mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16870 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			831 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			831 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SparcV9CodeEmitter.cpp --------------------------------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // SPARC-specific backend for emitting machine code to memory.
 | |
| //
 | |
| // This module also contains the code for lazily resolving the targets
 | |
| // of call instructions, including the callback used to redirect calls
 | |
| // to functions for which the code has not yet been generated into the
 | |
| // JIT compiler.
 | |
| //
 | |
| // This file #includes SparcV9CodeEmitter.inc, which contains the code
 | |
| // for getBinaryCodeForInstr(), a method that converts a MachineInstr
 | |
| // into the corresponding binary machine code word.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/hash_set"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "SparcV9Internals.h"
 | |
| #include "SparcV9TargetMachine.h"
 | |
| #include "SparcV9RegInfo.h"
 | |
| #include "SparcV9CodeEmitter.h"
 | |
| #include "MachineFunctionInfo.h"
 | |
| #include "llvm/Config/alloca.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> OverwrittenCalls("call-ovwr", "Number of over-written calls");
 | |
|   Statistic<> UnmodifiedCalls("call-skip", "Number of unmodified calls");
 | |
|   Statistic<> CallbackCalls("callback", "Number CompilationCallback() calls");
 | |
| }
 | |
| 
 | |
| bool SparcV9TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
 | |
|                                                       MachineCodeEmitter &MCE) {
 | |
|   PM.add(new SparcV9CodeEmitter(*this, MCE));
 | |
|   PM.add(createSparcV9MachineCodeDestructionPass());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class JITResolver {
 | |
|     SparcV9CodeEmitter &SparcV9;
 | |
|     MachineCodeEmitter &MCE;
 | |
| 
 | |
|     /// LazyCodeGenMap - Keep track of call sites for functions that are to be
 | |
|     /// lazily resolved.
 | |
|     ///
 | |
|     std::map<uint64_t, Function*> LazyCodeGenMap;
 | |
| 
 | |
|     /// LazyResolverMap - Keep track of the lazy resolver created for a
 | |
|     /// particular function so that we can reuse them if necessary.
 | |
|     ///
 | |
|     std::map<Function*, uint64_t> LazyResolverMap;
 | |
| 
 | |
|   public:
 | |
|     enum CallType { ShortCall, FarCall };
 | |
| 
 | |
|   private:
 | |
|     /// We need to keep track of whether we used a simple call or a far call
 | |
|     /// (many instructions) in sequence. This means we need to keep track of
 | |
|     /// what type of stub we generate.
 | |
|     static std::map<uint64_t, CallType> LazyCallFlavor;
 | |
| 
 | |
|   public:
 | |
|     JITResolver(SparcV9CodeEmitter &V9,
 | |
|                 MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
 | |
|     uint64_t getLazyResolver(Function *F);
 | |
|     uint64_t addFunctionReference(uint64_t Address, Function *F);
 | |
|     void deleteFunctionReference(uint64_t Address);
 | |
|     void addCallFlavor(uint64_t Address, CallType Flavor) {
 | |
|       LazyCallFlavor[Address] = Flavor;
 | |
|     }
 | |
| 
 | |
|     // Utility functions for accessing data from static callback
 | |
|     uint64_t getCurrentPCValue() {
 | |
|       return MCE.getCurrentPCValue();
 | |
|     }
 | |
|     unsigned getBinaryCodeForInstr(MachineInstr &MI) {
 | |
|       return SparcV9.getBinaryCodeForInstr(MI);
 | |
|     }
 | |
| 
 | |
|     inline void insertFarJumpAtAddr(int64_t Value, uint64_t Addr);
 | |
|     void insertJumpAtAddr(int64_t Value, uint64_t &Addr);
 | |
| 
 | |
|   private:
 | |
|     uint64_t emitStubForFunction(Function *F);
 | |
|     static void SaveRegisters(uint64_t DoubleFP[], uint64_t CC[],
 | |
|                               uint64_t Globals[]);
 | |
|     static void RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[],
 | |
|                                  uint64_t Globals[]);
 | |
|     static void CompilationCallback();
 | |
|     uint64_t resolveFunctionReference(uint64_t RetAddr);
 | |
| 
 | |
|   };
 | |
| 
 | |
|   JITResolver *TheJITResolver;
 | |
|   std::map<uint64_t, JITResolver::CallType> JITResolver::LazyCallFlavor;
 | |
| }
 | |
| 
 | |
| /// addFunctionReference - This method is called when we need to emit the
 | |
| /// address of a function that has not yet been emitted, so we don't know the
 | |
| /// address.  Instead, we emit a call to the CompilationCallback method, and
 | |
| /// keep track of where we are.
 | |
| ///
 | |
| uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
 | |
|   LazyCodeGenMap[Address] = F;
 | |
|   return (intptr_t)&JITResolver::CompilationCallback;
 | |
| }
 | |
| 
 | |
| /// deleteFunctionReference - If we are emitting a far call, we already added a
 | |
| /// reference to the function, but it is now incorrect, since the address to the
 | |
| /// JIT resolver is too far away to be a simple call instruction. This is used
 | |
| /// to remove the address from the map.
 | |
| ///
 | |
| void JITResolver::deleteFunctionReference(uint64_t Address) {
 | |
|   std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(Address);
 | |
|   assert(I != LazyCodeGenMap.end() && "Not in map!");
 | |
|   LazyCodeGenMap.erase(I);  
 | |
| }
 | |
| 
 | |
| uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
 | |
|   std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
 | |
|   assert(I != LazyCodeGenMap.end() && "Not in map!");
 | |
|   Function *F = I->second;
 | |
|   LazyCodeGenMap.erase(I);
 | |
|   return MCE.forceCompilationOf(F);
 | |
| }
 | |
| 
 | |
| uint64_t JITResolver::getLazyResolver(Function *F) {
 | |
|   std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
 | |
|   if (I != LazyResolverMap.end() && I->first == F) return I->second;
 | |
|   
 | |
|   uint64_t Stub = emitStubForFunction(F);
 | |
|   LazyResolverMap.insert(I, std::make_pair(F, Stub));
 | |
|   return Stub;
 | |
| }
 | |
| 
 | |
| void JITResolver::insertJumpAtAddr(int64_t JumpTarget, uint64_t &Addr) {
 | |
|   DEBUG(std::cerr << "Emitting a jump to 0x" << std::hex << JumpTarget << "\n");
 | |
| 
 | |
|   // If the target function is close enough to fit into the 19bit disp of
 | |
|   // BA, we should use this version, as it's much cheaper to generate.
 | |
|   int64_t BranchTarget = (JumpTarget-Addr) >> 2;
 | |
|   if (BranchTarget >= (1 << 19) || BranchTarget <= -(1 << 19)) {
 | |
|     TheJITResolver->insertFarJumpAtAddr(JumpTarget, Addr);
 | |
|   } else {
 | |
|     // ba <target>
 | |
|     MachineInstr *I = BuildMI(V9::BA, 1).addSImm(BranchTarget);
 | |
|     *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I);
 | |
|     Addr += 4;
 | |
|     delete I;
 | |
| 
 | |
|     // nop
 | |
|     I = BuildMI(V9::NOP, 0);
 | |
|     *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*I);
 | |
|     delete I;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) {
 | |
|   static const unsigned 
 | |
|     o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0,
 | |
|     g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5;
 | |
| 
 | |
|   MachineInstr* BinaryCode[] = {
 | |
|     //
 | |
|     // Get address to branch into %g1, using %g5 as a temporary
 | |
|     //
 | |
|     // sethi %uhi(Target), %g5     ;; get upper 22 bits of Target into %g5
 | |
|     BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5),
 | |
|     // or %g5, %ulo(Target), %g5   ;; get 10 lower bits of upper word into %g5
 | |
|     BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5),
 | |
|     // sllx %g5, 32, %g5           ;; shift those 10 bits to the upper word
 | |
|     BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5),
 | |
|     // sethi %hi(Target), %g1      ;; extract bits 10-31 into the dest reg
 | |
|     BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1),
 | |
|     // or %g5, %g1, %g1            ;; get upper word (in %g5) into %g1
 | |
|     BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1),
 | |
|     // or %g1, %lo(Target), %g1    ;; get lowest 10 bits of Target into %g1
 | |
|     BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1),
 | |
|     // jmpl %g1, %g0, %g0          ;; indirect branch on %g1
 | |
|     BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(g0),
 | |
|     // nop                         ;; delay slot
 | |
|     BuildMI(V9::NOP, 0)
 | |
|   };
 | |
| 
 | |
|   for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) {
 | |
|     *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*BinaryCode[i]);
 | |
|     delete BinaryCode[i];
 | |
|     Addr += 4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void JITResolver::SaveRegisters(uint64_t DoubleFP[], uint64_t CC[], 
 | |
|                                 uint64_t Globals[]) {
 | |
| #if defined(__sparcv9)
 | |
| 
 | |
|   __asm__ __volatile__ (// Save condition-code registers
 | |
|                         "stx %%fsr, %0;\n\t" 
 | |
|                         "rd %%fprs, %1;\n\t" 
 | |
|                         "rd %%ccr,  %2;\n\t"
 | |
|                         : "=m"(CC[0]), "=r"(CC[1]), "=r"(CC[2]));
 | |
| 
 | |
|   __asm__ __volatile__ (// Save globals g1 and g5
 | |
|                         "stx %%g1, %0;\n\t"
 | |
|                         "stx %%g5, %0;\n\t"
 | |
|                         : "=m"(Globals[0]), "=m"(Globals[1]));
 | |
| 
 | |
|   // GCC says: `asm' only allows up to thirty parameters!
 | |
|   __asm__ __volatile__ (// Save Single/Double FP registers, part 1
 | |
|                         "std  %%f0,  %0;\n\t"  "std  %%f2,  %1;\n\t"
 | |
|                         "std  %%f4,  %2;\n\t"  "std  %%f6,  %3;\n\t"
 | |
|                         "std  %%f8,  %4;\n\t"  "std  %%f10, %5;\n\t"
 | |
|                         "std  %%f12, %6;\n\t"  "std  %%f14, %7;\n\t"
 | |
|                         "std  %%f16, %8;\n\t"  "std  %%f18, %9;\n\t"
 | |
|                         "std  %%f20, %10;\n\t" "std  %%f22, %11;\n\t"
 | |
|                         "std  %%f24, %12;\n\t" "std  %%f26, %13;\n\t"
 | |
|                         "std  %%f28, %14;\n\t" "std  %%f30, %15;\n\t"
 | |
|                         : "=m"(DoubleFP[ 0]), "=m"(DoubleFP[ 1]),
 | |
|                           "=m"(DoubleFP[ 2]), "=m"(DoubleFP[ 3]),
 | |
|                           "=m"(DoubleFP[ 4]), "=m"(DoubleFP[ 5]),
 | |
|                           "=m"(DoubleFP[ 6]), "=m"(DoubleFP[ 7]),
 | |
|                           "=m"(DoubleFP[ 8]), "=m"(DoubleFP[ 9]),
 | |
|                           "=m"(DoubleFP[10]), "=m"(DoubleFP[11]),
 | |
|                           "=m"(DoubleFP[12]), "=m"(DoubleFP[13]),
 | |
|                           "=m"(DoubleFP[14]), "=m"(DoubleFP[15]));
 | |
|                         
 | |
|   __asm__ __volatile__ (// Save Double FP registers, part 2
 | |
|                         "std %%f32, %0;\n\t"  "std %%f34, %1;\n\t"
 | |
|                         "std %%f36, %2;\n\t"  "std %%f38, %3;\n\t"
 | |
|                         "std %%f40, %4;\n\t"  "std %%f42, %5;\n\t"
 | |
|                         "std %%f44, %6;\n\t"  "std %%f46, %7;\n\t"
 | |
|                         "std %%f48, %8;\n\t"  "std %%f50, %9;\n\t"
 | |
|                         "std %%f52, %10;\n\t" "std %%f54, %11;\n\t"
 | |
|                         "std %%f56, %12;\n\t" "std %%f58, %13;\n\t"
 | |
|                         "std %%f60, %14;\n\t" "std %%f62, %15;\n\t"
 | |
|                         : "=m"(DoubleFP[16]), "=m"(DoubleFP[17]),
 | |
|                           "=m"(DoubleFP[18]), "=m"(DoubleFP[19]),
 | |
|                           "=m"(DoubleFP[20]), "=m"(DoubleFP[21]),
 | |
|                           "=m"(DoubleFP[22]), "=m"(DoubleFP[23]),
 | |
|                           "=m"(DoubleFP[24]), "=m"(DoubleFP[25]),
 | |
|                           "=m"(DoubleFP[26]), "=m"(DoubleFP[27]),
 | |
|                           "=m"(DoubleFP[28]), "=m"(DoubleFP[29]),
 | |
|                           "=m"(DoubleFP[30]), "=m"(DoubleFP[31]));
 | |
| #else
 | |
|   std::cerr << "ERROR: RUNNING CODE THAT ONLY WORKS ON A SPARCV9 HOST!\n";
 | |
|   abort();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void JITResolver::RestoreRegisters(uint64_t DoubleFP[], uint64_t CC[], 
 | |
|                                    uint64_t Globals[])
 | |
| {
 | |
| #if defined(__sparcv9)
 | |
| 
 | |
|   __asm__ __volatile__ (// Restore condition-code registers
 | |
|                         "ldx %0,    %%fsr;\n\t" 
 | |
|                         "wr  %1, 0, %%fprs;\n\t"
 | |
|                         "wr  %2, 0, %%ccr;\n\t" 
 | |
|                         :: "m"(CC[0]), "r"(CC[1]), "r"(CC[2]));
 | |
| 
 | |
|   __asm__ __volatile__ (// Restore globals g1 and g5
 | |
|                         "ldx %0, %%g1;\n\t"
 | |
|                         "ldx %0, %%g5;\n\t"
 | |
|                         :: "m"(Globals[0]), "m"(Globals[1]));
 | |
| 
 | |
|   // GCC says: `asm' only allows up to thirty parameters!
 | |
|   __asm__ __volatile__ (// Restore Single/Double FP registers, part 1
 | |
|                         "ldd %0,  %%f0;\n\t"   "ldd %1, %%f2;\n\t" 
 | |
|                         "ldd %2,  %%f4;\n\t"   "ldd %3, %%f6;\n\t" 
 | |
|                         "ldd %4,  %%f8;\n\t"   "ldd %5, %%f10;\n\t" 
 | |
|                         "ldd %6,  %%f12;\n\t"  "ldd %7, %%f14;\n\t" 
 | |
|                         "ldd %8,  %%f16;\n\t"  "ldd %9, %%f18;\n\t" 
 | |
|                         "ldd %10, %%f20;\n\t" "ldd %11, %%f22;\n\t"
 | |
|                         "ldd %12, %%f24;\n\t" "ldd %13, %%f26;\n\t"
 | |
|                         "ldd %14, %%f28;\n\t" "ldd %15, %%f30;\n\t"
 | |
|                         :: "m"(DoubleFP[0]), "m"(DoubleFP[1]),
 | |
|                            "m"(DoubleFP[2]), "m"(DoubleFP[3]),
 | |
|                            "m"(DoubleFP[4]), "m"(DoubleFP[5]),
 | |
|                            "m"(DoubleFP[6]), "m"(DoubleFP[7]),
 | |
|                            "m"(DoubleFP[8]), "m"(DoubleFP[9]),
 | |
|                            "m"(DoubleFP[10]), "m"(DoubleFP[11]),
 | |
|                            "m"(DoubleFP[12]), "m"(DoubleFP[13]),
 | |
|                            "m"(DoubleFP[14]), "m"(DoubleFP[15]));
 | |
| 
 | |
|   __asm__ __volatile__ (// Restore Double FP registers, part 2
 | |
|                         "ldd %0, %%f32;\n\t"  "ldd %1, %%f34;\n\t"
 | |
|                         "ldd %2, %%f36;\n\t"  "ldd %3, %%f38;\n\t"
 | |
|                         "ldd %4, %%f40;\n\t"  "ldd %5, %%f42;\n\t"
 | |
|                         "ldd %6, %%f44;\n\t"  "ldd %7, %%f46;\n\t"
 | |
|                         "ldd %8, %%f48;\n\t"  "ldd %9, %%f50;\n\t"
 | |
|                         "ldd %10, %%f52;\n\t" "ldd %11, %%f54;\n\t"
 | |
|                         "ldd %12, %%f56;\n\t" "ldd %13, %%f58;\n\t"
 | |
|                         "ldd %14, %%f60;\n\t" "ldd %15, %%f62;\n\t"
 | |
|                         :: "m"(DoubleFP[16]), "m"(DoubleFP[17]),
 | |
|                            "m"(DoubleFP[18]), "m"(DoubleFP[19]),
 | |
|                            "m"(DoubleFP[20]), "m"(DoubleFP[21]),
 | |
|                            "m"(DoubleFP[22]), "m"(DoubleFP[23]),
 | |
|                            "m"(DoubleFP[24]), "m"(DoubleFP[25]),
 | |
|                            "m"(DoubleFP[26]), "m"(DoubleFP[27]),
 | |
|                            "m"(DoubleFP[28]), "m"(DoubleFP[29]),
 | |
|                            "m"(DoubleFP[30]), "m"(DoubleFP[31]));
 | |
| #else
 | |
|   std::cerr << "ERROR: RUNNING CODE THAT ONLY WORKS ON A SPARCV9 HOST!\n";
 | |
|   abort();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void JITResolver::CompilationCallback() {
 | |
|   // Local space to save the registers
 | |
|   uint64_t DoubleFP[32];
 | |
|   uint64_t CC[3];
 | |
|   uint64_t Globals[2];
 | |
| 
 | |
|   SaveRegisters(DoubleFP, CC, Globals);
 | |
|   ++CallbackCalls;
 | |
| 
 | |
|   uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0);
 | |
|   uint64_t CameFrom1 = (uint64_t)(intptr_t)__builtin_return_address(1);
 | |
|   int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom);
 | |
|   DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n");
 | |
|   register int64_t returnAddr = 0;
 | |
| #if defined(__sparcv9)
 | |
|   __asm__ __volatile__ ("add %%i7, %%g0, %0" : "=r" (returnAddr) : );
 | |
|   DEBUG(std::cerr << "Read i7 (return addr) = "
 | |
|                   << std::hex << returnAddr << ", value: "
 | |
|                   << std::hex << *(unsigned*)returnAddr << "\n");
 | |
| #else
 | |
|   std::cerr << "ERROR: RUNNING CODE THAT ONLY WORKS ON A SPARCV9 HOST!\n";
 | |
|   abort();
 | |
| #endif
 | |
| 
 | |
|   // If we can rewrite the ORIGINAL caller, we eliminate the whole need for a
 | |
|   // trampoline function stub!!
 | |
|   unsigned OrigCallInst = *((unsigned*)(intptr_t)CameFrom1);
 | |
|   int64_t OrigTarget = (Target-CameFrom1) >> 2;
 | |
|   if ((OrigCallInst & (1 << 30)) && 
 | |
|       (OrigTarget <= (1 << 30) && OrigTarget >= -(1 << 30)))
 | |
|   {
 | |
|     // The original call instruction was CALL <immed>, which means we can
 | |
|     // overwrite it directly, since the offset will fit into 30 bits
 | |
|     MachineInstr *C = BuildMI(V9::CALL, 1).addSImm(OrigTarget);
 | |
|     *((unsigned*)(intptr_t)CameFrom1)=TheJITResolver->getBinaryCodeForInstr(*C);
 | |
|     delete C;
 | |
|     ++OverwrittenCalls;
 | |
|   } else {
 | |
|     ++UnmodifiedCalls;
 | |
|   }
 | |
| 
 | |
|   // Rewrite the call target so that we don't fault every time we execute it.
 | |
|   //
 | |
| 
 | |
|   static const unsigned o6 = SparcV9IntRegClass::o6;
 | |
| 
 | |
|   // Subtract enough to overwrite up to the 'save' instruction
 | |
|   // This depends on whether we made a short call (1 instruction) or the
 | |
|   // farCall (7 instructions)
 | |
|   uint64_t Offset = (LazyCallFlavor[CameFrom] == ShortCall) ? 4 : 28;
 | |
|   uint64_t CodeBegin = CameFrom - Offset;
 | |
| 
 | |
|   // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
 | |
|   // pointer elimination has been performed.  Having a variable sized alloca
 | |
|   // disables frame pointer elimination currently, even if it's dead.  This is
 | |
|   // a gross hack.
 | |
|   alloca(42+Offset);
 | |
|   // FIXME FIXME FIXME FIXME
 | |
|   
 | |
|   // Make sure that what we're about to overwrite is indeed "save"
 | |
|   MachineInstr *SV =BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
 | |
|   unsigned SaveInst = TheJITResolver->getBinaryCodeForInstr(*SV);
 | |
|   delete SV;
 | |
|   unsigned CodeInMem = *(unsigned*)(intptr_t)CodeBegin;
 | |
|   if (CodeInMem != SaveInst) {
 | |
|     std::cerr << "About to overwrite smthg not a save instr!";
 | |
|     abort();
 | |
|   }
 | |
|   // Overwrite it
 | |
|   TheJITResolver->insertJumpAtAddr(Target, CodeBegin);
 | |
| 
 | |
|   // Flush the I-Cache: FLUSH clears out a doubleword at a given address
 | |
|   // Self-modifying code MUST clear out the I-Cache to be portable
 | |
| #if defined(__sparcv9)
 | |
|   for (int i = -Offset, e = 32-((int64_t)Offset); i < e; i += 8)
 | |
|     __asm__ __volatile__ ("flush %%i7 + %0" : : "r" (i));
 | |
| #endif
 | |
| 
 | |
|   // Change the return address to re-execute the restore, then the jump.
 | |
|   DEBUG(std::cerr << "Callback returning to: 0x"
 | |
|                   << std::hex << (CameFrom-Offset-12) << "\n");
 | |
| #if defined(__sparcv9)
 | |
|   __asm__ __volatile__ ("sub %%i7, %0, %%i7" : : "r" (Offset+12));
 | |
| #endif
 | |
| 
 | |
|   RestoreRegisters(DoubleFP, CC, Globals);
 | |
| }
 | |
| 
 | |
| /// emitStubForFunction - This method is used by the JIT when it needs to emit
 | |
| /// the address of a function for a function whose code has not yet been
 | |
| /// generated.  In order to do this, it generates a stub which jumps to the lazy
 | |
| /// function compiler, which will eventually get fixed to call the function
 | |
| /// directly.
 | |
| ///
 | |
| uint64_t JITResolver::emitStubForFunction(Function *F) {
 | |
|   MCE.startFunctionStub(*F, 44);
 | |
| 
 | |
|   DEBUG(std::cerr << "Emitting stub at addr: 0x" 
 | |
|                   << std::hex << MCE.getCurrentPCValue() << "\n");
 | |
| 
 | |
|   unsigned o6 = SparcV9IntRegClass::o6, g0 = SparcV9IntRegClass::g0;
 | |
| 
 | |
|   // restore %g0, 0, %g0
 | |
|   MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0)
 | |
|                                             .addMReg(g0, MachineOperand::Def);
 | |
|   SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*R));
 | |
|   delete R;
 | |
| 
 | |
|   // save %sp, -192, %sp
 | |
|   MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
 | |
|   SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV));
 | |
|   delete SV;
 | |
| 
 | |
|   int64_t CurrPC = MCE.getCurrentPCValue();
 | |
|   int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
 | |
|   int64_t CallTarget = (Addr-CurrPC) >> 2;
 | |
|   if (CallTarget >= (1 << 29) || CallTarget <= -(1 << 29)) {
 | |
|     // Since this is a far call, the actual address of the call is shifted
 | |
|     // by the number of instructions it takes to calculate the exact address
 | |
|     deleteFunctionReference(CurrPC);
 | |
|     SparcV9.emitFarCall(Addr, F);
 | |
|   } else {
 | |
|     // call CallTarget              ;; invoke the callback
 | |
|     MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget);
 | |
|     SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
 | |
|     delete Call;
 | |
|   
 | |
|     // nop                          ;; call delay slot
 | |
|     MachineInstr *Nop = BuildMI(V9::NOP, 0);
 | |
|     SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
 | |
|     delete Nop;
 | |
| 
 | |
|     addCallFlavor(CurrPC, ShortCall);
 | |
|   }
 | |
| 
 | |
|   SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
 | |
|   return (intptr_t)MCE.finishFunctionStub(*F)+4; /* 1 instr past the restore */
 | |
| }
 | |
| 
 | |
| SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
 | |
|                                        MachineCodeEmitter &M): TM(tm), MCE(M)
 | |
| {
 | |
|   TheJITResolver = new JITResolver(*this, M);
 | |
| }
 | |
| 
 | |
| SparcV9CodeEmitter::~SparcV9CodeEmitter() {
 | |
|   delete TheJITResolver;
 | |
| }
 | |
| 
 | |
| void SparcV9CodeEmitter::emitWord(unsigned Val) {
 | |
|   MCE.emitWord(Val);
 | |
| }
 | |
| 
 | |
| unsigned 
 | |
| SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg,
 | |
|                                   MachineInstr &MI) {
 | |
|   const SparcV9RegInfo &RI = *TM.getRegInfo();
 | |
|   unsigned regClass, regType = RI.getRegType(fakeReg);
 | |
|   // At least map fakeReg into its class
 | |
|   fakeReg = RI.getClassRegNum(fakeReg, regClass);
 | |
| 
 | |
|   switch (regClass) {
 | |
|   case SparcV9RegInfo::IntRegClassID: {
 | |
|     // SparcV9 manual, p31
 | |
|     static const unsigned IntRegMap[] = {
 | |
|       // "o0", "o1", "o2", "o3", "o4", "o5",       "o7",
 | |
|       8, 9, 10, 11, 12, 13, 15,
 | |
|       // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
 | |
|       16, 17, 18, 19, 20, 21, 22, 23,
 | |
|       // "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7",
 | |
|       24, 25, 26, 27, 28, 29, 30, 31,
 | |
|       // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", 
 | |
|       0, 1, 2, 3, 4, 5, 6, 7,
 | |
|       // "o6"
 | |
|       14
 | |
|     }; 
 | |
|  
 | |
|     return IntRegMap[fakeReg];
 | |
|     break;
 | |
|   }
 | |
|   case SparcV9RegInfo::FloatRegClassID: {
 | |
|     DEBUG(std::cerr << "FP reg: " << fakeReg << "\n");
 | |
|     if (regType == SparcV9RegInfo::FPSingleRegType) {
 | |
|       // only numbered 0-31, hence can already fit into 5 bits (and 6)
 | |
|       DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n");
 | |
|     } else if (regType == SparcV9RegInfo::FPDoubleRegType) {
 | |
|       // FIXME: This assumes that we only have 5-bit register fields!
 | |
|       // From SparcV9 Manual, page 40.
 | |
|       // The bit layout becomes: b[4], b[3], b[2], b[1], b[5]
 | |
|       fakeReg |= (fakeReg >> 5) & 1;
 | |
|       fakeReg &= 0x1f;
 | |
|       DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n");      
 | |
|     }
 | |
|     return fakeReg;
 | |
|   }
 | |
|   case SparcV9RegInfo::IntCCRegClassID: {
 | |
|     /*                                   xcc, icc, ccr */
 | |
|     static const unsigned IntCCReg[] = {  6,   4,   2 };
 | |
|     
 | |
|     assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0])
 | |
|              && "CC register out of bounds for IntCCReg map");      
 | |
|     DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n");
 | |
|     return IntCCReg[fakeReg];
 | |
|   }
 | |
|   case SparcV9RegInfo::FloatCCRegClassID: {
 | |
|     /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */
 | |
|     DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n");
 | |
|     return fakeReg;
 | |
|   }
 | |
|   case SparcV9RegInfo::SpecialRegClassID: {
 | |
|     // Currently only "special" reg is %fsr, which is encoded as 1 in
 | |
|     // instructions and 0 in SparcV9SpecialRegClass.
 | |
|     static const unsigned SpecialReg[] = {  1 };
 | |
|     assert(fakeReg < sizeof(SpecialReg)/sizeof(SpecialReg[0])
 | |
|              && "Special register out of bounds for SpecialReg map");      
 | |
|     DEBUG(std::cerr << "Special reg: " << SpecialReg[fakeReg] << "\n");
 | |
|     return SpecialReg[fakeReg];
 | |
|   }
 | |
|   default:
 | |
|     assert(0 && "Invalid unified register number in getRealRegNum");
 | |
|     return fakeReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // WARNING: if the call used the delay slot to do meaningful work, that's not
 | |
| // being accounted for, and the behavior will be incorrect!!
 | |
| inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target, Function *F) {
 | |
|   static const unsigned o6 = SparcV9IntRegClass::o6,
 | |
|       o7 = SparcV9IntRegClass::o7, g0 = SparcV9IntRegClass::g0,
 | |
|       g1 = SparcV9IntRegClass::g1, g5 = SparcV9IntRegClass::g5;
 | |
| 
 | |
|   MachineInstr* BinaryCode[] = {
 | |
|     //
 | |
|     // Get address to branch into %g1, using %g5 as a temporary
 | |
|     //
 | |
|     // sethi %uhi(Target), %g5   ;; get upper 22 bits of Target into %g5
 | |
|     BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5),
 | |
|     // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1
 | |
|     BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5),
 | |
|     // sllx %g5, 32, %g5         ;; shift those 10 bits to the upper word
 | |
|     BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5),
 | |
|     // sethi %hi(Target), %g1    ;; extract bits 10-31 into the dest reg
 | |
|     BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1),
 | |
|     // or %g5, %g1, %g1          ;; get upper word (in %g5) into %g1
 | |
|     BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1),
 | |
|     // or %g1, %lo(Target), %g1  ;; get lowest 10 bits of Target into %g1
 | |
|     BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1),
 | |
|     // jmpl %g1, %g0, %o7        ;; indirect call on %g1
 | |
|     BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(o7),
 | |
|     // nop                       ;; delay slot
 | |
|     BuildMI(V9::NOP, 0)
 | |
|   };
 | |
| 
 | |
|   for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) {
 | |
|     // This is where we save the return address in the LazyResolverMap!!
 | |
|     if (i == 6 && F != 0) { // Do this right before the JMPL
 | |
|       uint64_t CurrPC = MCE.getCurrentPCValue();
 | |
|       TheJITResolver->addFunctionReference(CurrPC, F);
 | |
|       // Remember that this is a far call, to subtract appropriate offset later
 | |
|       TheJITResolver->addCallFlavor(CurrPC, JITResolver::FarCall);
 | |
|     }
 | |
| 
 | |
|     emitWord(getBinaryCodeForInstr(*BinaryCode[i]));
 | |
|     delete BinaryCode[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SparcV9JITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
 | |
|   assert (TheJITResolver &&
 | |
|           "Can only call replaceMachineCodeForFunction from within JIT");
 | |
|   uint64_t Target = (uint64_t)(intptr_t)New;
 | |
|   uint64_t CodeBegin = (uint64_t)(intptr_t)Old;
 | |
|   TheJITResolver->insertJumpAtAddr(Target, CodeBegin);
 | |
| }
 | |
| 
 | |
| int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
 | |
|                                               MachineOperand &MO) {
 | |
|   int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
 | |
|                   // or things that get fixed up later by the JIT.
 | |
|   if (MO.isPCRelativeDisp()) {
 | |
|     DEBUG(std::cerr << "PCRelativeDisp: ");
 | |
|     Value *V = MO.getVRegValue();
 | |
|     if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
 | |
|       DEBUG(std::cerr << "Saving reference to BB (VReg)\n");
 | |
|       unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
 | |
|       BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
 | |
|     } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       // The real target of the branch is CI = PC + (rv * 4)
 | |
|       // So undo that: give the instruction (CI - PC) / 4
 | |
|       rv = (CI->getRawValue() - MCE.getCurrentPCValue()) / 4;
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|       // same as MO.isGlobalAddress()
 | |
|       DEBUG(std::cerr << "GlobalValue: ");
 | |
|       // external function calls, etc.?
 | |
|       if (Function *F = dyn_cast<Function>(GV)) {
 | |
|         DEBUG(std::cerr << "Function: ");
 | |
|         // NOTE: This results in stubs being generated even for
 | |
|         // external, native functions, which is not optimal. See PR103.
 | |
|         rv = (int64_t)MCE.getGlobalValueAddress(F);
 | |
|         if (rv == 0) {
 | |
|           DEBUG(std::cerr << "not yet generated\n");
 | |
|           // Function has not yet been code generated!
 | |
|           TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
 | |
|           // Delayed resolution...
 | |
|           rv = TheJITResolver->getLazyResolver(F);
 | |
|         } else {
 | |
|           DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n");
 | |
|         }
 | |
|       } else {
 | |
|         rv = (int64_t)MCE.getGlobalValueAddress(GV);
 | |
|         DEBUG(std::cerr << "Global addr: 0x" << std::hex << rv << "\n");
 | |
|       }
 | |
|       // The real target of the call is Addr = PC + (rv * 4)
 | |
|       // So undo that: give the instruction (Addr - PC) / 4
 | |
|       if (MI.getOpcode() == V9::CALL) {
 | |
|         int64_t CurrPC = MCE.getCurrentPCValue();
 | |
|         DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n"
 | |
|                         << "curr PC: 0x" << std::hex << CurrPC << "\n");
 | |
|         int64_t CallInstTarget = (rv - CurrPC) >> 2;
 | |
|         if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) {
 | |
|           DEBUG(std::cerr << "Making far call!\n");
 | |
|           // address is out of bounds for the 30-bit call,
 | |
|           // make an indirect jump-and-link
 | |
|           emitFarCall(rv);
 | |
|           // this invalidates the instruction so that the call with an incorrect
 | |
|           // address will not be emitted
 | |
|           rv = 0; 
 | |
|         } else {
 | |
|           // The call fits into 30 bits, so just return the corrected address
 | |
|           rv = CallInstTarget;
 | |
|         }
 | |
|         DEBUG(std::cerr << "returning addr: 0x" << rv << "\n");
 | |
|       }
 | |
|     } else {
 | |
|       std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
 | |
|       abort();
 | |
|     }
 | |
|   } else if (MO.isRegister() || MO.getType() == MachineOperand::MO_CCRegister)
 | |
|   {
 | |
|     // This is necessary because the SparcV9 backend doesn't actually lay out
 | |
|     // registers in the real fashion -- it skips those that it chooses not to
 | |
|     // allocate, i.e. those that are the FP, SP, etc.
 | |
|     unsigned fakeReg = MO.getReg();
 | |
|     unsigned realRegByClass = getRealRegNum(fakeReg, MI);
 | |
|     DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => "
 | |
|                     << realRegByClass << " (LLC: " 
 | |
|                     << TM.getRegInfo()->getUnifiedRegName(fakeReg) << ")\n");
 | |
|     rv = realRegByClass;
 | |
|   } else if (MO.isImmediate()) {
 | |
|     rv = MO.getImmedValue();
 | |
|     DEBUG(std::cerr << "immed: " << rv << "\n");
 | |
|   } else if (MO.isGlobalAddress()) {
 | |
|     DEBUG(std::cerr << "GlobalAddress: not PC-relative\n");
 | |
|     rv = (int64_t)
 | |
|       (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
 | |
|                                  MI, MO.isPCRelative());
 | |
|   } else if (MO.isMachineBasicBlock()) {
 | |
|     // Duplicate code of the above case for VirtualRegister, BasicBlock... 
 | |
|     // It should really hit this case, but SparcV9 backend uses VRegs instead
 | |
|     DEBUG(std::cerr << "Saving reference to MBB\n");
 | |
|     const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
 | |
|     unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
 | |
|     BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
 | |
|   } else if (MO.isExternalSymbol()) {
 | |
|     // SparcV9 backend doesn't generate this (yet...)
 | |
|     std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
 | |
|     abort();
 | |
|   } else if (MO.isFrameIndex()) {
 | |
|     // SparcV9 backend doesn't generate this (yet...)
 | |
|     int FrameIndex = MO.getFrameIndex();
 | |
|     std::cerr << "ERROR: Frame index unhandled.\n";
 | |
|     abort();
 | |
|   } else if (MO.isConstantPoolIndex()) {
 | |
|     unsigned Index = MO.getConstantPoolIndex();
 | |
|     rv = MCE.getConstantPoolEntryAddress(Index);
 | |
|   } else {
 | |
|     std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   // Finally, deal with the various bitfield-extracting functions that
 | |
|   // are used in SPARC assembly. (Some of these make no sense in combination
 | |
|   // with some of the above; we'll trust that the instruction selector
 | |
|   // will not produce nonsense, and not check for valid combinations here.)
 | |
|   if (MO.isLoBits32()) {          // %lo(val) == %lo() in SparcV9 ABI doc
 | |
|     return rv & 0x03ff;
 | |
|   } else if (MO.isHiBits32()) {   // %lm(val) == %hi() in SparcV9 ABI doc
 | |
|     return (rv >> 10) & 0x03fffff;
 | |
|   } else if (MO.isLoBits64()) {   // %hm(val) == %ulo() in SparcV9 ABI doc
 | |
|     return (rv >> 32) & 0x03ff;
 | |
|   } else if (MO.isHiBits64()) {   // %hh(val) == %uhi() in SparcV9 ABI doc
 | |
|     return rv >> 42;
 | |
|   } else {                        // (unadorned) val
 | |
|     return rv;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
 | |
|   Val >>= bit;
 | |
|   return (Val & 1);
 | |
| }
 | |
| 
 | |
| bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MCE.startFunction(MF);
 | |
|   DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName()
 | |
|             << ", address: " << "0x" << std::hex 
 | |
|             << (long)MCE.getCurrentPCValue() << "\n");
 | |
| 
 | |
|   MCE.emitConstantPool(MF.getConstantPool());
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|     emitBasicBlock(*I);
 | |
|   MCE.finishFunction(MF);
 | |
| 
 | |
|   DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n");
 | |
| 
 | |
|   // Resolve branches to BasicBlocks for the entire function
 | |
|   for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
 | |
|     long Location = BBLocations[BBRefs[i].first];
 | |
|     unsigned *Ref = BBRefs[i].second.first;
 | |
|     MachineInstr *MI = BBRefs[i].second.second;
 | |
|     DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location
 | |
|                     << " in instr: " << std::dec << *MI);
 | |
|     for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
 | |
|       MachineOperand &op = MI->getOperand(ii);
 | |
|       if (op.isPCRelativeDisp()) {
 | |
|         // the instruction's branch target is made such that it branches to
 | |
|         // PC + (branchTarget * 4), so undo that arithmetic here:
 | |
|         // Location is the target of the branch
 | |
|         // Ref is the location of the instruction, and hence the PC
 | |
|         int64_t branchTarget = (Location - (long)Ref) >> 2;
 | |
|         // Save the flags.
 | |
|         bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;   
 | |
|         if (op.isLoBits32()) { loBits32=true; }
 | |
|         if (op.isHiBits32()) { hiBits32=true; }
 | |
|         if (op.isLoBits64()) { loBits64=true; }
 | |
|         if (op.isHiBits64()) { hiBits64=true; }
 | |
|         MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
 | |
|                                    branchTarget);
 | |
|         if (loBits32) { MI->getOperand(ii).markLo32(); }
 | |
|         else if (hiBits32) { MI->getOperand(ii).markHi32(); }
 | |
|         else if (loBits64) { MI->getOperand(ii).markLo64(); }
 | |
|         else if (hiBits64) { MI->getOperand(ii).markHi64(); }
 | |
|         DEBUG(std::cerr << "Rewrote BB ref: ");
 | |
|         unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
 | |
|         MCE.emitWordAt (fixedInstr, Ref);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   BBRefs.clear();
 | |
|   BBLocations.clear();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
 | |
|   currBB = MBB.getBasicBlock();
 | |
|   BBLocations[currBB] = MCE.getCurrentPCValue();
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
 | |
|     unsigned binCode = getBinaryCodeForInstr(*I);
 | |
|     if (binCode == (1 << 30)) {
 | |
|       // this is an invalid call: the addr is out of bounds. that means a code
 | |
|       // sequence has already been emitted, and this is a no-op
 | |
|       DEBUG(std::cerr << "Call suppressed: already emitted far call.\n");
 | |
|     } else {
 | |
|       emitWord(binCode);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
 | |
|                                            bool isPCRelative)
 | |
| {
 | |
|   if (isPCRelative) { // must be a call, this is a major hack!
 | |
|     // Try looking up the function to see if it is already compiled!
 | |
|     if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
 | |
|       intptr_t CurByte = MCE.getCurrentPCValue();
 | |
|       // The real target of the call is Addr = PC + (target * 4)
 | |
|       // CurByte is the PC, Addr we just received
 | |
|       return (void*) (((long)Addr - (long)CurByte) >> 2);
 | |
|     } else {
 | |
|       if (Function *F = dyn_cast<Function>(V)) {
 | |
|         // Function has not yet been code generated!
 | |
|         TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
 | |
|                                              cast<Function>(V));
 | |
|         // Delayed resolution...
 | |
|         return 
 | |
|           (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
 | |
|       } else {
 | |
|         std::cerr << "Unhandled global: " << *V << "\n";
 | |
|         abort();
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #include "SparcV9CodeEmitter.inc"
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 |