mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137664 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			905 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstCombinePHI.cpp -------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visitPHINode function.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
 | 
						|
/// and if a/b/c and the add's all have a single use, turn this into a phi
 | 
						|
/// and a single binop.
 | 
						|
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
 | 
						|
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | 
						|
  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
 | 
						|
  unsigned Opc = FirstInst->getOpcode();
 | 
						|
  Value *LHSVal = FirstInst->getOperand(0);
 | 
						|
  Value *RHSVal = FirstInst->getOperand(1);
 | 
						|
    
 | 
						|
  Type *LHSType = LHSVal->getType();
 | 
						|
  Type *RHSType = RHSVal->getType();
 | 
						|
  
 | 
						|
  bool isNUW = false, isNSW = false, isExact = false;
 | 
						|
  if (OverflowingBinaryOperator *BO =
 | 
						|
        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
 | 
						|
    isNUW = BO->hasNoUnsignedWrap();
 | 
						|
    isNSW = BO->hasNoSignedWrap();
 | 
						|
  } else if (PossiblyExactOperator *PEO =
 | 
						|
               dyn_cast<PossiblyExactOperator>(FirstInst))
 | 
						|
    isExact = PEO->isExact();
 | 
						|
  
 | 
						|
  // Scan to see if all operands are the same opcode, and all have one use.
 | 
						|
  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
 | 
						|
    if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
 | 
						|
        // Verify type of the LHS matches so we don't fold cmp's of different
 | 
						|
        // types.
 | 
						|
        I->getOperand(0)->getType() != LHSType ||
 | 
						|
        I->getOperand(1)->getType() != RHSType)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // If they are CmpInst instructions, check their predicates
 | 
						|
    if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
      if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
 | 
						|
        return 0;
 | 
						|
    
 | 
						|
    if (isNUW)
 | 
						|
      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
 | 
						|
    if (isNSW)
 | 
						|
      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
 | 
						|
    if (isExact)
 | 
						|
      isExact = cast<PossiblyExactOperator>(I)->isExact();
 | 
						|
    
 | 
						|
    // Keep track of which operand needs a phi node.
 | 
						|
    if (I->getOperand(0) != LHSVal) LHSVal = 0;
 | 
						|
    if (I->getOperand(1) != RHSVal) RHSVal = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If both LHS and RHS would need a PHI, don't do this transformation,
 | 
						|
  // because it would increase the number of PHIs entering the block,
 | 
						|
  // which leads to higher register pressure. This is especially
 | 
						|
  // bad when the PHIs are in the header of a loop.
 | 
						|
  if (!LHSVal && !RHSVal)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Otherwise, this is safe to transform!
 | 
						|
  
 | 
						|
  Value *InLHS = FirstInst->getOperand(0);
 | 
						|
  Value *InRHS = FirstInst->getOperand(1);
 | 
						|
  PHINode *NewLHS = 0, *NewRHS = 0;
 | 
						|
  if (LHSVal == 0) {
 | 
						|
    NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
 | 
						|
                             FirstInst->getOperand(0)->getName() + ".pn");
 | 
						|
    NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
 | 
						|
    InsertNewInstBefore(NewLHS, PN);
 | 
						|
    LHSVal = NewLHS;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (RHSVal == 0) {
 | 
						|
    NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
 | 
						|
                             FirstInst->getOperand(1)->getName() + ".pn");
 | 
						|
    NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
 | 
						|
    InsertNewInstBefore(NewRHS, PN);
 | 
						|
    RHSVal = NewRHS;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add all operands to the new PHIs.
 | 
						|
  if (NewLHS || NewRHS) {
 | 
						|
    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
 | 
						|
      if (NewLHS) {
 | 
						|
        Value *NewInLHS = InInst->getOperand(0);
 | 
						|
        NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
 | 
						|
      }
 | 
						|
      if (NewRHS) {
 | 
						|
        Value *NewInRHS = InInst->getOperand(1);
 | 
						|
        NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
 | 
						|
    CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
 | 
						|
                                     LHSVal, RHSVal);
 | 
						|
    NewCI->setDebugLoc(FirstInst->getDebugLoc());
 | 
						|
    return NewCI;
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
 | 
						|
  BinaryOperator *NewBinOp =
 | 
						|
    BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
 | 
						|
  if (isNUW) NewBinOp->setHasNoUnsignedWrap();
 | 
						|
  if (isNSW) NewBinOp->setHasNoSignedWrap();
 | 
						|
  if (isExact) NewBinOp->setIsExact();
 | 
						|
  NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
 | 
						|
  return NewBinOp;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
 | 
						|
  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
 | 
						|
  
 | 
						|
  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 
 | 
						|
                                        FirstInst->op_end());
 | 
						|
  // This is true if all GEP bases are allocas and if all indices into them are
 | 
						|
  // constants.
 | 
						|
  bool AllBasePointersAreAllocas = true;
 | 
						|
 | 
						|
  // We don't want to replace this phi if the replacement would require
 | 
						|
  // more than one phi, which leads to higher register pressure. This is
 | 
						|
  // especially bad when the PHIs are in the header of a loop.
 | 
						|
  bool NeededPhi = false;
 | 
						|
  
 | 
						|
  bool AllInBounds = true;
 | 
						|
  
 | 
						|
  // Scan to see if all operands are the same opcode, and all have one use.
 | 
						|
  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
 | 
						|
    GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
 | 
						|
    if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
 | 
						|
      GEP->getNumOperands() != FirstInst->getNumOperands())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    AllInBounds &= GEP->isInBounds();
 | 
						|
    
 | 
						|
    // Keep track of whether or not all GEPs are of alloca pointers.
 | 
						|
    if (AllBasePointersAreAllocas &&
 | 
						|
        (!isa<AllocaInst>(GEP->getOperand(0)) ||
 | 
						|
         !GEP->hasAllConstantIndices()))
 | 
						|
      AllBasePointersAreAllocas = false;
 | 
						|
    
 | 
						|
    // Compare the operand lists.
 | 
						|
    for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
 | 
						|
      if (FirstInst->getOperand(op) == GEP->getOperand(op))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Don't merge two GEPs when two operands differ (introducing phi nodes)
 | 
						|
      // if one of the PHIs has a constant for the index.  The index may be
 | 
						|
      // substantially cheaper to compute for the constants, so making it a
 | 
						|
      // variable index could pessimize the path.  This also handles the case
 | 
						|
      // for struct indices, which must always be constant.
 | 
						|
      if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
 | 
						|
          isa<ConstantInt>(GEP->getOperand(op)))
 | 
						|
        return 0;
 | 
						|
      
 | 
						|
      if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // If we already needed a PHI for an earlier operand, and another operand
 | 
						|
      // also requires a PHI, we'd be introducing more PHIs than we're
 | 
						|
      // eliminating, which increases register pressure on entry to the PHI's
 | 
						|
      // block.
 | 
						|
      if (NeededPhi)
 | 
						|
        return 0;
 | 
						|
 | 
						|
      FixedOperands[op] = 0;  // Needs a PHI.
 | 
						|
      NeededPhi = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
 | 
						|
  // bother doing this transformation.  At best, this will just save a bit of
 | 
						|
  // offset calculation, but all the predecessors will have to materialize the
 | 
						|
  // stack address into a register anyway.  We'd actually rather *clone* the
 | 
						|
  // load up into the predecessors so that we have a load of a gep of an alloca,
 | 
						|
  // which can usually all be folded into the load.
 | 
						|
  if (AllBasePointersAreAllocas)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
 | 
						|
  // that is variable.
 | 
						|
  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
 | 
						|
  
 | 
						|
  bool HasAnyPHIs = false;
 | 
						|
  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
 | 
						|
    if (FixedOperands[i]) continue;  // operand doesn't need a phi.
 | 
						|
    Value *FirstOp = FirstInst->getOperand(i);
 | 
						|
    PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
 | 
						|
                                     FirstOp->getName()+".pn");
 | 
						|
    InsertNewInstBefore(NewPN, PN);
 | 
						|
    
 | 
						|
    NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
 | 
						|
    OperandPhis[i] = NewPN;
 | 
						|
    FixedOperands[i] = NewPN;
 | 
						|
    HasAnyPHIs = true;
 | 
						|
  }
 | 
						|
 | 
						|
  
 | 
						|
  // Add all operands to the new PHIs.
 | 
						|
  if (HasAnyPHIs) {
 | 
						|
    for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
      GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
 | 
						|
      BasicBlock *InBB = PN.getIncomingBlock(i);
 | 
						|
      
 | 
						|
      for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
 | 
						|
        if (PHINode *OpPhi = OperandPhis[op])
 | 
						|
          OpPhi->addIncoming(InGEP->getOperand(op), InBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Value *Base = FixedOperands[0];
 | 
						|
  GetElementPtrInst *NewGEP = 
 | 
						|
    GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
 | 
						|
  if (AllInBounds) NewGEP->setIsInBounds();
 | 
						|
  NewGEP->setDebugLoc(FirstInst->getDebugLoc());
 | 
						|
  return NewGEP;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
 | 
						|
/// sink the load out of the block that defines it.  This means that it must be
 | 
						|
/// obvious the value of the load is not changed from the point of the load to
 | 
						|
/// the end of the block it is in.
 | 
						|
///
 | 
						|
/// Finally, it is safe, but not profitable, to sink a load targeting a
 | 
						|
/// non-address-taken alloca.  Doing so will cause us to not promote the alloca
 | 
						|
/// to a register.
 | 
						|
static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
 | 
						|
  BasicBlock::iterator BBI = L, E = L->getParent()->end();
 | 
						|
  
 | 
						|
  for (++BBI; BBI != E; ++BBI)
 | 
						|
    if (BBI->mayWriteToMemory())
 | 
						|
      return false;
 | 
						|
  
 | 
						|
  // Check for non-address taken alloca.  If not address-taken already, it isn't
 | 
						|
  // profitable to do this xform.
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
 | 
						|
    bool isAddressTaken = false;
 | 
						|
    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      User *U = *UI;
 | 
						|
      if (isa<LoadInst>(U)) continue;
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | 
						|
        // If storing TO the alloca, then the address isn't taken.
 | 
						|
        if (SI->getOperand(1) == AI) continue;
 | 
						|
      }
 | 
						|
      isAddressTaken = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!isAddressTaken && AI->isStaticAlloca())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this load is a load from a GEP with a constant offset from an alloca,
 | 
						|
  // then we don't want to sink it.  In its present form, it will be
 | 
						|
  // load [constant stack offset].  Sinking it will cause us to have to
 | 
						|
  // materialize the stack addresses in each predecessor in a register only to
 | 
						|
  // do a shared load from register in the successor.
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
 | 
						|
      if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
 | 
						|
        return false;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
 | 
						|
  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
 | 
						|
 | 
						|
  // FIXME: This is overconservative; this transform is allowed in some cases
 | 
						|
  // for atomic operations.
 | 
						|
  if (FirstLI->isAtomic())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // When processing loads, we need to propagate two bits of information to the
 | 
						|
  // sunk load: whether it is volatile, and what its alignment is.  We currently
 | 
						|
  // don't sink loads when some have their alignment specified and some don't.
 | 
						|
  // visitLoadInst will propagate an alignment onto the load when TD is around,
 | 
						|
  // and if TD isn't around, we can't handle the mixed case.
 | 
						|
  bool isVolatile = FirstLI->isVolatile();
 | 
						|
  unsigned LoadAlignment = FirstLI->getAlignment();
 | 
						|
  unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
 | 
						|
  
 | 
						|
  // We can't sink the load if the loaded value could be modified between the
 | 
						|
  // load and the PHI.
 | 
						|
  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
 | 
						|
      !isSafeAndProfitableToSinkLoad(FirstLI))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // If the PHI is of volatile loads and the load block has multiple
 | 
						|
  // successors, sinking it would remove a load of the volatile value from
 | 
						|
  // the path through the other successor.
 | 
						|
  if (isVolatile && 
 | 
						|
      FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Check to see if all arguments are the same operation.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
 | 
						|
    if (!LI || !LI->hasOneUse())
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    // We can't sink the load if the loaded value could be modified between 
 | 
						|
    // the load and the PHI.
 | 
						|
    if (LI->isVolatile() != isVolatile ||
 | 
						|
        LI->getParent() != PN.getIncomingBlock(i) ||
 | 
						|
        LI->getPointerAddressSpace() != LoadAddrSpace ||
 | 
						|
        !isSafeAndProfitableToSinkLoad(LI))
 | 
						|
      return 0;
 | 
						|
      
 | 
						|
    // If some of the loads have an alignment specified but not all of them,
 | 
						|
    // we can't do the transformation.
 | 
						|
    if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
 | 
						|
    
 | 
						|
    // If the PHI is of volatile loads and the load block has multiple
 | 
						|
    // successors, sinking it would remove a load of the volatile value from
 | 
						|
    // the path through the other successor.
 | 
						|
    if (isVolatile &&
 | 
						|
        LI->getParent()->getTerminator()->getNumSuccessors() != 1)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Okay, they are all the same operation.  Create a new PHI node of the
 | 
						|
  // correct type, and PHI together all of the LHS's of the instructions.
 | 
						|
  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
 | 
						|
                                   PN.getNumIncomingValues(),
 | 
						|
                                   PN.getName()+".in");
 | 
						|
  
 | 
						|
  Value *InVal = FirstLI->getOperand(0);
 | 
						|
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | 
						|
  
 | 
						|
  // Add all operands to the new PHI.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
 | 
						|
    if (NewInVal != InVal)
 | 
						|
      InVal = 0;
 | 
						|
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | 
						|
  }
 | 
						|
  
 | 
						|
  Value *PhiVal;
 | 
						|
  if (InVal) {
 | 
						|
    // The new PHI unions all of the same values together.  This is really
 | 
						|
    // common, so we handle it intelligently here for compile-time speed.
 | 
						|
    PhiVal = InVal;
 | 
						|
    delete NewPN;
 | 
						|
  } else {
 | 
						|
    InsertNewInstBefore(NewPN, PN);
 | 
						|
    PhiVal = NewPN;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this was a volatile load that we are merging, make sure to loop through
 | 
						|
  // and mark all the input loads as non-volatile.  If we don't do this, we will
 | 
						|
  // insert a new volatile load and the old ones will not be deletable.
 | 
						|
  if (isVolatile)
 | 
						|
    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | 
						|
      cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
 | 
						|
  
 | 
						|
  LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
 | 
						|
  NewLI->setDebugLoc(FirstLI->getDebugLoc());
 | 
						|
  return NewLI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | 
						|
/// operator and they all are only used by the PHI, PHI together their
 | 
						|
/// inputs, and do the operation once, to the result of the PHI.
 | 
						|
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
 | 
						|
  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | 
						|
 | 
						|
  if (isa<GetElementPtrInst>(FirstInst))
 | 
						|
    return FoldPHIArgGEPIntoPHI(PN);
 | 
						|
  if (isa<LoadInst>(FirstInst))
 | 
						|
    return FoldPHIArgLoadIntoPHI(PN);
 | 
						|
  
 | 
						|
  // Scan the instruction, looking for input operations that can be folded away.
 | 
						|
  // If all input operands to the phi are the same instruction (e.g. a cast from
 | 
						|
  // the same type or "+42") we can pull the operation through the PHI, reducing
 | 
						|
  // code size and simplifying code.
 | 
						|
  Constant *ConstantOp = 0;
 | 
						|
  Type *CastSrcTy = 0;
 | 
						|
  bool isNUW = false, isNSW = false, isExact = false;
 | 
						|
  
 | 
						|
  if (isa<CastInst>(FirstInst)) {
 | 
						|
    CastSrcTy = FirstInst->getOperand(0)->getType();
 | 
						|
 | 
						|
    // Be careful about transforming integer PHIs.  We don't want to pessimize
 | 
						|
    // the code by turning an i32 into an i1293.
 | 
						|
    if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
 | 
						|
      if (!ShouldChangeType(PN.getType(), CastSrcTy))
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
 | 
						|
    // Can fold binop, compare or shift here if the RHS is a constant, 
 | 
						|
    // otherwise call FoldPHIArgBinOpIntoPHI.
 | 
						|
    ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
 | 
						|
    if (ConstantOp == 0)
 | 
						|
      return FoldPHIArgBinOpIntoPHI(PN);
 | 
						|
    
 | 
						|
    if (OverflowingBinaryOperator *BO =
 | 
						|
        dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
 | 
						|
      isNUW = BO->hasNoUnsignedWrap();
 | 
						|
      isNSW = BO->hasNoSignedWrap();
 | 
						|
    } else if (PossiblyExactOperator *PEO =
 | 
						|
               dyn_cast<PossiblyExactOperator>(FirstInst))
 | 
						|
      isExact = PEO->isExact();
 | 
						|
  } else {
 | 
						|
    return 0;  // Cannot fold this operation.
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if all arguments are the same operation.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
 | 
						|
    if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
 | 
						|
      return 0;
 | 
						|
    if (CastSrcTy) {
 | 
						|
      if (I->getOperand(0)->getType() != CastSrcTy)
 | 
						|
        return 0;  // Cast operation must match.
 | 
						|
    } else if (I->getOperand(1) != ConstantOp) {
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (isNUW)
 | 
						|
      isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
 | 
						|
    if (isNSW)
 | 
						|
      isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
 | 
						|
    if (isExact)
 | 
						|
      isExact = cast<PossiblyExactOperator>(I)->isExact();
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, they are all the same operation.  Create a new PHI node of the
 | 
						|
  // correct type, and PHI together all of the LHS's of the instructions.
 | 
						|
  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
 | 
						|
                                   PN.getNumIncomingValues(),
 | 
						|
                                   PN.getName()+".in");
 | 
						|
 | 
						|
  Value *InVal = FirstInst->getOperand(0);
 | 
						|
  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | 
						|
 | 
						|
  // Add all operands to the new PHI.
 | 
						|
  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | 
						|
    if (NewInVal != InVal)
 | 
						|
      InVal = 0;
 | 
						|
    NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | 
						|
  }
 | 
						|
 | 
						|
  Value *PhiVal;
 | 
						|
  if (InVal) {
 | 
						|
    // The new PHI unions all of the same values together.  This is really
 | 
						|
    // common, so we handle it intelligently here for compile-time speed.
 | 
						|
    PhiVal = InVal;
 | 
						|
    delete NewPN;
 | 
						|
  } else {
 | 
						|
    InsertNewInstBefore(NewPN, PN);
 | 
						|
    PhiVal = NewPN;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert and return the new operation.
 | 
						|
  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
 | 
						|
    CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
 | 
						|
                                       PN.getType());
 | 
						|
    NewCI->setDebugLoc(FirstInst->getDebugLoc());
 | 
						|
    return NewCI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
 | 
						|
    BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
 | 
						|
    if (isNUW) BinOp->setHasNoUnsignedWrap();
 | 
						|
    if (isNSW) BinOp->setHasNoSignedWrap();
 | 
						|
    if (isExact) BinOp->setIsExact();
 | 
						|
    BinOp->setDebugLoc(FirstInst->getDebugLoc());
 | 
						|
    return BinOp;
 | 
						|
  }
 | 
						|
  
 | 
						|
  CmpInst *CIOp = cast<CmpInst>(FirstInst);
 | 
						|
  CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
 | 
						|
                                   PhiVal, ConstantOp);
 | 
						|
  NewCI->setDebugLoc(FirstInst->getDebugLoc());
 | 
						|
  return NewCI;
 | 
						|
}
 | 
						|
 | 
						|
/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
 | 
						|
/// that is dead.
 | 
						|
static bool DeadPHICycle(PHINode *PN,
 | 
						|
                         SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
 | 
						|
  if (PN->use_empty()) return true;
 | 
						|
  if (!PN->hasOneUse()) return false;
 | 
						|
 | 
						|
  // Remember this node, and if we find the cycle, return.
 | 
						|
  if (!PotentiallyDeadPHIs.insert(PN))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Don't scan crazily complex things.
 | 
						|
  if (PotentiallyDeadPHIs.size() == 16)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
 | 
						|
    return DeadPHICycle(PU, PotentiallyDeadPHIs);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PHIsEqualValue - Return true if this phi node is always equal to
 | 
						|
/// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
 | 
						|
///   z = some value; x = phi (y, z); y = phi (x, z)
 | 
						|
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 
 | 
						|
                           SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
 | 
						|
  // See if we already saw this PHI node.
 | 
						|
  if (!ValueEqualPHIs.insert(PN))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Don't scan crazily complex things.
 | 
						|
  if (ValueEqualPHIs.size() == 16)
 | 
						|
    return false;
 | 
						|
 
 | 
						|
  // Scan the operands to see if they are either phi nodes or are equal to
 | 
						|
  // the value.
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *Op = PN->getIncomingValue(i);
 | 
						|
    if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
 | 
						|
      if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
 | 
						|
        return false;
 | 
						|
    } else if (Op != NonPhiInVal)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
struct PHIUsageRecord {
 | 
						|
  unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
 | 
						|
  unsigned Shift;     // The amount shifted.
 | 
						|
  Instruction *Inst;  // The trunc instruction.
 | 
						|
  
 | 
						|
  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
 | 
						|
    : PHIId(pn), Shift(Sh), Inst(User) {}
 | 
						|
  
 | 
						|
  bool operator<(const PHIUsageRecord &RHS) const {
 | 
						|
    if (PHIId < RHS.PHIId) return true;
 | 
						|
    if (PHIId > RHS.PHIId) return false;
 | 
						|
    if (Shift < RHS.Shift) return true;
 | 
						|
    if (Shift > RHS.Shift) return false;
 | 
						|
    return Inst->getType()->getPrimitiveSizeInBits() <
 | 
						|
           RHS.Inst->getType()->getPrimitiveSizeInBits();
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
struct LoweredPHIRecord {
 | 
						|
  PHINode *PN;        // The PHI that was lowered.
 | 
						|
  unsigned Shift;     // The amount shifted.
 | 
						|
  unsigned Width;     // The width extracted.
 | 
						|
  
 | 
						|
  LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
 | 
						|
    : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
 | 
						|
  
 | 
						|
  // Ctor form used by DenseMap.
 | 
						|
  LoweredPHIRecord(PHINode *pn, unsigned Sh)
 | 
						|
    : PN(pn), Shift(Sh), Width(0) {}
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct DenseMapInfo<LoweredPHIRecord> {
 | 
						|
    static inline LoweredPHIRecord getEmptyKey() {
 | 
						|
      return LoweredPHIRecord(0, 0);
 | 
						|
    }
 | 
						|
    static inline LoweredPHIRecord getTombstoneKey() {
 | 
						|
      return LoweredPHIRecord(0, 1);
 | 
						|
    }
 | 
						|
    static unsigned getHashValue(const LoweredPHIRecord &Val) {
 | 
						|
      return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
 | 
						|
             (Val.Width>>3);
 | 
						|
    }
 | 
						|
    static bool isEqual(const LoweredPHIRecord &LHS,
 | 
						|
                        const LoweredPHIRecord &RHS) {
 | 
						|
      return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
 | 
						|
             LHS.Width == RHS.Width;
 | 
						|
    }
 | 
						|
  };
 | 
						|
  template <>
 | 
						|
  struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
 | 
						|
/// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If
 | 
						|
/// so, we split the PHI into the various pieces being extracted.  This sort of
 | 
						|
/// thing is introduced when SROA promotes an aggregate to large integer values.
 | 
						|
///
 | 
						|
/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
 | 
						|
/// inttoptr.  We should produce new PHIs in the right type.
 | 
						|
///
 | 
						|
Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
 | 
						|
  // PHIUsers - Keep track of all of the truncated values extracted from a set
 | 
						|
  // of PHIs, along with their offset.  These are the things we want to rewrite.
 | 
						|
  SmallVector<PHIUsageRecord, 16> PHIUsers;
 | 
						|
  
 | 
						|
  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
 | 
						|
  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
 | 
						|
  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
 | 
						|
  // check the uses of (to ensure they are all extracts).
 | 
						|
  SmallVector<PHINode*, 8> PHIsToSlice;
 | 
						|
  SmallPtrSet<PHINode*, 8> PHIsInspected;
 | 
						|
  
 | 
						|
  PHIsToSlice.push_back(&FirstPhi);
 | 
						|
  PHIsInspected.insert(&FirstPhi);
 | 
						|
  
 | 
						|
  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
 | 
						|
    PHINode *PN = PHIsToSlice[PHIId];
 | 
						|
    
 | 
						|
    // Scan the input list of the PHI.  If any input is an invoke, and if the
 | 
						|
    // input is defined in the predecessor, then we won't be split the critical
 | 
						|
    // edge which is required to insert a truncate.  Because of this, we have to
 | 
						|
    // bail out.
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
 | 
						|
      if (II == 0) continue;
 | 
						|
      if (II->getParent() != PN->getIncomingBlock(i))
 | 
						|
        continue;
 | 
						|
     
 | 
						|
      // If we have a phi, and if it's directly in the predecessor, then we have
 | 
						|
      // a critical edge where we need to put the truncate.  Since we can't
 | 
						|
      // split the edge in instcombine, we have to bail out.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
      
 | 
						|
    
 | 
						|
    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      Instruction *User = cast<Instruction>(*UI);
 | 
						|
      
 | 
						|
      // If the user is a PHI, inspect its uses recursively.
 | 
						|
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
        if (PHIsInspected.insert(UserPN))
 | 
						|
          PHIsToSlice.push_back(UserPN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Truncates are always ok.
 | 
						|
      if (isa<TruncInst>(User)) {
 | 
						|
        PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Otherwise it must be a lshr which can only be used by one trunc.
 | 
						|
      if (User->getOpcode() != Instruction::LShr ||
 | 
						|
          !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
 | 
						|
          !isa<ConstantInt>(User->getOperand(1)))
 | 
						|
        return 0;
 | 
						|
      
 | 
						|
      unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
 | 
						|
      PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have no users, they must be all self uses, just nuke the PHI.
 | 
						|
  if (PHIUsers.empty())
 | 
						|
    return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
 | 
						|
  
 | 
						|
  // If this phi node is transformable, create new PHIs for all the pieces
 | 
						|
  // extracted out of it.  First, sort the users by their offset and size.
 | 
						|
  array_pod_sort(PHIUsers.begin(), PHIUsers.end());
 | 
						|
  
 | 
						|
  DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
 | 
						|
            for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
 | 
						|
              errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
 | 
						|
        );
 | 
						|
  
 | 
						|
  // PredValues - This is a temporary used when rewriting PHI nodes.  It is
 | 
						|
  // hoisted out here to avoid construction/destruction thrashing.
 | 
						|
  DenseMap<BasicBlock*, Value*> PredValues;
 | 
						|
  
 | 
						|
  // ExtractedVals - Each new PHI we introduce is saved here so we don't
 | 
						|
  // introduce redundant PHIs.
 | 
						|
  DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
 | 
						|
  
 | 
						|
  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
 | 
						|
    unsigned PHIId = PHIUsers[UserI].PHIId;
 | 
						|
    PHINode *PN = PHIsToSlice[PHIId];
 | 
						|
    unsigned Offset = PHIUsers[UserI].Shift;
 | 
						|
    Type *Ty = PHIUsers[UserI].Inst->getType();
 | 
						|
    
 | 
						|
    PHINode *EltPHI;
 | 
						|
    
 | 
						|
    // If we've already lowered a user like this, reuse the previously lowered
 | 
						|
    // value.
 | 
						|
    if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
 | 
						|
      
 | 
						|
      // Otherwise, Create the new PHI node for this user.
 | 
						|
      EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
 | 
						|
                               PN->getName()+".off"+Twine(Offset), PN);
 | 
						|
      assert(EltPHI->getType() != PN->getType() &&
 | 
						|
             "Truncate didn't shrink phi?");
 | 
						|
    
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        BasicBlock *Pred = PN->getIncomingBlock(i);
 | 
						|
        Value *&PredVal = PredValues[Pred];
 | 
						|
        
 | 
						|
        // If we already have a value for this predecessor, reuse it.
 | 
						|
        if (PredVal) {
 | 
						|
          EltPHI->addIncoming(PredVal, Pred);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Handle the PHI self-reuse case.
 | 
						|
        Value *InVal = PN->getIncomingValue(i);
 | 
						|
        if (InVal == PN) {
 | 
						|
          PredVal = EltPHI;
 | 
						|
          EltPHI->addIncoming(PredVal, Pred);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
 | 
						|
          // If the incoming value was a PHI, and if it was one of the PHIs we
 | 
						|
          // already rewrote it, just use the lowered value.
 | 
						|
          if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
 | 
						|
            PredVal = Res;
 | 
						|
            EltPHI->addIncoming(PredVal, Pred);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Otherwise, do an extract in the predecessor.
 | 
						|
        Builder->SetInsertPoint(Pred, Pred->getTerminator());
 | 
						|
        Value *Res = InVal;
 | 
						|
        if (Offset)
 | 
						|
          Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
 | 
						|
                                                          Offset), "extract");
 | 
						|
        Res = Builder->CreateTrunc(Res, Ty, "extract.t");
 | 
						|
        PredVal = Res;
 | 
						|
        EltPHI->addIncoming(Res, Pred);
 | 
						|
        
 | 
						|
        // If the incoming value was a PHI, and if it was one of the PHIs we are
 | 
						|
        // rewriting, we will ultimately delete the code we inserted.  This
 | 
						|
        // means we need to revisit that PHI to make sure we extract out the
 | 
						|
        // needed piece.
 | 
						|
        if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
 | 
						|
          if (PHIsInspected.count(OldInVal)) {
 | 
						|
            unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
 | 
						|
                                          OldInVal)-PHIsToSlice.begin();
 | 
						|
            PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 
 | 
						|
                                              cast<Instruction>(Res)));
 | 
						|
            ++UserE;
 | 
						|
          }
 | 
						|
      }
 | 
						|
      PredValues.clear();
 | 
						|
      
 | 
						|
      DEBUG(errs() << "  Made element PHI for offset " << Offset << ": "
 | 
						|
                   << *EltPHI << '\n');
 | 
						|
      ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Replace the use of this piece with the PHI node.
 | 
						|
    ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
 | 
						|
  // with undefs.
 | 
						|
  Value *Undef = UndefValue::get(FirstPhi.getType());
 | 
						|
  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
 | 
						|
    ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
 | 
						|
  return ReplaceInstUsesWith(FirstPhi, Undef);
 | 
						|
}
 | 
						|
 | 
						|
// PHINode simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | 
						|
  if (Value *V = SimplifyInstruction(&PN, TD))
 | 
						|
    return ReplaceInstUsesWith(PN, V);
 | 
						|
 | 
						|
  // If all PHI operands are the same operation, pull them through the PHI,
 | 
						|
  // reducing code size.
 | 
						|
  if (isa<Instruction>(PN.getIncomingValue(0)) &&
 | 
						|
      isa<Instruction>(PN.getIncomingValue(1)) &&
 | 
						|
      cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
 | 
						|
      cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
 | 
						|
      // FIXME: The hasOneUse check will fail for PHIs that use the value more
 | 
						|
      // than themselves more than once.
 | 
						|
      PN.getIncomingValue(0)->hasOneUse())
 | 
						|
    if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
 | 
						|
      return Result;
 | 
						|
 | 
						|
  // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
 | 
						|
  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
 | 
						|
  // PHI)... break the cycle.
 | 
						|
  if (PN.hasOneUse()) {
 | 
						|
    Instruction *PHIUser = cast<Instruction>(PN.use_back());
 | 
						|
    if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
 | 
						|
      SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
 | 
						|
      PotentiallyDeadPHIs.insert(&PN);
 | 
						|
      if (DeadPHICycle(PU, PotentiallyDeadPHIs))
 | 
						|
        return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | 
						|
    }
 | 
						|
   
 | 
						|
    // If this phi has a single use, and if that use just computes a value for
 | 
						|
    // the next iteration of a loop, delete the phi.  This occurs with unused
 | 
						|
    // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
 | 
						|
    // common case here is good because the only other things that catch this
 | 
						|
    // are induction variable analysis (sometimes) and ADCE, which is only run
 | 
						|
    // late.
 | 
						|
    if (PHIUser->hasOneUse() &&
 | 
						|
        (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
 | 
						|
        PHIUser->use_back() == &PN) {
 | 
						|
      return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We sometimes end up with phi cycles that non-obviously end up being the
 | 
						|
  // same value, for example:
 | 
						|
  //   z = some value; x = phi (y, z); y = phi (x, z)
 | 
						|
  // where the phi nodes don't necessarily need to be in the same block.  Do a
 | 
						|
  // quick check to see if the PHI node only contains a single non-phi value, if
 | 
						|
  // so, scan to see if the phi cycle is actually equal to that value.
 | 
						|
  {
 | 
						|
    unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
 | 
						|
    // Scan for the first non-phi operand.
 | 
						|
    while (InValNo != NumIncomingVals &&
 | 
						|
           isa<PHINode>(PN.getIncomingValue(InValNo)))
 | 
						|
      ++InValNo;
 | 
						|
 | 
						|
    if (InValNo != NumIncomingVals) {
 | 
						|
      Value *NonPhiInVal = PN.getIncomingValue(InValNo);
 | 
						|
      
 | 
						|
      // Scan the rest of the operands to see if there are any conflicts, if so
 | 
						|
      // there is no need to recursively scan other phis.
 | 
						|
      for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
 | 
						|
        Value *OpVal = PN.getIncomingValue(InValNo);
 | 
						|
        if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If we scanned over all operands, then we have one unique value plus
 | 
						|
      // phi values.  Scan PHI nodes to see if they all merge in each other or
 | 
						|
      // the value.
 | 
						|
      if (InValNo == NumIncomingVals) {
 | 
						|
        SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
 | 
						|
        if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
 | 
						|
          return ReplaceInstUsesWith(PN, NonPhiInVal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are multiple PHIs, sort their operands so that they all list
 | 
						|
  // the blocks in the same order. This will help identical PHIs be eliminated
 | 
						|
  // by other passes. Other passes shouldn't depend on this for correctness
 | 
						|
  // however.
 | 
						|
  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
 | 
						|
  if (&PN != FirstPN)
 | 
						|
    for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      BasicBlock *BBA = PN.getIncomingBlock(i);
 | 
						|
      BasicBlock *BBB = FirstPN->getIncomingBlock(i);
 | 
						|
      if (BBA != BBB) {
 | 
						|
        Value *VA = PN.getIncomingValue(i);
 | 
						|
        unsigned j = PN.getBasicBlockIndex(BBB);
 | 
						|
        Value *VB = PN.getIncomingValue(j);
 | 
						|
        PN.setIncomingBlock(i, BBB);
 | 
						|
        PN.setIncomingValue(i, VB);
 | 
						|
        PN.setIncomingBlock(j, BBA);
 | 
						|
        PN.setIncomingValue(j, VA);
 | 
						|
        // NOTE: Instcombine normally would want us to "return &PN" if we
 | 
						|
        // modified any of the operands of an instruction.  However, since we
 | 
						|
        // aren't adding or removing uses (just rearranging them) we don't do
 | 
						|
        // this in this case.
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // If this is an integer PHI and we know that it has an illegal type, see if
 | 
						|
  // it is only used by trunc or trunc(lshr) operations.  If so, we split the
 | 
						|
  // PHI into the various pieces being extracted.  This sort of thing is
 | 
						|
  // introduced when SROA promotes an aggregate to a single large integer type.
 | 
						|
  if (PN.getType()->isIntegerTy() && TD &&
 | 
						|
      !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
 | 
						|
    if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
 | 
						|
      return Res;
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 |