mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	1) DIContext is now able to return function name for a given instruction address (besides file/line info). 2) llvm-dwarfdump accepts flag --functions that prints the function name (if address is specified by --address flag). 3) test case that checks the basic functionality of llvm-dwarfdump added git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159512 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			225 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			225 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- DWARFDebugAranges.cpp -----------------------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "DWARFDebugAranges.h"
 | |
| #include "DWARFCompileUnit.h"
 | |
| #include "DWARFContext.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Compare function DWARFDebugAranges::Range structures
 | |
| static bool RangeLessThan(const DWARFDebugAranges::Range &range1,
 | |
|                           const DWARFDebugAranges::Range &range2) {
 | |
|   return range1.LoPC < range2.LoPC;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class CountArangeDescriptors {
 | |
|   public:
 | |
|     CountArangeDescriptors(uint32_t &count_ref) : Count(count_ref) {}
 | |
|     void operator()(const DWARFDebugArangeSet &set) {
 | |
|       Count += set.getNumDescriptors();
 | |
|     }
 | |
|     uint32_t &Count;
 | |
|   };
 | |
| 
 | |
|   class AddArangeDescriptors {
 | |
|   public:
 | |
|     AddArangeDescriptors(DWARFDebugAranges::RangeColl &ranges)
 | |
|       : RangeCollection(ranges) {}
 | |
|     void operator()(const DWARFDebugArangeSet& set) {
 | |
|       const DWARFDebugArangeSet::Descriptor* arange_desc_ptr;
 | |
|       DWARFDebugAranges::Range range;
 | |
|       range.Offset = set.getCompileUnitDIEOffset();
 | |
| 
 | |
|       for (uint32_t i=0; (arange_desc_ptr = set.getDescriptor(i)) != NULL; ++i){
 | |
|         range.LoPC = arange_desc_ptr->Address;
 | |
|         range.Length = arange_desc_ptr->Length;
 | |
| 
 | |
|         // Insert each item in increasing address order so binary searching
 | |
|         // can later be done!
 | |
|         DWARFDebugAranges::RangeColl::iterator insert_pos =
 | |
|           std::lower_bound(RangeCollection.begin(), RangeCollection.end(),
 | |
|                            range, RangeLessThan);
 | |
|         RangeCollection.insert(insert_pos, range);
 | |
|       }
 | |
|     }
 | |
|     DWARFDebugAranges::RangeColl& RangeCollection;
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool DWARFDebugAranges::extract(DataExtractor debug_aranges_data) {
 | |
|   if (debug_aranges_data.isValidOffset(0)) {
 | |
|     uint32_t offset = 0;
 | |
| 
 | |
|     typedef std::vector<DWARFDebugArangeSet> SetCollection;
 | |
|     typedef SetCollection::const_iterator SetCollectionIter;
 | |
|     SetCollection sets;
 | |
| 
 | |
|     DWARFDebugArangeSet set;
 | |
|     Range range;
 | |
|     while (set.extract(debug_aranges_data, &offset))
 | |
|       sets.push_back(set);
 | |
| 
 | |
|     uint32_t count = 0;
 | |
| 
 | |
|     std::for_each(sets.begin(), sets.end(), CountArangeDescriptors(count));
 | |
| 
 | |
|     if (count > 0) {
 | |
|       Aranges.reserve(count);
 | |
|       AddArangeDescriptors range_adder(Aranges);
 | |
|       std::for_each(sets.begin(), sets.end(), range_adder);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool DWARFDebugAranges::generate(DWARFContext *ctx) {
 | |
|   clear();
 | |
|   if (ctx) {
 | |
|     const uint32_t num_compile_units = ctx->getNumCompileUnits();
 | |
|     for (uint32_t cu_idx = 0; cu_idx < num_compile_units; ++cu_idx) {
 | |
|       DWARFCompileUnit *cu = ctx->getCompileUnitAtIndex(cu_idx);
 | |
|       if (cu)
 | |
|         cu->buildAddressRangeTable(this, true);
 | |
|     }
 | |
|   }
 | |
|   sort(true, /* overlap size */ 0);
 | |
|   return !isEmpty();
 | |
| }
 | |
| 
 | |
| void DWARFDebugAranges::dump(raw_ostream &OS) const {
 | |
|   const uint32_t num_ranges = getNumRanges();
 | |
|   for (uint32_t i = 0; i < num_ranges; ++i) {
 | |
|     const Range &range = Aranges[i];
 | |
|     OS << format("0x%8.8x: [0x%8.8" PRIx64 " - 0x%8.8" PRIx64 ")\n",
 | |
|                  range.Offset, (uint64_t)range.LoPC, (uint64_t)range.HiPC());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DWARFDebugAranges::Range::dump(raw_ostream &OS) const {
 | |
|   OS << format("{0x%8.8x}: [0x%8.8" PRIx64 " - 0x%8.8" PRIx64 ")\n",
 | |
|                Offset, LoPC, HiPC());
 | |
| }
 | |
| 
 | |
| void DWARFDebugAranges::appendRange(uint32_t offset, uint64_t low_pc,
 | |
|                                     uint64_t high_pc) {
 | |
|   if (!Aranges.empty()) {
 | |
|     if (Aranges.back().Offset == offset && Aranges.back().HiPC() == low_pc) {
 | |
|       Aranges.back().setHiPC(high_pc);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   Aranges.push_back(Range(low_pc, high_pc, offset));
 | |
| }
 | |
| 
 | |
| void DWARFDebugAranges::sort(bool minimize, uint32_t n) {
 | |
|   const size_t orig_arange_size = Aranges.size();
 | |
|   // Size of one? If so, no sorting is needed
 | |
|   if (orig_arange_size <= 1)
 | |
|     return;
 | |
|   // Sort our address range entries
 | |
|   std::stable_sort(Aranges.begin(), Aranges.end(), RangeLessThan);
 | |
| 
 | |
|   if (!minimize)
 | |
|     return;
 | |
| 
 | |
|   // Most address ranges are contiguous from function to function
 | |
|   // so our new ranges will likely be smaller. We calculate the size
 | |
|   // of the new ranges since although std::vector objects can be resized,
 | |
|   // the will never reduce their allocated block size and free any excesss
 | |
|   // memory, so we might as well start a brand new collection so it is as
 | |
|   // small as possible.
 | |
| 
 | |
|   // First calculate the size of the new minimal arange vector
 | |
|   // so we don't have to do a bunch of re-allocations as we
 | |
|   // copy the new minimal stuff over to the new collection.
 | |
|   size_t minimal_size = 1;
 | |
|   for (size_t i = 1; i < orig_arange_size; ++i) {
 | |
|     if (!Range::SortedOverlapCheck(Aranges[i-1], Aranges[i], n))
 | |
|       ++minimal_size;
 | |
|   }
 | |
| 
 | |
|   // If the sizes are the same, then no consecutive aranges can be
 | |
|   // combined, we are done.
 | |
|   if (minimal_size == orig_arange_size)
 | |
|     return;
 | |
| 
 | |
|   // Else, make a new RangeColl that _only_ contains what we need.
 | |
|   RangeColl minimal_aranges;
 | |
|   minimal_aranges.resize(minimal_size);
 | |
|   uint32_t j = 0;
 | |
|   minimal_aranges[j] = Aranges[0];
 | |
|   for (size_t i = 1; i < orig_arange_size; ++i) {
 | |
|     if(Range::SortedOverlapCheck (minimal_aranges[j], Aranges[i], n)) {
 | |
|       minimal_aranges[j].setHiPC (Aranges[i].HiPC());
 | |
|     } else {
 | |
|       // Only increment j if we aren't merging
 | |
|       minimal_aranges[++j] = Aranges[i];
 | |
|     }
 | |
|   }
 | |
|   assert (j+1 == minimal_size);
 | |
| 
 | |
|   // Now swap our new minimal aranges into place. The local
 | |
|   // minimal_aranges will then contian the old big collection
 | |
|   // which will get freed.
 | |
|   minimal_aranges.swap(Aranges);
 | |
| }
 | |
| 
 | |
| uint32_t DWARFDebugAranges::findAddress(uint64_t address) const {
 | |
|   if (!Aranges.empty()) {
 | |
|     Range range(address);
 | |
|     RangeCollIterator begin = Aranges.begin();
 | |
|     RangeCollIterator end = Aranges.end();
 | |
|     RangeCollIterator pos = lower_bound(begin, end, range, RangeLessThan);
 | |
| 
 | |
|     if (pos != end && pos->LoPC <= address && address < pos->HiPC()) {
 | |
|       return pos->Offset;
 | |
|     } else if (pos != begin) {
 | |
|       --pos;
 | |
|       if (pos->LoPC <= address && address < pos->HiPC())
 | |
|         return (*pos).Offset;
 | |
|     }
 | |
|   }
 | |
|   return -1U;
 | |
| }
 | |
| 
 | |
| bool
 | |
| DWARFDebugAranges::allRangesAreContiguous(uint64_t &LoPC, uint64_t &HiPC) const{
 | |
|   if (Aranges.empty())
 | |
|     return false;
 | |
| 
 | |
|   uint64_t next_addr = 0;
 | |
|   RangeCollIterator begin = Aranges.begin();
 | |
|   for (RangeCollIterator pos = begin, end = Aranges.end(); pos != end;
 | |
|        ++pos) {
 | |
|     if (pos != begin && pos->LoPC != next_addr)
 | |
|       return false;
 | |
|     next_addr = pos->HiPC();
 | |
|   }
 | |
|   // We checked for empty at the start of function so front() will be valid.
 | |
|   LoPC = Aranges.front().LoPC;
 | |
|   // We checked for empty at the start of function so back() will be valid.
 | |
|   HiPC = Aranges.back().HiPC();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DWARFDebugAranges::getMaxRange(uint64_t &LoPC, uint64_t &HiPC) const {
 | |
|   if (Aranges.empty())
 | |
|     return false;
 | |
|   // We checked for empty at the start of function so front() will be valid.
 | |
|   LoPC = Aranges.front().LoPC;
 | |
|   // We checked for empty at the start of function so back() will be valid.
 | |
|   HiPC = Aranges.back().HiPC();
 | |
|   return true;
 | |
| }
 |