mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226288 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1737 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1737 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the interfaces that Hexagon uses to lower LLVM code
 | |
| // into a selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "HexagonISelLowering.h"
 | |
| #include "HexagonMachineFunctionInfo.h"
 | |
| #include "HexagonSubtarget.h"
 | |
| #include "HexagonTargetMachine.h"
 | |
| #include "HexagonTargetObjectFile.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "hexagon-lowering"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
 | |
|                cl::desc("Control jump table emission on Hexagon target"));
 | |
| 
 | |
| namespace {
 | |
| class HexagonCCState : public CCState {
 | |
|   int NumNamedVarArgParams;
 | |
| 
 | |
| public:
 | |
|   HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
 | |
|                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
 | |
|                  int NumNamedVarArgParams)
 | |
|       : CCState(CC, isVarArg, MF, locs, C),
 | |
|         NumNamedVarArgParams(NumNamedVarArgParams) {}
 | |
| 
 | |
|   int getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
 | |
| };
 | |
| }
 | |
| 
 | |
| // Implement calling convention for Hexagon.
 | |
| static bool
 | |
| CC_Hexagon(unsigned ValNo, MVT ValVT,
 | |
|            MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|            ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|              MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|              ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|              MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|              ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| RetCC_Hexagon(unsigned ValNo, MVT ValVT,
 | |
|               MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|               ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|                 MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                 ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|                 MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                 ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
 | |
|             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
|   HexagonCCState &HState = static_cast<HexagonCCState &>(State);
 | |
| 
 | |
|   // NumNamedVarArgParams can not be zero for a VarArg function.
 | |
|   assert((HState.getNumNamedVarArgParams() > 0) &&
 | |
|          "NumNamedVarArgParams is not bigger than zero.");
 | |
| 
 | |
|   if ((int)ValNo < HState.getNumNamedVarArgParams()) {
 | |
|     // Deal with named arguments.
 | |
|     return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
 | |
|   }
 | |
| 
 | |
|   // Deal with un-named arguments.
 | |
|   unsigned ofst;
 | |
|   if (ArgFlags.isByVal()) {
 | |
|     // If pass-by-value, the size allocated on stack is decided
 | |
|     // by ArgFlags.getByValSize(), not by the size of LocVT.
 | |
|     assert ((ArgFlags.getByValSize() > 8) &&
 | |
|             "ByValSize must be bigger than 8 bytes");
 | |
|     ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
|   if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     ValVT = MVT::i32;
 | |
|     if (ArgFlags.isSExt())
 | |
|       LocInfo = CCValAssign::SExt;
 | |
|     else if (ArgFlags.isZExt())
 | |
|       LocInfo = CCValAssign::ZExt;
 | |
|     else
 | |
|       LocInfo = CCValAssign::AExt;
 | |
|   }
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     ofst = State.AllocateStack(4, 4);
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     ofst = State.AllocateStack(8, 8);
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
|   llvm_unreachable(nullptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon (unsigned ValNo, MVT ValVT,
 | |
|             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   if (ArgFlags.isByVal()) {
 | |
|     // Passed on stack.
 | |
|     assert ((ArgFlags.getByValSize() > 8) &&
 | |
|             "ByValSize must be bigger than 8 bytes");
 | |
|     unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     ValVT = MVT::i32;
 | |
|     if (ArgFlags.isSExt())
 | |
|       LocInfo = CCValAssign::SExt;
 | |
|     else if (ArgFlags.isZExt())
 | |
|       LocInfo = CCValAssign::ZExt;
 | |
|     else
 | |
|       LocInfo = CCValAssign::AExt;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;  // CC didn't match.
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|                          MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   static const MCPhysReg RegList[] = {
 | |
|     Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
 | |
|     Hexagon::R5
 | |
|   };
 | |
|   if (unsigned Reg = State.AllocateReg(RegList, 6)) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(4, 4);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|                          MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   static const MCPhysReg RegList1[] = {
 | |
|     Hexagon::D1, Hexagon::D2
 | |
|   };
 | |
|   static const MCPhysReg RegList2[] = {
 | |
|     Hexagon::R1, Hexagon::R3
 | |
|   };
 | |
|   if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
 | |
|                           MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
| 
 | |
|   if (LocVT == MVT::i1 ||
 | |
|       LocVT == MVT::i8 ||
 | |
|       LocVT == MVT::i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     ValVT = MVT::i32;
 | |
|     if (ArgFlags.isSExt())
 | |
|       LocInfo = CCValAssign::SExt;
 | |
|     else if (ArgFlags.isZExt())
 | |
|       LocInfo = CCValAssign::ZExt;
 | |
|     else
 | |
|       LocInfo = CCValAssign::AExt;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;  // CC didn't match.
 | |
| }
 | |
| 
 | |
| static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|                             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
 | |
|       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(4, 4);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|                             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
 | |
|       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(8, 8);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
 | |
| const {
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" of size "Size".  Alignment information is
 | |
| /// specified by the specific parameter attribute. The copy will be passed as
 | |
| /// a byval function parameter.  Sometimes what we are copying is the end of a
 | |
| /// larger object, the part that does not fit in registers.
 | |
| static SDValue
 | |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | |
|                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | |
|                           SDLoc dl) {
 | |
| 
 | |
|   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        /*isVolatile=*/false, /*AlwaysInline=*/false,
 | |
|                        MachinePointerInfo(), MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| 
 | |
| // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
 | |
| // passed by value, the function prototype is modified to return void and
 | |
| // the value is stored in memory pointed by a pointer passed by caller.
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                    CallingConv::ID CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                    const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                    SDLoc dl, SelectionDAG &DAG) const {
 | |
| 
 | |
|   // CCValAssign - represent the assignment of the return value to locations.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   // CCState - Info about the registers and stack slot.
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Analyze return values of ISD::RET
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
 | |
| 
 | |
|   SDValue Flag;
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
 | |
| 
 | |
|     // Guarantee that all emitted copies are stuck together with flags.
 | |
|     Flag = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain;  // Update chain.
 | |
| 
 | |
|   // Add the flag if we have it.
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the
 | |
| /// appropriate copies out of appropriate physical registers.  This assumes that
 | |
| /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
 | |
| /// being lowered. Returns a SDNode with the same number of values as the
 | |
| /// ISD::CALL.
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                        CallingConv::ID CallConv, bool isVarArg,
 | |
|                                        const
 | |
|                                        SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                        SDLoc dl, SelectionDAG &DAG,
 | |
|                                        SmallVectorImpl<SDValue> &InVals,
 | |
|                                        const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                        SDValue Callee) const {
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl,
 | |
|                                RVLocs[i].getLocReg(),
 | |
|                                RVLocs[i].getValVT(), InFlag).getValue(1);
 | |
|     InFlag = Chain.getValue(2);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// LowerCall - Functions arguments are copied from virtual regs to
 | |
| /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | |
|                                  SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG                     = CLI.DAG;
 | |
|   SDLoc &dl                             = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | |
|   SDValue Chain                         = CLI.Chain;
 | |
|   SDValue Callee                        = CLI.Callee;
 | |
|   bool &isTailCall                      = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv              = CLI.CallConv;
 | |
|   bool isVarArg                         = CLI.IsVarArg;
 | |
|   bool doesNotReturn                    = CLI.DoesNotReturn;
 | |
| 
 | |
|   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | |
| 
 | |
|   // Check for varargs.
 | |
|   int NumNamedVarArgParams = -1;
 | |
|   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|   {
 | |
|     const Function* CalleeFn = nullptr;
 | |
|     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
 | |
|     if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
 | |
|     {
 | |
|       // If a function has zero args and is a vararg function, that's
 | |
|       // disallowed so it must be an undeclared function.  Do not assume
 | |
|       // varargs if the callee is undefined.
 | |
|       if (CalleeFn->isVarArg() &&
 | |
|           CalleeFn->getFunctionType()->getNumParams() != 0) {
 | |
|         NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                         *DAG.getContext(), NumNamedVarArgParams);
 | |
| 
 | |
|   if (NumNamedVarArgParams > 0)
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
 | |
|   else
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
 | |
| 
 | |
| 
 | |
|   if(isTailCall) {
 | |
|     bool StructAttrFlag =
 | |
|       DAG.getMachineFunction().getFunction()->hasStructRetAttr();
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | |
|                                                    isVarArg, IsStructRet,
 | |
|                                                    StructAttrFlag,
 | |
|                                                    Outs, OutVals, Ins, DAG);
 | |
|     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
 | |
|       CCValAssign &VA = ArgLocs[i];
 | |
|       if (VA.isMemLoc()) {
 | |
|         isTailCall = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (isTailCall) {
 | |
|       DEBUG(dbgs () << "Eligible for Tail Call\n");
 | |
|     } else {
 | |
|       DEBUG(dbgs () <<
 | |
|             "Argument must be passed on stack. Not eligible for Tail Call\n");
 | |
|     }
 | |
|   }
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
 | |
|       DAG.getSubtarget().getRegisterInfo());
 | |
|   SDValue StackPtr =
 | |
|       DAG.getCopyFromReg(Chain, dl, QRI->getStackRegister(), getPointerTy());
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|       default:
 | |
|         // Loc info must be one of Full, SExt, ZExt, or AExt.
 | |
|         llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::Full:
 | |
|         break;
 | |
|       case CCValAssign::SExt:
 | |
|         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|       case CCValAssign::AExt:
 | |
|         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (VA.isMemLoc()) {
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|       SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // The argument is a struct passed by value. According to LLVM, "Arg"
 | |
|         // is is pointer.
 | |
|         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
 | |
|                                                         Flags, DAG, dl));
 | |
|       } else {
 | |
|         // The argument is not passed by value. "Arg" is a buildin type. It is
 | |
|         // not a pointer.
 | |
|         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                                            MachinePointerInfo(),false, false,
 | |
|                                            0));
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Arguments that can be passed on register must be kept at RegsToPass
 | |
|     // vector.
 | |
|     if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform all store nodes into one single node because all store
 | |
|   // nodes are independent of each other.
 | |
|   if (!MemOpChains.empty()) {
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | |
|   }
 | |
| 
 | |
|   if (!isTailCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
 | |
|                                                         getPointerTy(), true),
 | |
|                                  dl);
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token
 | |
|   // chain and flag operands which copy the outgoing args into registers.
 | |
|   // The InFlag in necessary since all emitted instructions must be
 | |
|   // stuck together.
 | |
|   SDValue InFlag;
 | |
|   if (!isTailCall) {
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For tail calls lower the arguments to the 'real' stack slot.
 | |
|   if (isTailCall) {
 | |
|     // Force all the incoming stack arguments to be loaded from the stack
 | |
|     // before any new outgoing arguments are stored to the stack, because the
 | |
|     // outgoing stack slots may alias the incoming argument stack slots, and
 | |
|     // the alias isn't otherwise explicit. This is slightly more conservative
 | |
|     // than necessary, because it means that each store effectively depends
 | |
|     // on every argument instead of just those arguments it would clobber.
 | |
|     //
 | |
|     // Do not flag preceding copytoreg stuff together with the following stuff.
 | |
|     InFlag = SDValue();
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|     InFlag =SDValue();
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   if (flag_aligned_memcpy) {
 | |
|     const char *MemcpyName =
 | |
|       "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
 | |
|     Callee =
 | |
|       DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
 | |
|     flag_aligned_memcpy = false;
 | |
|   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
 | |
|   } else if (ExternalSymbolSDNode *S =
 | |
|              dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
 | |
|   }
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are
 | |
|   // known live into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
|   }
 | |
| 
 | |
|   if (InFlag.getNode()) {
 | |
|     Ops.push_back(InFlag);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall)
 | |
|     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
 | |
| 
 | |
|   int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3;
 | |
|   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Create the CALLSEQ_END node.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(0, true), InFlag, dl);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
 | |
|                          InVals, OutVals, Callee);
 | |
| }
 | |
| 
 | |
| static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                    bool isSEXTLoad, SDValue &Base,
 | |
|                                    SDValue &Offset, bool &isInc,
 | |
|                                    SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD)
 | |
|   return false;
 | |
| 
 | |
|   if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Base = Ptr->getOperand(0);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     // Ensure that Offset is a constant.
 | |
|     return (isa<ConstantSDNode>(Offset));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // TODO: Put this function along with the other isS* functions in
 | |
| // HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
 | |
| // functions defined in HexagonOperands.td.
 | |
| static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
 | |
|   ConstantSDNode *N = cast<ConstantSDNode>(S);
 | |
| 
 | |
|   // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
 | |
|   // field.
 | |
|   int64_t v = (int64_t)N->getSExtValue();
 | |
|   int64_t m = 0;
 | |
|   if (ShiftAmount > 0) {
 | |
|     m = v % ShiftAmount;
 | |
|     v = v >> ShiftAmount;
 | |
|   }
 | |
|   return (v <= 7) && (v >= -8) && (m == 0);
 | |
| }
 | |
| 
 | |
| /// getPostIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if this node can be
 | |
| /// combined with a load / store to form a post-indexed load / store.
 | |
| bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                                        SDValue &Base,
 | |
|                                                        SDValue &Offset,
 | |
|                                                        ISD::MemIndexedMode &AM,
 | |
|                                                        SelectionDAG &DAG) const
 | |
| {
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false;
 | |
| 
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT  = LD->getMemoryVT();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT  = ST->getMemoryVT();
 | |
|     if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool isInc = false;
 | |
|   bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                         isInc, DAG);
 | |
|   // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
 | |
|   int ShiftAmount = VT.getSizeInBits() / 16;
 | |
|   if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
 | |
|     AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDNode *Node = Op.getNode();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   HexagonMachineFunctionInfo *FuncInfo =
 | |
|     MF.getInfo<HexagonMachineFunctionInfo>();
 | |
|   switch (Node->getOpcode()) {
 | |
|     case ISD::INLINEASM: {
 | |
|       unsigned NumOps = Node->getNumOperands();
 | |
|       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
 | |
|         --NumOps;  // Ignore the flag operand.
 | |
| 
 | |
|       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | |
|         if (FuncInfo->hasClobberLR())
 | |
|           break;
 | |
|         unsigned Flags =
 | |
|           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | |
|         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | |
|         ++i;  // Skip the ID value.
 | |
| 
 | |
|         switch (InlineAsm::getKind(Flags)) {
 | |
|         default: llvm_unreachable("Bad flags!");
 | |
|           case InlineAsm::Kind_RegDef:
 | |
|           case InlineAsm::Kind_RegUse:
 | |
|           case InlineAsm::Kind_Imm:
 | |
|           case InlineAsm::Kind_Clobber:
 | |
|           case InlineAsm::Kind_Mem: {
 | |
|             for (; NumVals; --NumVals, ++i) {}
 | |
|             break;
 | |
|           }
 | |
|           case InlineAsm::Kind_RegDefEarlyClobber: {
 | |
|             for (; NumVals; --NumVals, ++i) {
 | |
|               unsigned Reg =
 | |
|                 cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
| 
 | |
|               // Check it to be lr
 | |
|               const HexagonRegisterInfo *QRI =
 | |
|                   static_cast<const HexagonRegisterInfo *>(
 | |
|                       DAG.getSubtarget().getRegisterInfo());
 | |
|               if (Reg == QRI->getRARegister()) {
 | |
|                 FuncInfo->setHasClobberLR(true);
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } // Node->getOpcode
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // Taken from the XCore backend.
 | |
| //
 | |
| SDValue HexagonTargetLowering::
 | |
| LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
 | |
| {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Table = Op.getOperand(1);
 | |
|   SDValue Index = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
 | |
|   unsigned JTI = JT->getIndex();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
 | |
|   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
 | |
| 
 | |
|   // Mark all jump table targets as address taken.
 | |
|   const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
 | |
|   const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
 | |
|   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *MBB = JTBBs[i];
 | |
|     MBB->setHasAddressTaken();
 | |
|     // This line is needed to set the hasAddressTaken flag on the BasicBlock
 | |
|     // object.
 | |
|     BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
 | |
|   }
 | |
| 
 | |
|   SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
 | |
|                                       getPointerTy(), TargetJT);
 | |
|   SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
 | |
|                                    DAG.getConstant(2, MVT::i32));
 | |
|   SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
 | |
|                                   ShiftIndex);
 | |
|   SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
 | |
|                                    MachinePointerInfo(), false, false, false,
 | |
|                                    0);
 | |
|   return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   unsigned SPReg = getStackPointerRegisterToSaveRestore();
 | |
| 
 | |
|   // Get a reference to the stack pointer.
 | |
|   SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
 | |
| 
 | |
|   // Subtract the dynamic size from the actual stack size to
 | |
|   // obtain the new stack size.
 | |
|   SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
 | |
| 
 | |
|   //
 | |
|   // For Hexagon, the outgoing memory arguments area should be on top of the
 | |
|   // alloca area on the stack i.e., the outgoing memory arguments should be
 | |
|   // at a lower address than the alloca area. Move the alloca area down the
 | |
|   // stack by adding back the space reserved for outgoing arguments to SP
 | |
|   // here.
 | |
|   //
 | |
|   // We do not know what the size of the outgoing args is at this point.
 | |
|   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
 | |
|   // stack pointer. We patch this instruction with the correct, known
 | |
|   // offset in emitPrologue().
 | |
|   //
 | |
|   // Use a placeholder immediate (zero) for now. This will be patched up
 | |
|   // by emitPrologue().
 | |
|   SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
 | |
|                                   MVT::i32,
 | |
|                                   Sub,
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
| 
 | |
|   // The Sub result contains the new stack start address, so it
 | |
|   // must be placed in the stack pointer register.
 | |
|   const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
 | |
|       DAG.getSubtarget().getRegisterInfo());
 | |
|   SDValue CopyChain = DAG.getCopyToReg(Chain, dl, QRI->getStackRegister(), Sub);
 | |
| 
 | |
|   SDValue Ops[2] = { ArgAdjust, CopyChain };
 | |
|   return DAG.getMergeValues(Ops, dl);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                             CallingConv::ID CallConv,
 | |
|                                             bool isVarArg,
 | |
|                                             const
 | |
|                                             SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                             SDLoc dl, SelectionDAG &DAG,
 | |
|                                             SmallVectorImpl<SDValue> &InVals)
 | |
| const {
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|   HexagonMachineFunctionInfo *FuncInfo =
 | |
|     MF.getInfo<HexagonMachineFunctionInfo>();
 | |
| 
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
 | |
| 
 | |
|   // For LLVM, in the case when returning a struct by value (>8byte),
 | |
|   // the first argument is a pointer that points to the location on caller's
 | |
|   // stack where the return value will be stored. For Hexagon, the location on
 | |
|   // caller's stack is passed only when the struct size is smaller than (and
 | |
|   // equal to) 8 bytes. If not, no address will be passed into callee and
 | |
|   // callee return the result direclty through R0/R1.
 | |
| 
 | |
|   SmallVector<SDValue, 4> MemOps;
 | |
| 
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | |
|     unsigned ObjSize;
 | |
|     unsigned StackLocation;
 | |
|     int FI;
 | |
| 
 | |
|     if (   (VA.isRegLoc() && !Flags.isByVal())
 | |
|         || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
 | |
|       // Arguments passed in registers
 | |
|       // 1. int, long long, ptr args that get allocated in register.
 | |
|       // 2. Large struct that gets an register to put its address in.
 | |
|       EVT RegVT = VA.getLocVT();
 | |
|       if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
 | |
|           RegVT == MVT::i32 || RegVT == MVT::f32) {
 | |
|         unsigned VReg =
 | |
|           RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | |
|         RegInfo.addLiveIn(VA.getLocReg(), VReg);
 | |
|         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
 | |
|       } else if (RegVT == MVT::i64) {
 | |
|         unsigned VReg =
 | |
|           RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
 | |
|         RegInfo.addLiveIn(VA.getLocReg(), VReg);
 | |
|         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
 | |
|       } else {
 | |
|         assert (0);
 | |
|       }
 | |
|     } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
 | |
|       assert (0 && "ByValSize must be bigger than 8 bytes");
 | |
|     } else {
 | |
|       // Sanity check.
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // If it's a byval parameter, then we need to compute the
 | |
|         // "real" size, not the size of the pointer.
 | |
|         ObjSize = Flags.getByValSize();
 | |
|       } else {
 | |
|         ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
 | |
|       }
 | |
| 
 | |
|       StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
 | |
|       // Create the frame index object for this incoming parameter...
 | |
|       FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
 | |
| 
 | |
|       // Create the SelectionDAG nodes cordl, responding to a load
 | |
|       // from this parameter.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // If it's a pass-by-value aggregate, then do not dereference the stack
 | |
|         // location. Instead, we should generate a reference to the stack
 | |
|         // location.
 | |
|         InVals.push_back(FIN);
 | |
|       } else {
 | |
|         InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
 | |
|                                      MachinePointerInfo(), false, false,
 | |
|                                      false, 0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | |
| 
 | |
|   if (isVarArg) {
 | |
|     // This will point to the next argument passed via stack.
 | |
|     int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
 | |
|                                             HEXAGON_LRFP_SIZE +
 | |
|                                             CCInfo.getNextStackOffset(),
 | |
|                                             true);
 | |
|     FuncInfo->setVarArgsFrameIndex(FrameIndex);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // VASTART stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
 | |
|   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
 | |
|                       Op.getOperand(1), MachinePointerInfo(SV), false,
 | |
|                       false, 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT ValTy = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   SDValue Res;
 | |
|   if (CP->isMachineConstantPoolEntry())
 | |
|     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
 | |
|                                     CP->getAlignment());
 | |
|   else
 | |
|     Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
 | |
|                                     CP->getAlignment());
 | |
|   return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MFI->setReturnAddressIsTaken(true);
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   if (Depth) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset = DAG.getConstant(4, MVT::i32);
 | |
|     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | |
|                        MachinePointerInfo(), false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Return LR, which contains the return address. Mark it an implicit live-in.
 | |
|   unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const HexagonRegisterInfo *TRI = static_cast<const HexagonRegisterInfo *>(
 | |
|       DAG.getSubtarget().getRegisterInfo());
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | |
|                                          TRI->getFrameRegister(), VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | |
|                             MachinePointerInfo(),
 | |
|                             false, false, false, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
 | |
|                                                  SelectionDAG& DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDValue Result;
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
 | |
|   SDLoc dl(Op);
 | |
|   Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
 | |
| 
 | |
|   const HexagonTargetObjectFile &TLOF =
 | |
|       static_cast<const HexagonTargetObjectFile &>(getObjFileLowering());
 | |
|   if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
 | |
|     return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   SDValue BA_SD =  DAG.getTargetBlockAddress(BA, MVT::i32);
 | |
|   SDLoc dl(Op);
 | |
|   return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TargetLowering Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &targetmachine)
 | |
|     : TargetLowering(targetmachine),
 | |
|       TM(targetmachine) {
 | |
| 
 | |
|   const HexagonSubtarget &Subtarget = TM.getSubtarget<HexagonSubtarget>();
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
 | |
|   addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
 | |
| 
 | |
|   if (Subtarget.hasV5TOps()) {
 | |
|     addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
 | |
|     addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
 | |
|   }
 | |
| 
 | |
|   addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // Align loop entry
 | |
|   setPrefLoopAlignment(4);
 | |
| 
 | |
|   // Limits for inline expansion of memcpy/memmove
 | |
|   MaxStoresPerMemcpy = 6;
 | |
|   MaxStoresPerMemmove = 6;
 | |
| 
 | |
|   //
 | |
|   // Library calls for unsupported operations
 | |
|   //
 | |
| 
 | |
|   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
 | |
|   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
 | |
| 
 | |
|   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
 | |
|   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
 | |
| 
 | |
|   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
 | |
|   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
 | |
| 
 | |
|   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
 | |
|   setOperationAction(ISD::SDIV, MVT::i32, Expand);
 | |
|   setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
 | |
|   setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
 | |
|   setOperationAction(ISD::SDIV, MVT::i64, Expand);
 | |
|   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
 | |
|   setOperationAction(ISD::SREM, MVT::i64, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
 | |
|   setOperationAction(ISD::UDIV, MVT::i32, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
 | |
|   setOperationAction(ISD::UDIV, MVT::i64, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
 | |
|   setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
 | |
|   setOperationAction(ISD::UREM, MVT::i64, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
 | |
|   setOperationAction(ISD::FDIV, MVT::f32, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
 | |
|   setOperationAction(ISD::FDIV, MVT::f64, Expand);
 | |
| 
 | |
|   setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
 | |
|   setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
 | |
|   setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
 | |
| 
 | |
|   setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FSIN, MVT::f64, Expand);
 | |
| 
 | |
|   if (Subtarget.hasV5TOps()) {
 | |
|     // Hexagon V5 Support.
 | |
|     setOperationAction(ISD::FADD, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FADD, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSUB, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FSUB, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FMUL, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FP_EXTEND, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETOEQ, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETOEQ, MVT::f64, Legal);
 | |
|     setCondCodeAction(ISD::SETUEQ, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETUEQ, MVT::f64, Legal);
 | |
| 
 | |
|     setCondCodeAction(ISD::SETOGE, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETOGE, MVT::f64, Legal);
 | |
|     setCondCodeAction(ISD::SETUGE, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETUGE, MVT::f64, Legal);
 | |
| 
 | |
|     setCondCodeAction(ISD::SETOGT, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETOGT, MVT::f64, Legal);
 | |
|     setCondCodeAction(ISD::SETUGT, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETUGT, MVT::f64, Legal);
 | |
| 
 | |
|     setCondCodeAction(ISD::SETOLE, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETOLE, MVT::f64, Legal);
 | |
|     setCondCodeAction(ISD::SETOLT, MVT::f32, Legal);
 | |
|     setCondCodeAction(ISD::SETOLT, MVT::f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FABS, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FABS, MVT::f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FNEG, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FNEG, MVT::f64, Expand);
 | |
|   } else {
 | |
| 
 | |
|     // Expand fp<->uint.
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
 | |
| 
 | |
|     setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
 | |
| 
 | |
|     setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
 | |
| 
 | |
|     setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
 | |
| 
 | |
|     setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
 | |
| 
 | |
|     setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
 | |
| 
 | |
|     setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
 | |
| 
 | |
| 
 | |
|     setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
 | |
|     setOperationAction(ISD::FADD, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FADD, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
 | |
|     setOperationAction(ISD::FSUB, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FSUB, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
 | |
|     setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
 | |
|     setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
 | |
|     setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
 | |
|     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
 | |
|     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
 | |
|     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
 | |
|     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
 | |
|     setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
 | |
|     setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
 | |
|     setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
 | |
|     setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FMUL, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
 | |
|     setOperationAction(ISD::MUL, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
 | |
|     setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
 | |
| 
 | |
|     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
 | |
|     setOperationAction(ISD::SUB, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
 | |
|     setOperationAction(ISD::SUB, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
 | |
|     setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
 | |
|     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
 | |
|     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
 | |
|     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
 | |
| 
 | |
|     setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
 | |
|     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FABS, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FABS, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FNEG, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FNEG, MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
 | |
|   setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
| 
 | |
|   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
 | |
|   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
 | |
|   setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
 | |
|   setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);
 | |
| 
 | |
|   setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
 | |
|   setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
 | |
|   setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
 | |
|   setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);
 | |
| 
 | |
|   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
| 
 | |
|   // Turn FP extload into load/fextend.
 | |
|   for (MVT VT : MVT::fp_valuetypes())
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
 | |
|   // Hexagon has a i1 sign extending load.
 | |
|   for (MVT VT : MVT::integer_valuetypes())
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
 | |
|   // Turn FP truncstore into trunc + store.
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| 
 | |
|   // Custom legalize GlobalAddress nodes into CONST32.
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
 | |
|   // Truncate action?
 | |
|   setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);
 | |
| 
 | |
|   // Hexagon doesn't have sext_inreg, replace them with shl/sra.
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   // Hexagon has no REM or DIVREM operations.
 | |
|   setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
 | |
| 
 | |
|   // Lower SELECT_CC to SETCC and SELECT.
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
 | |
| 
 | |
|   if (Subtarget.hasV5TOps()) {
 | |
| 
 | |
|     // We need to make the operation type of SELECT node to be Custom,
 | |
|     // such that we don't go into the infinite loop of
 | |
|     // select ->  setcc -> select_cc -> select loop.
 | |
|     setOperationAction(ISD::SELECT, MVT::f32, Custom);
 | |
|     setOperationAction(ISD::SELECT, MVT::f64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
 | |
| 
 | |
|   } else {
 | |
| 
 | |
|     // Hexagon has no select or setcc: expand to SELECT_CC.
 | |
|     setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   if (EmitJumpTables) {
 | |
|     setOperationAction(ISD::BR_JT, MVT::Other, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | |
|   }
 | |
|   // Increase jump tables cutover to 5, was 4.
 | |
|   setMinimumJumpTableEntries(5);
 | |
| 
 | |
|   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::FSIN, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOS, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | |
| 
 | |
|   // In V4, we have double word add/sub with carry. The problem with
 | |
|   // modelling this instruction is that it produces 2 results - Rdd and Px.
 | |
|   // To model update of Px, we will have to use Defs[p0..p3] which will
 | |
|   // cause any predicate live range to spill. So, we pretend we dont't
 | |
|   // have these instructions.
 | |
|   setOperationAction(ISD::ADDE, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::ADDE, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::ADDE, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ADDE, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i64, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::CTLZ, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTLZ, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ROTL, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ROTR, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FPOW, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW, MVT::f32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
 | |
| 
 | |
|   if (Subtarget.isSubtargetV2()) {
 | |
|     setExceptionPointerRegister(Hexagon::R20);
 | |
|     setExceptionSelectorRegister(Hexagon::R21);
 | |
|   } else {
 | |
|     setExceptionPointerRegister(Hexagon::R0);
 | |
|     setExceptionSelectorRegister(Hexagon::R1);
 | |
|   }
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
 | |
| 
 | |
|   setMinFunctionAlignment(2);
 | |
| 
 | |
|   // Needed for DYNAMIC_STACKALLOC expansion.
 | |
|   const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
 | |
|       TM.getSubtargetImpl()->getRegisterInfo());
 | |
|   setStackPointerRegisterToSaveRestore(QRI->getStackRegister());
 | |
|   setSchedulingPreference(Sched::VLIW);
 | |
| }
 | |
| 
 | |
| const char*
 | |
| HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|     default: return nullptr;
 | |
|     case HexagonISD::CONST32:     return "HexagonISD::CONST32";
 | |
|     case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
 | |
|     case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real";
 | |
|     case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
 | |
|     case HexagonISD::CMPICC:      return "HexagonISD::CMPICC";
 | |
|     case HexagonISD::CMPFCC:      return "HexagonISD::CMPFCC";
 | |
|     case HexagonISD::BRICC:       return "HexagonISD::BRICC";
 | |
|     case HexagonISD::BRFCC:       return "HexagonISD::BRFCC";
 | |
|     case HexagonISD::SELECT_ICC:  return "HexagonISD::SELECT_ICC";
 | |
|     case HexagonISD::SELECT_FCC:  return "HexagonISD::SELECT_FCC";
 | |
|     case HexagonISD::Hi:          return "HexagonISD::Hi";
 | |
|     case HexagonISD::Lo:          return "HexagonISD::Lo";
 | |
|     case HexagonISD::FTOI:        return "HexagonISD::FTOI";
 | |
|     case HexagonISD::ITOF:        return "HexagonISD::ITOF";
 | |
|     case HexagonISD::CALLv3:      return "HexagonISD::CALLv3";
 | |
|     case HexagonISD::CALLv3nr:    return "HexagonISD::CALLv3nr";
 | |
|     case HexagonISD::CALLR:       return "HexagonISD::CALLR";
 | |
|     case HexagonISD::RET_FLAG:    return "HexagonISD::RET_FLAG";
 | |
|     case HexagonISD::BR_JT:       return "HexagonISD::BR_JT";
 | |
|     case HexagonISD::TC_RETURN:   return "HexagonISD::TC_RETURN";
 | |
|   case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|   EVT MTy1 = EVT::getEVT(Ty1);
 | |
|   EVT MTy2 = EVT::getEVT(Ty2);
 | |
|   if (!MTy1.isSimple() || !MTy2.isSimple()) {
 | |
|     return false;
 | |
|   }
 | |
|   return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
 | |
| }
 | |
| 
 | |
| bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|   if (!VT1.isSimple() || !VT2.isSimple()) {
 | |
|     return false;
 | |
|   }
 | |
|   return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
 | |
| }
 | |
| 
 | |
| bool
 | |
| HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
 | |
|   // Assuming the caller does not have either a signext or zeroext modifier, and
 | |
|   // only one value is accepted, any reasonable truncation is allowed.
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: in principle up to 64-bit could be made safe, but it would be very
 | |
|   // fragile at the moment: any support for multiple value returns would be
 | |
|   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
 | |
|   return Ty1->getPrimitiveSizeInBits() <= 32;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain     = Op.getOperand(0);
 | |
|   SDValue Offset    = Op.getOperand(1);
 | |
|   SDValue Handler   = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Mark function as containing a call to EH_RETURN.
 | |
|   HexagonMachineFunctionInfo *FuncInfo =
 | |
|     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
 | |
|   FuncInfo->setHasEHReturn();
 | |
| 
 | |
|   unsigned OffsetReg = Hexagon::R28;
 | |
| 
 | |
|   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                                   DAG.getRegister(Hexagon::R30, getPointerTy()),
 | |
|                                   DAG.getIntPtrConstant(4));
 | |
|   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
 | |
|                        false, false, 0);
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
 | |
| 
 | |
|   // Not needed we already use it as explict input to EH_RETURN.
 | |
|   // MF.getRegInfo().addLiveOut(OffsetReg);
 | |
| 
 | |
|   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|     default: llvm_unreachable("Should not custom lower this!");
 | |
|     case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|     case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
 | |
|       // Frame & Return address.  Currently unimplemented.
 | |
|     case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | |
|     case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | |
|     case ISD::GlobalTLSAddress:
 | |
|                           llvm_unreachable("TLS not implemented for Hexagon.");
 | |
|     case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
 | |
|     case ISD::GlobalAddress:      return LowerGLOBALADDRESS(Op, DAG);
 | |
|     case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | |
|     case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | |
|     case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
 | |
| 
 | |
|     case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|     case ISD::SELECT:             return Op;
 | |
|     case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|     case ISD::INLINEASM:          return LowerINLINEASM(Op, DAG);
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Hexagon Scheduler Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| MachineBasicBlock *
 | |
| HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                    MachineBasicBlock *BB)
 | |
| const {
 | |
|   switch (MI->getOpcode()) {
 | |
|     case Hexagon::ADJDYNALLOC: {
 | |
|       MachineFunction *MF = BB->getParent();
 | |
|       HexagonMachineFunctionInfo *FuncInfo =
 | |
|         MF->getInfo<HexagonMachineFunctionInfo>();
 | |
|       FuncInfo->addAllocaAdjustInst(MI);
 | |
|       return BB;
 | |
|     }
 | |
|     default: llvm_unreachable("Unexpected instr type to insert");
 | |
|   } // switch
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| HexagonTargetLowering::getRegForInlineAsmConstraint(const
 | |
|                                                     std::string &Constraint,
 | |
|                                                     MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'r':   // R0-R31
 | |
|        switch (VT.SimpleTy) {
 | |
|        default:
 | |
|          llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
 | |
|        case MVT::i32:
 | |
|        case MVT::i16:
 | |
|        case MVT::i8:
 | |
|        case MVT::f32:
 | |
|          return std::make_pair(0U, &Hexagon::IntRegsRegClass);
 | |
|        case MVT::i64:
 | |
|        case MVT::f64:
 | |
|          return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
 | |
|       }
 | |
|     default:
 | |
|       llvm_unreachable("Unknown asm register class");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| }
 | |
| 
 | |
| /// isFPImmLegal - Returns true if the target can instruction select the
 | |
| /// specified FP immediate natively. If false, the legalizer will
 | |
| /// materialize the FP immediate as a load from a constant pool.
 | |
| bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   return TM.getSubtarget<HexagonSubtarget>().hasV5TOps();
 | |
| }
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented by
 | |
| /// AM is legal for this target, for a load/store of the specified type.
 | |
| bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                                   Type *Ty) const {
 | |
|   // Allows a signed-extended 11-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   int Scale = AM.Scale;
 | |
|   if (Scale < 0) Scale = -Scale;
 | |
|   switch (Scale) {
 | |
|   case 0:  // No scale reg, "r+i", "r", or just "i".
 | |
|     break;
 | |
|   default: // No scaled addressing mode.
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal
 | |
| /// icmp immediate, that is the target has icmp instructions which can compare
 | |
| /// a register against the immediate without having to materialize the
 | |
| /// immediate into a register.
 | |
| bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   return Imm >= -512 && Imm <= 511;
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
 | |
|                                  SDValue Callee,
 | |
|                                  CallingConv::ID CalleeCC,
 | |
|                                  bool isVarArg,
 | |
|                                  bool isCalleeStructRet,
 | |
|                                  bool isCallerStructRet,
 | |
|                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                  const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                  const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                  SelectionDAG& DAG) const {
 | |
|   const Function *CallerF = DAG.getMachineFunction().getFunction();
 | |
|   CallingConv::ID CallerCC = CallerF->getCallingConv();
 | |
|   bool CCMatch = CallerCC == CalleeCC;
 | |
| 
 | |
|   // ***************************************************************************
 | |
|   //  Look for obvious safe cases to perform tail call optimization that do not
 | |
|   //  require ABI changes.
 | |
|   // ***************************************************************************
 | |
| 
 | |
|   // If this is a tail call via a function pointer, then don't do it!
 | |
|   if (!(dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|       && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do not optimize if the calling conventions do not match.
 | |
|   if (!CCMatch)
 | |
|     return false;
 | |
| 
 | |
|   // Do not tail call optimize vararg calls.
 | |
|   if (isVarArg)
 | |
|     return false;
 | |
| 
 | |
|   // Also avoid tail call optimization if either caller or callee uses struct
 | |
|   // return semantics.
 | |
|   if (isCalleeStructRet || isCallerStructRet)
 | |
|     return false;
 | |
| 
 | |
|   // In addition to the cases above, we also disable Tail Call Optimization if
 | |
|   // the calling convention code that at least one outgoing argument needs to
 | |
|   // go on the stack. We cannot check that here because at this point that
 | |
|   // information is not available.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return true when the given node fits in a positive half word.
 | |
| bool llvm::isPositiveHalfWord(SDNode *N) {
 | |
|   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | |
|   if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
 | |
|     return true;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     return true;
 | |
|   }
 | |
| }
 |