mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	LoopUnswitch. Fixes PR12887. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157140 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1282 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1282 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass transforms loops that contain branches on loop-invariant conditions
 | |
| // to have multiple loops.  For example, it turns the left into the right code:
 | |
| //
 | |
| //  for (...)                  if (lic)
 | |
| //    A                          for (...)
 | |
| //    if (lic)                     A; B; C
 | |
| //      B                      else
 | |
| //    C                          for (...)
 | |
| //                                 A; C
 | |
| //
 | |
| // This can increase the size of the code exponentially (doubling it every time
 | |
| // a loop is unswitched) so we only unswitch if the resultant code will be
 | |
| // smaller than a threshold.
 | |
| //
 | |
| // This pass expects LICM to be run before it to hoist invariant conditions out
 | |
| // of the loop, to make the unswitching opportunity obvious.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unswitch"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumBranches, "Number of branches unswitched");
 | |
| STATISTIC(NumSwitches, "Number of switches unswitched");
 | |
| STATISTIC(NumSelects , "Number of selects unswitched");
 | |
| STATISTIC(NumTrivial , "Number of unswitches that are trivial");
 | |
| STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
 | |
| STATISTIC(TotalInsts,  "Total number of instructions analyzed");
 | |
| 
 | |
| // The specific value of 100 here was chosen based only on intuition and a
 | |
| // few specific examples.
 | |
| static cl::opt<unsigned>
 | |
| Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
 | |
|           cl::init(100), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class LUAnalysisCache {
 | |
| 
 | |
|     typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
 | |
|       UnswitchedValsMap;
 | |
| 
 | |
|     typedef UnswitchedValsMap::iterator UnswitchedValsIt;
 | |
| 
 | |
|     struct LoopProperties {
 | |
|       unsigned CanBeUnswitchedCount;
 | |
|       unsigned SizeEstimation;
 | |
|       UnswitchedValsMap UnswitchedVals;
 | |
|     };
 | |
| 
 | |
|     // Here we use std::map instead of DenseMap, since we need to keep valid
 | |
|     // LoopProperties pointer for current loop for better performance.
 | |
|     typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
 | |
|     typedef LoopPropsMap::iterator LoopPropsMapIt;
 | |
| 
 | |
|     LoopPropsMap LoopsProperties;
 | |
|     UnswitchedValsMap* CurLoopInstructions;
 | |
|     LoopProperties* CurrentLoopProperties;
 | |
| 
 | |
|     // Max size of code we can produce on remained iterations.
 | |
|     unsigned MaxSize;
 | |
| 
 | |
|     public:
 | |
| 
 | |
|       LUAnalysisCache() :
 | |
|         CurLoopInstructions(NULL), CurrentLoopProperties(NULL),
 | |
|         MaxSize(Threshold)
 | |
|       {}
 | |
| 
 | |
|       // Analyze loop. Check its size, calculate is it possible to unswitch
 | |
|       // it. Returns true if we can unswitch this loop.
 | |
|       bool countLoop(const Loop* L);
 | |
| 
 | |
|       // Clean all data related to given loop.
 | |
|       void forgetLoop(const Loop* L);
 | |
| 
 | |
|       // Mark case value as unswitched.
 | |
|       // Since SI instruction can be partly unswitched, in order to avoid
 | |
|       // extra unswitching in cloned loops keep track all unswitched values.
 | |
|       void setUnswitched(const SwitchInst* SI, const Value* V);
 | |
| 
 | |
|       // Check was this case value unswitched before or not.
 | |
|       bool isUnswitched(const SwitchInst* SI, const Value* V);
 | |
| 
 | |
|       // Clone all loop-unswitch related loop properties.
 | |
|       // Redistribute unswitching quotas.
 | |
|       // Note, that new loop data is stored inside the VMap.
 | |
|       void cloneData(const Loop* NewLoop, const Loop* OldLoop,
 | |
|                      const ValueToValueMapTy& VMap);
 | |
|   };
 | |
| 
 | |
|   class LoopUnswitch : public LoopPass {
 | |
|     LoopInfo *LI;  // Loop information
 | |
|     LPPassManager *LPM;
 | |
| 
 | |
|     // LoopProcessWorklist - Used to check if second loop needs processing
 | |
|     // after RewriteLoopBodyWithConditionConstant rewrites first loop.
 | |
|     std::vector<Loop*> LoopProcessWorklist;
 | |
| 
 | |
|     LUAnalysisCache BranchesInfo;
 | |
| 
 | |
|     bool OptimizeForSize;
 | |
|     bool redoLoop;
 | |
| 
 | |
|     Loop *currentLoop;
 | |
|     DominatorTree *DT;
 | |
|     BasicBlock *loopHeader;
 | |
|     BasicBlock *loopPreheader;
 | |
| 
 | |
|     // LoopBlocks contains all of the basic blocks of the loop, including the
 | |
|     // preheader of the loop, the body of the loop, and the exit blocks of the
 | |
|     // loop, in that order.
 | |
|     std::vector<BasicBlock*> LoopBlocks;
 | |
|     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
 | |
|     std::vector<BasicBlock*> NewBlocks;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     explicit LoopUnswitch(bool Os = false) :
 | |
|       LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
 | |
|       currentLoop(NULL), DT(NULL), loopHeader(NULL),
 | |
|       loopPreheader(NULL) {
 | |
|         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
|     bool processCurrentLoop();
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG.
 | |
|     ///
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     virtual void releaseMemory() {
 | |
|       BranchesInfo.forgetLoop(currentLoop);
 | |
|     }
 | |
| 
 | |
|     /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
 | |
|     /// remove it.
 | |
|     void RemoveLoopFromWorklist(Loop *L) {
 | |
|       std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
 | |
|                                                  LoopProcessWorklist.end(), L);
 | |
|       if (I != LoopProcessWorklist.end())
 | |
|         LoopProcessWorklist.erase(I);
 | |
|     }
 | |
| 
 | |
|     void initLoopData() {
 | |
|       loopHeader = currentLoop->getHeader();
 | |
|       loopPreheader = currentLoop->getLoopPreheader();
 | |
|     }
 | |
| 
 | |
|     /// Split all of the edges from inside the loop to their exit blocks.
 | |
|     /// Update the appropriate Phi nodes as we do so.
 | |
|     void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
 | |
| 
 | |
|     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
 | |
|     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
 | |
|                                   BasicBlock *ExitBlock);
 | |
|     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
 | |
| 
 | |
|     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | |
|                                               Constant *Val, bool isEqual);
 | |
| 
 | |
|     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
 | |
|                                         BasicBlock *TrueDest,
 | |
|                                         BasicBlock *FalseDest,
 | |
|                                         Instruction *InsertPt);
 | |
| 
 | |
|     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
 | |
|     void RemoveBlockIfDead(BasicBlock *BB,
 | |
|                            std::vector<Instruction*> &Worklist, Loop *l);
 | |
|     void RemoveLoopFromHierarchy(Loop *L);
 | |
|     bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
 | |
|                                     BasicBlock **LoopExit = 0);
 | |
| 
 | |
|   };
 | |
| }
 | |
| 
 | |
| // Analyze loop. Check its size, calculate is it possible to unswitch
 | |
| // it. Returns true if we can unswitch this loop.
 | |
| bool LUAnalysisCache::countLoop(const Loop* L) {
 | |
| 
 | |
|   std::pair<LoopPropsMapIt, bool> InsertRes =
 | |
|       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
 | |
| 
 | |
|   LoopProperties& Props = InsertRes.first->second;
 | |
| 
 | |
|   if (InsertRes.second) {
 | |
|     // New loop.
 | |
| 
 | |
|     // Limit the number of instructions to avoid causing significant code
 | |
|     // expansion, and the number of basic blocks, to avoid loops with
 | |
|     // large numbers of branches which cause loop unswitching to go crazy.
 | |
|     // This is a very ad-hoc heuristic.
 | |
| 
 | |
|     // FIXME: This is overly conservative because it does not take into
 | |
|     // consideration code simplification opportunities and code that can
 | |
|     // be shared by the resultant unswitched loops.
 | |
|     CodeMetrics Metrics;
 | |
|     for (Loop::block_iterator I = L->block_begin(),
 | |
|            E = L->block_end();
 | |
|          I != E; ++I)
 | |
|       Metrics.analyzeBasicBlock(*I);
 | |
| 
 | |
|     Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
 | |
|     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
 | |
|     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
 | |
|   }
 | |
| 
 | |
|   if (!Props.CanBeUnswitchedCount) {
 | |
|     DEBUG(dbgs() << "NOT unswitching loop %"
 | |
|           << L->getHeader()->getName() << ", cost too high: "
 | |
|           << L->getBlocks().size() << "\n");
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Be careful. This links are good only before new loop addition.
 | |
|   CurrentLoopProperties = &Props;
 | |
|   CurLoopInstructions = &Props.UnswitchedVals;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Clean all data related to given loop.
 | |
| void LUAnalysisCache::forgetLoop(const Loop* L) {
 | |
| 
 | |
|   LoopPropsMapIt LIt = LoopsProperties.find(L);
 | |
| 
 | |
|   if (LIt != LoopsProperties.end()) {
 | |
|     LoopProperties& Props = LIt->second;
 | |
|     MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
 | |
|     LoopsProperties.erase(LIt);
 | |
|   }
 | |
| 
 | |
|   CurrentLoopProperties = NULL;
 | |
|   CurLoopInstructions = NULL;
 | |
| }
 | |
| 
 | |
| // Mark case value as unswitched.
 | |
| // Since SI instruction can be partly unswitched, in order to avoid
 | |
| // extra unswitching in cloned loops keep track all unswitched values.
 | |
| void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) {
 | |
|   (*CurLoopInstructions)[SI].insert(V);
 | |
| }
 | |
| 
 | |
| // Check was this case value unswitched before or not.
 | |
| bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) {
 | |
|   return (*CurLoopInstructions)[SI].count(V);
 | |
| }
 | |
| 
 | |
| // Clone all loop-unswitch related loop properties.
 | |
| // Redistribute unswitching quotas.
 | |
| // Note, that new loop data is stored inside the VMap.
 | |
| void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
 | |
|                      const ValueToValueMapTy& VMap) {
 | |
| 
 | |
|   LoopProperties& NewLoopProps = LoopsProperties[NewLoop];
 | |
|   LoopProperties& OldLoopProps = *CurrentLoopProperties;
 | |
|   UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals;
 | |
| 
 | |
|   // Reallocate "can-be-unswitched quota"
 | |
| 
 | |
|   --OldLoopProps.CanBeUnswitchedCount;
 | |
|   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
 | |
|   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
 | |
|   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
 | |
| 
 | |
|   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
 | |
| 
 | |
|   // Clone unswitched values info:
 | |
|   // for new loop switches we clone info about values that was
 | |
|   // already unswitched and has redundant successors.
 | |
|   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
 | |
|     const SwitchInst* OldInst = I->first;
 | |
|     Value* NewI = VMap.lookup(OldInst);
 | |
|     const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI);
 | |
|     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
 | |
| 
 | |
|     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
 | |
|   }
 | |
| }
 | |
| 
 | |
| char LoopUnswitch::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
 | |
|                       false, false)
 | |
| 
 | |
| Pass *llvm::createLoopUnswitchPass(bool Os) {
 | |
|   return new LoopUnswitch(Os);
 | |
| }
 | |
| 
 | |
| /// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
 | |
| /// invariant in the loop, or has an invariant piece, return the invariant.
 | |
| /// Otherwise, return null.
 | |
| static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
 | |
| 
 | |
|   // We started analyze new instruction, increment scanned instructions counter.
 | |
|   ++TotalInsts;
 | |
| 
 | |
|   // We can never unswitch on vector conditions.
 | |
|   if (Cond->getType()->isVectorTy())
 | |
|     return 0;
 | |
| 
 | |
|   // Constants should be folded, not unswitched on!
 | |
|   if (isa<Constant>(Cond)) return 0;
 | |
| 
 | |
|   // TODO: Handle: br (VARIANT|INVARIANT).
 | |
| 
 | |
|   // Hoist simple values out.
 | |
|   if (L->makeLoopInvariant(Cond, Changed))
 | |
|     return Cond;
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
 | |
|     if (BO->getOpcode() == Instruction::And ||
 | |
|         BO->getOpcode() == Instruction::Or) {
 | |
|       // If either the left or right side is invariant, we can unswitch on this,
 | |
|       // which will cause the branch to go away in one loop and the condition to
 | |
|       // simplify in the other one.
 | |
|       if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
 | |
|         return LHS;
 | |
|       if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
 | |
|         return RHS;
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   LPM = &LPM_Ref;
 | |
|   DT = getAnalysisIfAvailable<DominatorTree>();
 | |
|   currentLoop = L;
 | |
|   Function *F = currentLoop->getHeader()->getParent();
 | |
|   bool Changed = false;
 | |
|   do {
 | |
|     assert(currentLoop->isLCSSAForm(*DT));
 | |
|     redoLoop = false;
 | |
|     Changed |= processCurrentLoop();
 | |
|   } while(redoLoop);
 | |
| 
 | |
|   if (Changed) {
 | |
|     // FIXME: Reconstruct dom info, because it is not preserved properly.
 | |
|     if (DT)
 | |
|       DT->runOnFunction(*F);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// processCurrentLoop - Do actual work and unswitch loop if possible
 | |
| /// and profitable.
 | |
| bool LoopUnswitch::processCurrentLoop() {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   initLoopData();
 | |
| 
 | |
|   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
 | |
|   if (!loopPreheader)
 | |
|     return false;
 | |
| 
 | |
|   // Loops with indirectbr cannot be cloned.
 | |
|   if (!currentLoop->isSafeToClone())
 | |
|     return false;
 | |
| 
 | |
|   // Without dedicated exits, splitting the exit edge may fail.
 | |
|   if (!currentLoop->hasDedicatedExits())
 | |
|     return false;
 | |
| 
 | |
|   LLVMContext &Context = loopHeader->getContext();
 | |
| 
 | |
|   // Probably we reach the quota of branches for this loop. If so
 | |
|   // stop unswitching.
 | |
|   if (!BranchesInfo.countLoop(currentLoop))
 | |
|     return false;
 | |
| 
 | |
|   // Loop over all of the basic blocks in the loop.  If we find an interior
 | |
|   // block that is branching on a loop-invariant condition, we can unswitch this
 | |
|   // loop.
 | |
|   for (Loop::block_iterator I = currentLoop->block_begin(),
 | |
|          E = currentLoop->block_end(); I != E; ++I) {
 | |
|     TerminatorInst *TI = (*I)->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       // If this isn't branching on an invariant condition, we can't unswitch
 | |
|       // it.
 | |
|       if (BI->isConditional()) {
 | |
|         // See if this, or some part of it, is loop invariant.  If so, we can
 | |
|         // unswitch on it if we desire.
 | |
|         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
 | |
|                                                currentLoop, Changed);
 | |
|         if (LoopCond && UnswitchIfProfitable(LoopCond,
 | |
|                                              ConstantInt::getTrue(Context))) {
 | |
|           ++NumBranches;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
 | |
|                                              currentLoop, Changed);
 | |
|       unsigned NumCases = SI->getNumCases();
 | |
|       if (LoopCond && NumCases) {
 | |
|         // Find a value to unswitch on:
 | |
|         // FIXME: this should chose the most expensive case!
 | |
|         // FIXME: scan for a case with a non-critical edge?
 | |
|         Constant *UnswitchVal = NULL;
 | |
| 
 | |
|         // Do not process same value again and again.
 | |
|         // At this point we have some cases already unswitched and
 | |
|         // some not yet unswitched. Let's find the first not yet unswitched one.
 | |
|         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|              i != e; ++i) {
 | |
|           Constant* UnswitchValCandidate = i.getCaseValue();
 | |
|           if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
 | |
|             UnswitchVal = UnswitchValCandidate;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!UnswitchVal)
 | |
|           continue;
 | |
| 
 | |
|         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
 | |
|           ++NumSwitches;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Scan the instructions to check for unswitchable values.
 | |
|     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
 | |
|          BBI != E; ++BBI)
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
 | |
|         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
 | |
|                                                currentLoop, Changed);
 | |
|         if (LoopCond && UnswitchIfProfitable(LoopCond,
 | |
|                                              ConstantInt::getTrue(Context))) {
 | |
|           ++NumSelects;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
 | |
| /// loop with no side effects (including infinite loops).
 | |
| ///
 | |
| /// If true, we return true and set ExitBB to the block we
 | |
| /// exit through.
 | |
| ///
 | |
| static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
 | |
|                                          BasicBlock *&ExitBB,
 | |
|                                          std::set<BasicBlock*> &Visited) {
 | |
|   if (!Visited.insert(BB).second) {
 | |
|     // Already visited. Without more analysis, this could indicate an infinite
 | |
|     // loop.
 | |
|     return false;
 | |
|   } else if (!L->contains(BB)) {
 | |
|     // Otherwise, this is a loop exit, this is fine so long as this is the
 | |
|     // first exit.
 | |
|     if (ExitBB != 0) return false;
 | |
|     ExitBB = BB;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
 | |
|   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
 | |
|     // Check to see if the successor is a trivial loop exit.
 | |
|     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, everything after this looks good, check to make sure that this block
 | |
|   // doesn't include any side effects.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (I->mayHaveSideEffects())
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
 | |
| /// leads to an exit from the specified loop, and has no side-effects in the
 | |
| /// process.  If so, return the block that is exited to, otherwise return null.
 | |
| static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
 | |
|   std::set<BasicBlock*> Visited;
 | |
|   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
 | |
|   BasicBlock *ExitBB = 0;
 | |
|   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
 | |
|     return ExitBB;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
 | |
| /// trivial: that is, that the condition controls whether or not the loop does
 | |
| /// anything at all.  If this is a trivial condition, unswitching produces no
 | |
| /// code duplications (equivalently, it produces a simpler loop and a new empty
 | |
| /// loop, which gets deleted).
 | |
| ///
 | |
| /// If this is a trivial condition, return true, otherwise return false.  When
 | |
| /// returning true, this sets Cond and Val to the condition that controls the
 | |
| /// trivial condition: when Cond dynamically equals Val, the loop is known to
 | |
| /// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
 | |
| /// Cond == Val.
 | |
| ///
 | |
| bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
 | |
|                                        BasicBlock **LoopExit) {
 | |
|   BasicBlock *Header = currentLoop->getHeader();
 | |
|   TerminatorInst *HeaderTerm = Header->getTerminator();
 | |
|   LLVMContext &Context = Header->getContext();
 | |
| 
 | |
|   BasicBlock *LoopExitBB = 0;
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
 | |
|     // If the header block doesn't end with a conditional branch on Cond, we
 | |
|     // can't handle it.
 | |
|     if (!BI->isConditional() || BI->getCondition() != Cond)
 | |
|       return false;
 | |
| 
 | |
|     // Check to see if a successor of the branch is guaranteed to
 | |
|     // exit through a unique exit block without having any
 | |
|     // side-effects.  If so, determine the value of Cond that causes it to do
 | |
|     // this.
 | |
|     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
 | |
|                                              BI->getSuccessor(0)))) {
 | |
|       if (Val) *Val = ConstantInt::getTrue(Context);
 | |
|     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
 | |
|                                                     BI->getSuccessor(1)))) {
 | |
|       if (Val) *Val = ConstantInt::getFalse(Context);
 | |
|     }
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
 | |
|     // If this isn't a switch on Cond, we can't handle it.
 | |
|     if (SI->getCondition() != Cond) return false;
 | |
| 
 | |
|     // Check to see if a successor of the switch is guaranteed to go to the
 | |
|     // latch block or exit through a one exit block without having any
 | |
|     // side-effects.  If so, determine the value of Cond that causes it to do
 | |
|     // this.
 | |
|     // Note that we can't trivially unswitch on the default case or
 | |
|     // on already unswitched cases.
 | |
|     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|          i != e; ++i) {
 | |
|       BasicBlock* LoopExitCandidate;
 | |
|       if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
 | |
|                                                i.getCaseSuccessor()))) {
 | |
|         // Okay, we found a trivial case, remember the value that is trivial.
 | |
|         ConstantInt* CaseVal = i.getCaseValue();
 | |
| 
 | |
|         // Check that it was not unswitched before, since already unswitched
 | |
|         // trivial vals are looks trivial too.
 | |
|         if (BranchesInfo.isUnswitched(SI, CaseVal))
 | |
|           continue;
 | |
|         LoopExitBB = LoopExitCandidate;
 | |
|         if (Val) *Val = CaseVal;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a single unique LoopExit block, or if the loop exit block
 | |
|   // contains phi nodes, this isn't trivial.
 | |
|   if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
 | |
|     return false;   // Can't handle this.
 | |
| 
 | |
|   if (LoopExit) *LoopExit = LoopExitBB;
 | |
| 
 | |
|   // We already know that nothing uses any scalar values defined inside of this
 | |
|   // loop.  As such, we just have to check to see if this loop will execute any
 | |
|   // side-effecting instructions (e.g. stores, calls, volatile loads) in the
 | |
|   // part of the loop that the code *would* execute.  We already checked the
 | |
|   // tail, check the header now.
 | |
|   for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
 | |
|     if (I->mayHaveSideEffects())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
 | |
| /// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
 | |
| /// unswitch the loop, reprocess the pieces, then return true.
 | |
| bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
 | |
|   Function *F = loopHeader->getParent();
 | |
|   Constant *CondVal = 0;
 | |
|   BasicBlock *ExitBlock = 0;
 | |
| 
 | |
|   if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
 | |
|     // If the condition is trivial, always unswitch. There is no code growth
 | |
|     // for this case.
 | |
|     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check to see if it would be profitable to unswitch current loop.
 | |
| 
 | |
|   // Do not do non-trivial unswitch while optimizing for size.
 | |
|   if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     return false;
 | |
| 
 | |
|   UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CloneLoop - Recursively clone the specified loop and all of its children,
 | |
| /// mapping the blocks with the specified map.
 | |
| static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
 | |
|                        LoopInfo *LI, LPPassManager *LPM) {
 | |
|   Loop *New = new Loop();
 | |
|   LPM->insertLoop(New, PL);
 | |
| 
 | |
|   // Add all of the blocks in L to the new loop.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I)
 | |
|     if (LI->getLoopFor(*I) == L)
 | |
|       New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
 | |
| 
 | |
|   // Add all of the subloops to the new loop.
 | |
|   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     CloneLoop(*I, New, VM, LI, LPM);
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
 | |
| /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
 | |
| /// code immediately before InsertPt.
 | |
| void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
 | |
|                                                   BasicBlock *TrueDest,
 | |
|                                                   BasicBlock *FalseDest,
 | |
|                                                   Instruction *InsertPt) {
 | |
|   // Insert a conditional branch on LIC to the two preheaders.  The original
 | |
|   // code is the true version and the new code is the false version.
 | |
|   Value *BranchVal = LIC;
 | |
|   if (!isa<ConstantInt>(Val) ||
 | |
|       Val->getType() != Type::getInt1Ty(LIC->getContext()))
 | |
|     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
 | |
|   else if (Val != ConstantInt::getTrue(Val->getContext()))
 | |
|     // We want to enter the new loop when the condition is true.
 | |
|     std::swap(TrueDest, FalseDest);
 | |
| 
 | |
|   // Insert the new branch.
 | |
|   BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
 | |
| 
 | |
|   // If either edge is critical, split it. This helps preserve LoopSimplify
 | |
|   // form for enclosing loops.
 | |
|   SplitCriticalEdge(BI, 0, this, false, false, true);
 | |
|   SplitCriticalEdge(BI, 1, this, false, false, true);
 | |
| }
 | |
| 
 | |
| /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
 | |
| /// condition in it (a cond branch from its header block to its latch block,
 | |
| /// where the path through the loop that doesn't execute its body has no
 | |
| /// side-effects), unswitch it.  This doesn't involve any code duplication, just
 | |
| /// moving the conditional branch outside of the loop and updating loop info.
 | |
| void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
 | |
|                                             Constant *Val,
 | |
|                                             BasicBlock *ExitBlock) {
 | |
|   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
 | |
|         << loopHeader->getName() << " [" << L->getBlocks().size()
 | |
|         << " blocks] in Function " << L->getHeader()->getParent()->getName()
 | |
|         << " on cond: " << *Val << " == " << *Cond << "\n");
 | |
| 
 | |
|   // First step, split the preheader, so that we know that there is a safe place
 | |
|   // to insert the conditional branch.  We will change loopPreheader to have a
 | |
|   // conditional branch on Cond.
 | |
|   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
 | |
| 
 | |
|   // Now that we have a place to insert the conditional branch, create a place
 | |
|   // to branch to: this is the exit block out of the loop that we should
 | |
|   // short-circuit to.
 | |
| 
 | |
|   // Split this block now, so that the loop maintains its exit block, and so
 | |
|   // that the jump from the preheader can execute the contents of the exit block
 | |
|   // without actually branching to it (the exit block should be dominated by the
 | |
|   // loop header, not the preheader).
 | |
|   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
 | |
|   BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
 | |
| 
 | |
|   // Okay, now we have a position to branch from and a position to branch to,
 | |
|   // insert the new conditional branch.
 | |
|   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
 | |
|                                  loopPreheader->getTerminator());
 | |
|   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
 | |
|   loopPreheader->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // We need to reprocess this loop, it could be unswitched again.
 | |
|   redoLoop = true;
 | |
| 
 | |
|   // Now that we know that the loop is never entered when this condition is a
 | |
|   // particular value, rewrite the loop with this info.  We know that this will
 | |
|   // at least eliminate the old branch.
 | |
|   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
 | |
|   ++NumTrivial;
 | |
| }
 | |
| 
 | |
| /// SplitExitEdges - Split all of the edges from inside the loop to their exit
 | |
| /// blocks.  Update the appropriate Phi nodes as we do so.
 | |
| void LoopUnswitch::SplitExitEdges(Loop *L,
 | |
|                                 const SmallVector<BasicBlock *, 8> &ExitBlocks){
 | |
| 
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBlock = ExitBlocks[i];
 | |
|     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
 | |
|                                        pred_end(ExitBlock));
 | |
| 
 | |
|     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
 | |
|     // general, if we call it on all predecessors of all exits then it does.
 | |
|     if (!ExitBlock->isLandingPad()) {
 | |
|       SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
 | |
|     } else {
 | |
|       SmallVector<BasicBlock*, 2> NewBBs;
 | |
|       SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
 | |
|                                   this, NewBBs);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// UnswitchNontrivialCondition - We determined that the loop is profitable
 | |
| /// to unswitch when LIC equal Val.  Split it into loop versions and test the
 | |
| /// condition outside of either loop.  Return the loops created as Out1/Out2.
 | |
| void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
 | |
|                                                Loop *L) {
 | |
|   Function *F = loopHeader->getParent();
 | |
|   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
 | |
|         << loopHeader->getName() << " [" << L->getBlocks().size()
 | |
|         << " blocks] in Function " << F->getName()
 | |
|         << " when '" << *Val << "' == " << *LIC << "\n");
 | |
| 
 | |
|   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
 | |
|     SE->forgetLoop(L);
 | |
| 
 | |
|   LoopBlocks.clear();
 | |
|   NewBlocks.clear();
 | |
| 
 | |
|   // First step, split the preheader and exit blocks, and add these blocks to
 | |
|   // the LoopBlocks list.
 | |
|   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
 | |
|   LoopBlocks.push_back(NewPreheader);
 | |
| 
 | |
|   // We want the loop to come after the preheader, but before the exit blocks.
 | |
|   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Split all of the edges from inside the loop to their exit blocks.  Update
 | |
|   // the appropriate Phi nodes as we do so.
 | |
|   SplitExitEdges(L, ExitBlocks);
 | |
| 
 | |
|   // The exit blocks may have been changed due to edge splitting, recompute.
 | |
|   ExitBlocks.clear();
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Add exit blocks to the loop blocks.
 | |
|   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
 | |
| 
 | |
|   // Next step, clone all of the basic blocks that make up the loop (including
 | |
|   // the loop preheader and exit blocks), keeping track of the mapping between
 | |
|   // the instructions and blocks.
 | |
|   NewBlocks.reserve(LoopBlocks.size());
 | |
|   ValueToValueMapTy VMap;
 | |
|   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
 | |
| 
 | |
|     NewBlocks.push_back(NewBB);
 | |
|     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
 | |
|     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
 | |
|   }
 | |
| 
 | |
|   // Splice the newly inserted blocks into the function right before the
 | |
|   // original preheader.
 | |
|   F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
 | |
|                                 NewBlocks[0], F->end());
 | |
| 
 | |
|   // Now we create the new Loop object for the versioned loop.
 | |
|   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
 | |
| 
 | |
|   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
 | |
|   // Probably clone more loop-unswitch related loop properties.
 | |
|   BranchesInfo.cloneData(NewLoop, L, VMap);
 | |
| 
 | |
|   Loop *ParentLoop = L->getParentLoop();
 | |
|   if (ParentLoop) {
 | |
|     // Make sure to add the cloned preheader and exit blocks to the parent loop
 | |
|     // as well.
 | |
|     ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
 | |
|     // The new exit block should be in the same loop as the old one.
 | |
|     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
 | |
|       ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
 | |
| 
 | |
|     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Exit block should have been split to have one successor!");
 | |
|     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
 | |
| 
 | |
|     // If the successor of the exit block had PHI nodes, add an entry for
 | |
|     // NewExit.
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
 | |
|       PN = cast<PHINode>(I);
 | |
|       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
 | |
|       ValueToValueMapTy::iterator It = VMap.find(V);
 | |
|       if (It != VMap.end()) V = It->second;
 | |
|       PN->addIncoming(V, NewExit);
 | |
|     }
 | |
| 
 | |
|     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
 | |
|       PN = PHINode::Create(LPad->getType(), 0, "",
 | |
|                            ExitSucc->getFirstInsertionPt());
 | |
| 
 | |
|       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
 | |
|            I != E; ++I) {
 | |
|         BasicBlock *BB = *I;
 | |
|         LandingPadInst *LPI = BB->getLandingPadInst();
 | |
|         LPI->replaceAllUsesWith(PN);
 | |
|         PN->addIncoming(LPI, BB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewrite the code to refer to itself.
 | |
|   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
 | |
|     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | |
|            E = NewBlocks[i]->end(); I != E; ++I)
 | |
|       RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
 | |
| 
 | |
|   // Rewrite the original preheader to select between versions of the loop.
 | |
|   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
 | |
|   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
 | |
|          "Preheader splitting did not work correctly!");
 | |
| 
 | |
|   // Emit the new branch that selects between the two versions of this loop.
 | |
|   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
 | |
|   LPM->deleteSimpleAnalysisValue(OldBR, L);
 | |
|   OldBR->eraseFromParent();
 | |
| 
 | |
|   LoopProcessWorklist.push_back(NewLoop);
 | |
|   redoLoop = true;
 | |
| 
 | |
|   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
 | |
|   // deletes the instruction (for example by simplifying a PHI that feeds into
 | |
|   // the condition that we're unswitching on), we don't rewrite the second
 | |
|   // iteration.
 | |
|   WeakVH LICHandle(LIC);
 | |
| 
 | |
|   // Now we rewrite the original code to know that the condition is true and the
 | |
|   // new code to know that the condition is false.
 | |
|   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
 | |
| 
 | |
|   // It's possible that simplifying one loop could cause the other to be
 | |
|   // changed to another value or a constant.  If its a constant, don't simplify
 | |
|   // it.
 | |
|   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
 | |
|       LICHandle && !isa<Constant>(LICHandle))
 | |
|     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
 | |
| }
 | |
| 
 | |
| /// RemoveFromWorklist - Remove all instances of I from the worklist vector
 | |
| /// specified.
 | |
| static void RemoveFromWorklist(Instruction *I,
 | |
|                                std::vector<Instruction*> &Worklist) {
 | |
|   std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
 | |
|                                                      Worklist.end(), I);
 | |
|   while (WI != Worklist.end()) {
 | |
|     unsigned Offset = WI-Worklist.begin();
 | |
|     Worklist.erase(WI);
 | |
|     WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
 | |
| /// program, replacing all uses with V and update the worklist.
 | |
| static void ReplaceUsesOfWith(Instruction *I, Value *V,
 | |
|                               std::vector<Instruction*> &Worklist,
 | |
|                               Loop *L, LPPassManager *LPM) {
 | |
|   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
 | |
| 
 | |
|   // Add uses to the worklist, which may be dead now.
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|       Worklist.push_back(Use);
 | |
| 
 | |
|   // Add users to the worklist which may be simplified now.
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI)
 | |
|     Worklist.push_back(cast<Instruction>(*UI));
 | |
|   LPM->deleteSimpleAnalysisValue(I, L);
 | |
|   RemoveFromWorklist(I, Worklist);
 | |
|   I->replaceAllUsesWith(V);
 | |
|   I->eraseFromParent();
 | |
|   ++NumSimplify;
 | |
| }
 | |
| 
 | |
| /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
 | |
| /// information, and remove any dead successors it has.
 | |
| ///
 | |
| void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
 | |
|                                      std::vector<Instruction*> &Worklist,
 | |
|                                      Loop *L) {
 | |
|   if (pred_begin(BB) != pred_end(BB)) {
 | |
|     // This block isn't dead, since an edge to BB was just removed, see if there
 | |
|     // are any easy simplifications we can do now.
 | |
|     if (BasicBlock *Pred = BB->getSinglePredecessor()) {
 | |
|       // If it has one pred, fold phi nodes in BB.
 | |
|       while (isa<PHINode>(BB->begin()))
 | |
|         ReplaceUsesOfWith(BB->begin(),
 | |
|                           cast<PHINode>(BB->begin())->getIncomingValue(0),
 | |
|                           Worklist, L, LPM);
 | |
| 
 | |
|       // If this is the header of a loop and the only pred is the latch, we now
 | |
|       // have an unreachable loop.
 | |
|       if (Loop *L = LI->getLoopFor(BB))
 | |
|         if (loopHeader == BB && L->contains(Pred)) {
 | |
|           // Remove the branch from the latch to the header block, this makes
 | |
|           // the header dead, which will make the latch dead (because the header
 | |
|           // dominates the latch).
 | |
|           LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
 | |
|           Pred->getTerminator()->eraseFromParent();
 | |
|           new UnreachableInst(BB->getContext(), Pred);
 | |
| 
 | |
|           // The loop is now broken, remove it from LI.
 | |
|           RemoveLoopFromHierarchy(L);
 | |
| 
 | |
|           // Reprocess the header, which now IS dead.
 | |
|           RemoveBlockIfDead(BB, Worklist, L);
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|       // If pred ends in a uncond branch, add uncond branch to worklist so that
 | |
|       // the two blocks will get merged.
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
 | |
|         if (BI->isUnconditional())
 | |
|           Worklist.push_back(BI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Nuking dead block: " << *BB);
 | |
| 
 | |
|   // Remove the instructions in the basic block from the worklist.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|     RemoveFromWorklist(I, Worklist);
 | |
| 
 | |
|     // Anything that uses the instructions in this basic block should have their
 | |
|     // uses replaced with undefs.
 | |
|     // If I is not void type then replaceAllUsesWith undef.
 | |
|     // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|     if (!I->getType()->isVoidTy())
 | |
|       I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|   }
 | |
| 
 | |
|   // If this is the edge to the header block for a loop, remove the loop and
 | |
|   // promote all subloops.
 | |
|   if (Loop *BBLoop = LI->getLoopFor(BB)) {
 | |
|     if (BBLoop->getLoopLatch() == BB) {
 | |
|       RemoveLoopFromHierarchy(BBLoop);
 | |
|       if (currentLoop == BBLoop) {
 | |
|         currentLoop = 0;
 | |
|         redoLoop = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove the block from the loop info, which removes it from any loops it
 | |
|   // was in.
 | |
|   LI->removeBlock(BB);
 | |
| 
 | |
| 
 | |
|   // Remove phi node entries in successors for this block.
 | |
|   TerminatorInst *TI = BB->getTerminator();
 | |
|   SmallVector<BasicBlock*, 4> Succs;
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|     Succs.push_back(TI->getSuccessor(i));
 | |
|     TI->getSuccessor(i)->removePredecessor(BB);
 | |
|   }
 | |
| 
 | |
|   // Unique the successors, remove anything with multiple uses.
 | |
|   array_pod_sort(Succs.begin(), Succs.end());
 | |
|   Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
 | |
| 
 | |
|   // Remove the basic block, including all of the instructions contained in it.
 | |
|   LPM->deleteSimpleAnalysisValue(BB, L);
 | |
|   BB->eraseFromParent();
 | |
|   // Remove successor blocks here that are not dead, so that we know we only
 | |
|   // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
 | |
|   // then getting removed before we revisit them, which is badness.
 | |
|   //
 | |
|   for (unsigned i = 0; i != Succs.size(); ++i)
 | |
|     if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
 | |
|       // One exception is loop headers.  If this block was the preheader for a
 | |
|       // loop, then we DO want to visit the loop so the loop gets deleted.
 | |
|       // We know that if the successor is a loop header, that this loop had to
 | |
|       // be the preheader: the case where this was the latch block was handled
 | |
|       // above and headers can only have two predecessors.
 | |
|       if (!LI->isLoopHeader(Succs[i])) {
 | |
|         Succs.erase(Succs.begin()+i);
 | |
|         --i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
 | |
|     RemoveBlockIfDead(Succs[i], Worklist, L);
 | |
| }
 | |
| 
 | |
| /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
 | |
| /// become unwrapped, either because the backedge was deleted, or because the
 | |
| /// edge into the header was removed.  If the edge into the header from the
 | |
| /// latch block was removed, the loop is unwrapped but subloops are still alive,
 | |
| /// so they just reparent loops.  If the loops are actually dead, they will be
 | |
| /// removed later.
 | |
| void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
 | |
|   LPM->deleteLoopFromQueue(L);
 | |
|   RemoveLoopFromWorklist(L);
 | |
| }
 | |
| 
 | |
| // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
 | |
| // the value specified by Val in the specified loop, or we know it does NOT have
 | |
| // that value.  Rewrite any uses of LIC or of properties correlated to it.
 | |
| void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | |
|                                                         Constant *Val,
 | |
|                                                         bool IsEqual) {
 | |
|   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
 | |
| 
 | |
|   // FIXME: Support correlated properties, like:
 | |
|   //  for (...)
 | |
|   //    if (li1 < li2)
 | |
|   //      ...
 | |
|   //    if (li1 > li2)
 | |
|   //      ...
 | |
| 
 | |
|   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
 | |
|   // selects, switches.
 | |
|   std::vector<Instruction*> Worklist;
 | |
|   LLVMContext &Context = Val->getContext();
 | |
| 
 | |
| 
 | |
|   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
 | |
|   // in the loop with the appropriate one directly.
 | |
|   if (IsEqual || (isa<ConstantInt>(Val) &&
 | |
|       Val->getType()->isIntegerTy(1))) {
 | |
|     Value *Replacement;
 | |
|     if (IsEqual)
 | |
|       Replacement = Val;
 | |
|     else
 | |
|       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
 | |
|                                      !cast<ConstantInt>(Val)->getZExtValue());
 | |
| 
 | |
|     for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       Instruction *U = dyn_cast<Instruction>(*UI);
 | |
|       if (!U || !L->contains(U))
 | |
|         continue;
 | |
|       Worklist.push_back(U);
 | |
|     }
 | |
| 
 | |
|     for (std::vector<Instruction*>::iterator UI = Worklist.begin();
 | |
|          UI != Worklist.end(); ++UI)
 | |
|       (*UI)->replaceUsesOfWith(LIC, Replacement);
 | |
| 
 | |
|     SimplifyCode(Worklist, L);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we don't know the precise value of LIC, but we do know that it
 | |
|   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
 | |
|   // can.  This case occurs when we unswitch switch statements.
 | |
|   for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     Instruction *U = dyn_cast<Instruction>(*UI);
 | |
|     if (!U || !L->contains(U))
 | |
|       continue;
 | |
| 
 | |
|     Worklist.push_back(U);
 | |
| 
 | |
|     // TODO: We could do other simplifications, for example, turning
 | |
|     // 'icmp eq LIC, Val' -> false.
 | |
| 
 | |
|     // If we know that LIC is not Val, use this info to simplify code.
 | |
|     SwitchInst *SI = dyn_cast<SwitchInst>(U);
 | |
|     if (SI == 0 || !isa<ConstantInt>(Val)) continue;
 | |
| 
 | |
|     SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
 | |
|     // Default case is live for multiple values.
 | |
|     if (DeadCase == SI->case_default()) continue;
 | |
| 
 | |
|     // Found a dead case value.  Don't remove PHI nodes in the
 | |
|     // successor if they become single-entry, those PHI nodes may
 | |
|     // be in the Users list.
 | |
| 
 | |
|     BasicBlock *Switch = SI->getParent();
 | |
|     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
 | |
|     BasicBlock *Latch = L->getLoopLatch();
 | |
| 
 | |
|     BranchesInfo.setUnswitched(SI, Val);
 | |
| 
 | |
|     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
 | |
|     // If the DeadCase successor dominates the loop latch, then the
 | |
|     // transformation isn't safe since it will delete the sole predecessor edge
 | |
|     // to the latch.
 | |
|     if (Latch && DT->dominates(SISucc, Latch))
 | |
|       continue;
 | |
| 
 | |
|     // FIXME: This is a hack.  We need to keep the successor around
 | |
|     // and hooked up so as to preserve the loop structure, because
 | |
|     // trying to update it is complicated.  So instead we preserve the
 | |
|     // loop structure and put the block on a dead code path.
 | |
|     SplitEdge(Switch, SISucc, this);
 | |
|     // Compute the successors instead of relying on the return value
 | |
|     // of SplitEdge, since it may have split the switch successor
 | |
|     // after PHI nodes.
 | |
|     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
 | |
|     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
 | |
|     // Create an "unreachable" destination.
 | |
|     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
 | |
|                                            Switch->getParent(),
 | |
|                                            OldSISucc);
 | |
|     new UnreachableInst(Context, Abort);
 | |
|     // Force the new case destination to branch to the "unreachable"
 | |
|     // block while maintaining a (dead) CFG edge to the old block.
 | |
|     NewSISucc->getTerminator()->eraseFromParent();
 | |
|     BranchInst::Create(Abort, OldSISucc,
 | |
|                        ConstantInt::getTrue(Context), NewSISucc);
 | |
|     // Release the PHI operands for this edge.
 | |
|     for (BasicBlock::iterator II = NewSISucc->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(II); ++II)
 | |
|       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
 | |
|                            UndefValue::get(PN->getType()));
 | |
|     // Tell the domtree about the new block. We don't fully update the
 | |
|     // domtree here -- instead we force it to do a full recomputation
 | |
|     // after the pass is complete -- but we do need to inform it of
 | |
|     // new blocks.
 | |
|     if (DT)
 | |
|       DT->addNewBlock(Abort, NewSISucc);
 | |
|   }
 | |
| 
 | |
|   SimplifyCode(Worklist, L);
 | |
| }
 | |
| 
 | |
| /// SimplifyCode - Okay, now that we have simplified some instructions in the
 | |
| /// loop, walk over it and constant prop, dce, and fold control flow where
 | |
| /// possible.  Note that this is effectively a very simple loop-structure-aware
 | |
| /// optimizer.  During processing of this loop, L could very well be deleted, so
 | |
| /// it must not be used.
 | |
| ///
 | |
| /// FIXME: When the loop optimizer is more mature, separate this out to a new
 | |
| /// pass.
 | |
| ///
 | |
| void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // Simple DCE.
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       DEBUG(dbgs() << "Remove dead instruction '" << *I);
 | |
| 
 | |
|       // Add uses to the worklist, which may be dead now.
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           Worklist.push_back(Use);
 | |
|       LPM->deleteSimpleAnalysisValue(I, L);
 | |
|       RemoveFromWorklist(I, Worklist);
 | |
|       I->eraseFromParent();
 | |
|       ++NumSimplify;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // See if instruction simplification can hack this up.  This is common for
 | |
|     // things like "select false, X, Y" after unswitching made the condition be
 | |
|     // 'false'.  TODO: update the domtree properly so we can pass it here.
 | |
|     if (Value *V = SimplifyInstruction(I))
 | |
|       if (LI->replacementPreservesLCSSAForm(I, V)) {
 | |
|         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // Special case hacks that appear commonly in unswitched code.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | |
|       if (BI->isUnconditional()) {
 | |
|         // If BI's parent is the only pred of the successor, fold the two blocks
 | |
|         // together.
 | |
|         BasicBlock *Pred = BI->getParent();
 | |
|         BasicBlock *Succ = BI->getSuccessor(0);
 | |
|         BasicBlock *SinglePred = Succ->getSinglePredecessor();
 | |
|         if (!SinglePred) continue;  // Nothing to do.
 | |
|         assert(SinglePred == Pred && "CFG broken");
 | |
| 
 | |
|         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
 | |
|               << Succ->getName() << "\n");
 | |
| 
 | |
|         // Resolve any single entry PHI nodes in Succ.
 | |
|         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
 | |
|           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
 | |
| 
 | |
|         // If Succ has any successors with PHI nodes, update them to have
 | |
|         // entries coming from Pred instead of Succ.
 | |
|         Succ->replaceAllUsesWith(Pred);
 | |
| 
 | |
|         // Move all of the successor contents from Succ to Pred.
 | |
|         Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
 | |
|                                    Succ->end());
 | |
|         LPM->deleteSimpleAnalysisValue(BI, L);
 | |
|         BI->eraseFromParent();
 | |
|         RemoveFromWorklist(BI, Worklist);
 | |
| 
 | |
|         // Remove Succ from the loop tree.
 | |
|         LI->removeBlock(Succ);
 | |
|         LPM->deleteSimpleAnalysisValue(Succ, L);
 | |
|         Succ->eraseFromParent();
 | |
|         ++NumSimplify;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
 | |
|         // Conditional branch.  Turn it into an unconditional branch, then
 | |
|         // remove dead blocks.
 | |
|         continue;  // FIXME: Enable.
 | |
| 
 | |
|         DEBUG(dbgs() << "Folded branch: " << *BI);
 | |
|         BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
 | |
|         BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
 | |
|         DeadSucc->removePredecessor(BI->getParent(), true);
 | |
|         Worklist.push_back(BranchInst::Create(LiveSucc, BI));
 | |
|         LPM->deleteSimpleAnalysisValue(BI, L);
 | |
|         BI->eraseFromParent();
 | |
|         RemoveFromWorklist(BI, Worklist);
 | |
|         ++NumSimplify;
 | |
| 
 | |
|         RemoveBlockIfDead(DeadSucc, Worklist, L);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| }
 |