx = true;
 | 
						|
    if (N->getOpcode() == ISD::STORE && 
 | 
						|
        MVT::isVector(N->getOperand(1).getValueType())) {
 | 
						|
      SelectAddrIndexed(N->getOperand(2), AddrOp1, AddrOp2);
 | 
						|
    } else {
 | 
						|
      isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Opc;
 | 
						|
    if (N->getOpcode() == ISD::STORE) {
 | 
						|
      switch (N->getOperand(1).getValueType()) {
 | 
						|
      default: assert(0 && "unknown Type in store");
 | 
						|
      case MVT::i32: Opc = isIdx ? PPC::STWX  : PPC::STW; break;
 | 
						|
      case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break;
 | 
						|
      case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break;
 | 
						|
      case MVT::v4f32: Opc = PPC::STVX;
 | 
						|
      }
 | 
						|
    } else { //ISD::TRUNCSTORE
 | 
						|
      switch(cast<VTSDNode>(N->getOperand(4))->getVT()) {
 | 
						|
      default: assert(0 && "unknown Type in store");
 | 
						|
      case MVT::i8:  Opc = isIdx ? PPC::STBX : PPC::STB; break;
 | 
						|
      case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)),
 | 
						|
                                AddrOp1, AddrOp2, Select(N->getOperand(0)));
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ISD::SELECT_CC: {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | 
						|
    
 | 
						|
    // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | 
						|
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | 
						|
      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | 
						|
        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | 
						|
          if (N1C->isNullValue() && N3C->isNullValue() &&
 | 
						|
              N2C->getValue() == 1ULL && CC == ISD::SETNE) {
 | 
						|
            SDOperand LHS = Select(N->getOperand(0));
 | 
						|
            SDOperand Tmp =
 | 
						|
              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                    LHS, getI32Imm(~0U));
 | 
						|
            return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS,
 | 
						|
                                        Tmp.getValue(1));
 | 
						|
          }
 | 
						|
 | 
						|
    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | 
						|
    unsigned BROpc = getBCCForSetCC(CC);
 | 
						|
 | 
						|
    bool isFP = MVT::isFloatingPoint(N->getValueType(0));
 | 
						|
    unsigned SelectCCOp;
 | 
						|
    if (MVT::isInteger(N->getValueType(0)))
 | 
						|
      SelectCCOp = PPC::SELECT_CC_Int;
 | 
						|
    else if (N->getValueType(0) == MVT::f32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F4;
 | 
						|
    else
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F8;
 | 
						|
    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
 | 
						|
                                Select(N->getOperand(2)), 
 | 
						|
                                Select(N->getOperand(3)),
 | 
						|
                                getI32Imm(BROpc));
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ISD::RET: {
 | 
						|
    SDOperand Chain = Select(N->getOperand(0));     // Token chain.
 | 
						|
 | 
						|
    if (N->getNumOperands() == 2) {
 | 
						|
      SDOperand Val = Select(N->getOperand(1));
 | 
						|
      if (N->getOperand(1).getValueType() == MVT::i32) {
 | 
						|
        Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val);
 | 
						|
      } else {
 | 
						|
        assert(MVT::isFloatingPoint(N->getOperand(1).getValueType()));
 | 
						|
        Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val);
 | 
						|
      }
 | 
						|
    } else if (N->getNumOperands() > 1) {
 | 
						|
      assert(N->getOperand(1).getValueType() == MVT::i32 &&
 | 
						|
             N->getOperand(2).getValueType() == MVT::i32 &&
 | 
						|
             N->getNumOperands() == 3 && "Unknown two-register ret value!");
 | 
						|
      Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1)));
 | 
						|
      Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2)));
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, select this to a blr (return) instruction.
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain);
 | 
						|
  }
 | 
						|
  case ISD::BR_CC:
 | 
						|
  case ISD::BRTWOWAY_CC: {
 | 
						|
    SDOperand Chain = Select(N->getOperand(0));
 | 
						|
    MachineBasicBlock *Dest =
 | 
						|
      cast<BasicBlockSDNode>(N->getOperand(4))->getBasicBlock();
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
 | 
						|
 | 
						|
    // If this is a two way branch, then grab the fallthrough basic block
 | 
						|
    // argument and build a PowerPC branch pseudo-op, suitable for long branch
 | 
						|
    // conversion if necessary by the branch selection pass.  Otherwise, emit a
 | 
						|
    // standard conditional branch.
 | 
						|
    if (N->getOpcode() == ISD::BRTWOWAY_CC) {
 | 
						|
      SDOperand CondTrueBlock = N->getOperand(4);
 | 
						|
      SDOperand CondFalseBlock = N->getOperand(5);
 | 
						|
      
 | 
						|
      // If the false case is the current basic block, then this is a self loop.
 | 
						|
      // We do not want to emit "Loop: ... brcond Out; br Loop", as it adds an
 | 
						|
      // extra dispatch group to the loop.  Instead, invert the condition and
 | 
						|
      // emit "Loop: ... br!cond Loop; br Out
 | 
						|
      if (cast<BasicBlockSDNode>(CondFalseBlock)->getBasicBlock() == BB) {
 | 
						|
        std::swap(CondTrueBlock, CondFalseBlock);
 | 
						|
        CC = getSetCCInverse(CC,
 | 
						|
                             MVT::isInteger(N->getOperand(2).getValueType()));
 | 
						|
      }
 | 
						|
      
 | 
						|
      unsigned Opc = getBCCForSetCC(CC);
 | 
						|
      SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other,
 | 
						|
                                           CondCode, getI32Imm(Opc),
 | 
						|
                                           CondTrueBlock, CondFalseBlock,
 | 
						|
                                           Chain);
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, CondFalseBlock, CB);
 | 
						|
    } else {
 | 
						|
      // Iterate to the next basic block
 | 
						|
      ilist<MachineBasicBlock>::iterator It = BB;
 | 
						|
      ++It;
 | 
						|
 | 
						|
      // If the fallthrough path is off the end of the function, which would be
 | 
						|
      // undefined behavior, set it to be the same as the current block because
 | 
						|
      // we have nothing better to set it to, and leaving it alone will cause
 | 
						|
      // the PowerPC Branch Selection pass to crash.
 | 
						|
      if (It == BB->getParent()->end()) It = Dest;
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode,
 | 
						|
                                  getI32Imm(getBCCForSetCC(CC)), 
 | 
						|
                                  N->getOperand(4), CurDAG->getBasicBlock(It), 
 | 
						|
                                  Chain);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SelectCode(Op);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// createPPCISelDag - This pass converts a legalized DAG into a 
 | 
						|
/// PowerPC-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createPPCISelDag(TargetMachine &TM) {
 | 
						|
  return new PPCDAGToDAGISel(TM);
 | 
						|
}
 | 
						|
 |