mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	indexing an empty std::vector. Updates to all clients. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40660 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1906 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1906 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Peephole optimize the CFG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "simplifycfg"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include <algorithm>
 | |
| #include <functional>
 | |
| #include <set>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// SafeToMergeTerminators - Return true if it is safe to merge these two
 | |
| /// terminator instructions together.
 | |
| ///
 | |
| static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
 | |
|   if (SI1 == SI2) return false;  // Can't merge with self!
 | |
|   
 | |
|   // It is not safe to merge these two switch instructions if they have a common
 | |
|   // successor, and if that successor has a PHI node, and if *that* PHI node has
 | |
|   // conflicting incoming values from the two switch blocks.
 | |
|   BasicBlock *SI1BB = SI1->getParent();
 | |
|   BasicBlock *SI2BB = SI2->getParent();
 | |
|   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
 | |
|   
 | |
|   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
 | |
|     if (SI1Succs.count(*I))
 | |
|       for (BasicBlock::iterator BBI = (*I)->begin();
 | |
|            isa<PHINode>(BBI); ++BBI) {
 | |
|         PHINode *PN = cast<PHINode>(BBI);
 | |
|         if (PN->getIncomingValueForBlock(SI1BB) !=
 | |
|             PN->getIncomingValueForBlock(SI2BB))
 | |
|           return false;
 | |
|       }
 | |
|         
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
 | |
| /// now be entries in it from the 'NewPred' block.  The values that will be
 | |
| /// flowing into the PHI nodes will be the same as those coming in from
 | |
| /// ExistPred, an existing predecessor of Succ.
 | |
| static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
 | |
|                                   BasicBlock *ExistPred) {
 | |
|   assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
 | |
|          succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
 | |
|   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
 | |
|   
 | |
|   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     Value *V = PN->getIncomingValueForBlock(ExistPred);
 | |
|     PN->addIncoming(V, NewPred);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
 | |
| // almost-empty BB ending in an unconditional branch to Succ, into succ.
 | |
| //
 | |
| // Assumption: Succ is the single successor for BB.
 | |
| //
 | |
| static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | |
| 
 | |
|   // Check to see if one of the predecessors of BB is already a predecessor of
 | |
|   // Succ.  If so, we cannot do the transformation if there are any PHI nodes
 | |
|   // with incompatible values coming in from the two edges!
 | |
|   //
 | |
|   if (isa<PHINode>(Succ->front())) {
 | |
|     SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | |
|     for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
 | |
|          PI != PE; ++PI)
 | |
|       if (BBPreds.count(*PI)) {
 | |
|         // Loop over all of the PHI nodes checking to see if there are
 | |
|         // incompatible values coming in.
 | |
|         for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|           PHINode *PN = cast<PHINode>(I);
 | |
|           // Loop up the entries in the PHI node for BB and for *PI if the
 | |
|           // values coming in are non-equal, we cannot merge these two blocks
 | |
|           // (instead we should insert a conditional move or something, then
 | |
|           // merge the blocks).
 | |
|           if (PN->getIncomingValueForBlock(BB) !=
 | |
|               PN->getIncomingValueForBlock(*PI))
 | |
|             return false;  // Values are not equal...
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   // Finally, if BB has PHI nodes that are used by things other than the PHIs in
 | |
|   // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
 | |
|   // fold these blocks, as we don't know whether BB dominates Succ or not to
 | |
|   // update the PHI nodes correctly.
 | |
|   if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
 | |
| 
 | |
|   // If the predecessors of Succ are only BB and Succ itself, handle it.
 | |
|   bool IsSafe = true;
 | |
|   for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
 | |
|     if (*PI != Succ && *PI != BB) {
 | |
|       IsSafe = false;
 | |
|       break;
 | |
|     }
 | |
|   if (IsSafe) return true;
 | |
|   
 | |
|   // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
 | |
|   // BB and Succ have no common predecessors.
 | |
|   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
 | |
|          ++UI)
 | |
|       if (cast<Instruction>(*UI)->getParent() != Succ)
 | |
|         return false;
 | |
|   }
 | |
|   
 | |
|   // Scan the predecessor sets of BB and Succ, making sure there are no common
 | |
|   // predecessors.  Common predecessors would cause us to build a phi node with
 | |
|   // differing incoming values, which is not legal.
 | |
|   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | |
|   for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
 | |
|     if (BBPreds.count(*PI))
 | |
|       return false;
 | |
|     
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
 | |
| /// branch to Succ, and contains no instructions other than PHI nodes and the
 | |
| /// branch.  If possible, eliminate BB.
 | |
| static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
 | |
|                                                     BasicBlock *Succ) {
 | |
|   // If our successor has PHI nodes, then we need to update them to include
 | |
|   // entries for BB's predecessors, not for BB itself.  Be careful though,
 | |
|   // if this transformation fails (returns true) then we cannot do this
 | |
|   // transformation!
 | |
|   //
 | |
|   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
 | |
|   
 | |
|   DOUT << "Killing Trivial BB: \n" << *BB;
 | |
|   
 | |
|   if (isa<PHINode>(Succ->begin())) {
 | |
|     // If there is more than one pred of succ, and there are PHI nodes in
 | |
|     // the successor, then we need to add incoming edges for the PHI nodes
 | |
|     //
 | |
|     const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
 | |
|     
 | |
|     // Loop over all of the PHI nodes in the successor of BB.
 | |
|     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       Value *OldVal = PN->removeIncomingValue(BB, false);
 | |
|       assert(OldVal && "No entry in PHI for Pred BB!");
 | |
|       
 | |
|       // If this incoming value is one of the PHI nodes in BB, the new entries
 | |
|       // in the PHI node are the entries from the old PHI.
 | |
|       if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | |
|         PHINode *OldValPN = cast<PHINode>(OldVal);
 | |
|         for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
 | |
|           PN->addIncoming(OldValPN->getIncomingValue(i),
 | |
|                           OldValPN->getIncomingBlock(i));
 | |
|       } else {
 | |
|         for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
 | |
|              End = BBPreds.end(); PredI != End; ++PredI) {
 | |
|           // Add an incoming value for each of the new incoming values...
 | |
|           PN->addIncoming(OldVal, *PredI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (isa<PHINode>(&BB->front())) {
 | |
|     std::vector<BasicBlock*>
 | |
|     OldSuccPreds(pred_begin(Succ), pred_end(Succ));
 | |
|     
 | |
|     // Move all PHI nodes in BB to Succ if they are alive, otherwise
 | |
|     // delete them.
 | |
|     while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
 | |
|       if (PN->use_empty()) {
 | |
|         // Just remove the dead phi.  This happens if Succ's PHIs were the only
 | |
|         // users of the PHI nodes.
 | |
|         PN->eraseFromParent();
 | |
|       } else {
 | |
|         // The instruction is alive, so this means that Succ must have
 | |
|         // *ONLY* had BB as a predecessor, and the PHI node is still valid
 | |
|         // now.  Simply move it into Succ, because we know that BB
 | |
|         // strictly dominated Succ.
 | |
|         Succ->getInstList().splice(Succ->begin(),
 | |
|                                    BB->getInstList(), BB->begin());
 | |
|         
 | |
|         // We need to add new entries for the PHI node to account for
 | |
|         // predecessors of Succ that the PHI node does not take into
 | |
|         // account.  At this point, since we know that BB dominated succ,
 | |
|         // this means that we should any newly added incoming edges should
 | |
|         // use the PHI node as the value for these edges, because they are
 | |
|         // loop back edges.
 | |
|         for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
 | |
|           if (OldSuccPreds[i] != BB)
 | |
|             PN->addIncoming(PN, OldSuccPreds[i]);
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   // Everything that jumped to BB now goes to Succ.
 | |
|   BB->replaceAllUsesWith(Succ);
 | |
|   if (!Succ->hasName()) Succ->takeName(BB);
 | |
|   BB->eraseFromParent();              // Delete the old basic block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetIfCondition - Given a basic block (BB) with two predecessors (and
 | |
| /// presumably PHI nodes in it), check to see if the merge at this block is due
 | |
| /// to an "if condition".  If so, return the boolean condition that determines
 | |
| /// which entry into BB will be taken.  Also, return by references the block
 | |
| /// that will be entered from if the condition is true, and the block that will
 | |
| /// be entered if the condition is false.
 | |
| ///
 | |
| ///
 | |
| static Value *GetIfCondition(BasicBlock *BB,
 | |
|                              BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
 | |
|   assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
 | |
|          "Function can only handle blocks with 2 predecessors!");
 | |
|   BasicBlock *Pred1 = *pred_begin(BB);
 | |
|   BasicBlock *Pred2 = *++pred_begin(BB);
 | |
| 
 | |
|   // We can only handle branches.  Other control flow will be lowered to
 | |
|   // branches if possible anyway.
 | |
|   if (!isa<BranchInst>(Pred1->getTerminator()) ||
 | |
|       !isa<BranchInst>(Pred2->getTerminator()))
 | |
|     return 0;
 | |
|   BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
 | |
|   BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
 | |
| 
 | |
|   // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | |
|   // either are.
 | |
|   if (Pred2Br->isConditional()) {
 | |
|     // If both branches are conditional, we don't have an "if statement".  In
 | |
|     // reality, we could transform this case, but since the condition will be
 | |
|     // required anyway, we stand no chance of eliminating it, so the xform is
 | |
|     // probably not profitable.
 | |
|     if (Pred1Br->isConditional())
 | |
|       return 0;
 | |
| 
 | |
|     std::swap(Pred1, Pred2);
 | |
|     std::swap(Pred1Br, Pred2Br);
 | |
|   }
 | |
| 
 | |
|   if (Pred1Br->isConditional()) {
 | |
|     // If we found a conditional branch predecessor, make sure that it branches
 | |
|     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | |
|     if (Pred1Br->getSuccessor(0) == BB &&
 | |
|         Pred1Br->getSuccessor(1) == Pred2) {
 | |
|       IfTrue = Pred1;
 | |
|       IfFalse = Pred2;
 | |
|     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | |
|                Pred1Br->getSuccessor(1) == BB) {
 | |
|       IfTrue = Pred2;
 | |
|       IfFalse = Pred1;
 | |
|     } else {
 | |
|       // We know that one arm of the conditional goes to BB, so the other must
 | |
|       // go somewhere unrelated, and this must not be an "if statement".
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // The only thing we have to watch out for here is to make sure that Pred2
 | |
|     // doesn't have incoming edges from other blocks.  If it does, the condition
 | |
|     // doesn't dominate BB.
 | |
|     if (++pred_begin(Pred2) != pred_end(Pred2))
 | |
|       return 0;
 | |
| 
 | |
|     return Pred1Br->getCondition();
 | |
|   }
 | |
| 
 | |
|   // Ok, if we got here, both predecessors end with an unconditional branch to
 | |
|   // BB.  Don't panic!  If both blocks only have a single (identical)
 | |
|   // predecessor, and THAT is a conditional branch, then we're all ok!
 | |
|   if (pred_begin(Pred1) == pred_end(Pred1) ||
 | |
|       ++pred_begin(Pred1) != pred_end(Pred1) ||
 | |
|       pred_begin(Pred2) == pred_end(Pred2) ||
 | |
|       ++pred_begin(Pred2) != pred_end(Pred2) ||
 | |
|       *pred_begin(Pred1) != *pred_begin(Pred2))
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, if this is a conditional branch, then we can use it!
 | |
|   BasicBlock *CommonPred = *pred_begin(Pred1);
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
 | |
|     assert(BI->isConditional() && "Two successors but not conditional?");
 | |
|     if (BI->getSuccessor(0) == Pred1) {
 | |
|       IfTrue = Pred1;
 | |
|       IfFalse = Pred2;
 | |
|     } else {
 | |
|       IfTrue = Pred2;
 | |
|       IfFalse = Pred1;
 | |
|     }
 | |
|     return BI->getCondition();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If we have a merge point of an "if condition" as accepted above, return true
 | |
| // if the specified value dominates the block.  We don't handle the true
 | |
| // generality of domination here, just a special case which works well enough
 | |
| // for us.
 | |
| //
 | |
| // If AggressiveInsts is non-null, and if V does not dominate BB, we check to
 | |
| // see if V (which must be an instruction) is cheap to compute and is
 | |
| // non-trapping.  If both are true, the instruction is inserted into the set and
 | |
| // true is returned.
 | |
| static bool DominatesMergePoint(Value *V, BasicBlock *BB,
 | |
|                                 std::set<Instruction*> *AggressiveInsts) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) {
 | |
|     // Non-instructions all dominate instructions, but not all constantexprs
 | |
|     // can be executed unconditionally.
 | |
|     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
 | |
|       if (C->canTrap())
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   BasicBlock *PBB = I->getParent();
 | |
| 
 | |
|   // We don't want to allow weird loops that might have the "if condition" in
 | |
|   // the bottom of this block.
 | |
|   if (PBB == BB) return false;
 | |
| 
 | |
|   // If this instruction is defined in a block that contains an unconditional
 | |
|   // branch to BB, then it must be in the 'conditional' part of the "if
 | |
|   // statement".
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
 | |
|     if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
 | |
|       if (!AggressiveInsts) return false;
 | |
|       // Okay, it looks like the instruction IS in the "condition".  Check to
 | |
|       // see if its a cheap instruction to unconditionally compute, and if it
 | |
|       // only uses stuff defined outside of the condition.  If so, hoist it out.
 | |
|       switch (I->getOpcode()) {
 | |
|       default: return false;  // Cannot hoist this out safely.
 | |
|       case Instruction::Load:
 | |
|         // We can hoist loads that are non-volatile and obviously cannot trap.
 | |
|         if (cast<LoadInst>(I)->isVolatile())
 | |
|           return false;
 | |
|         if (!isa<AllocaInst>(I->getOperand(0)) &&
 | |
|             !isa<Constant>(I->getOperand(0)))
 | |
|           return false;
 | |
| 
 | |
|         // Finally, we have to check to make sure there are no instructions
 | |
|         // before the load in its basic block, as we are going to hoist the loop
 | |
|         // out to its predecessor.
 | |
|         if (PBB->begin() != BasicBlock::iterator(I))
 | |
|           return false;
 | |
|         break;
 | |
|       case Instruction::Add:
 | |
|       case Instruction::Sub:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor:
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::AShr:
 | |
|       case Instruction::ICmp:
 | |
|       case Instruction::FCmp:
 | |
|         break;   // These are all cheap and non-trapping instructions.
 | |
|       }
 | |
| 
 | |
|       // Okay, we can only really hoist these out if their operands are not
 | |
|       // defined in the conditional region.
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (!DominatesMergePoint(I->getOperand(i), BB, 0))
 | |
|           return false;
 | |
|       // Okay, it's safe to do this!  Remember this instruction.
 | |
|       AggressiveInsts->insert(I);
 | |
|     }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // GatherConstantSetEQs - Given a potentially 'or'd together collection of 
 | |
| // icmp_eq instructions that compare a value against a constant, return the 
 | |
| // value being compared, and stick the constant into the Values vector.
 | |
| static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(V))
 | |
|     if (Inst->getOpcode() == Instruction::ICmp &&
 | |
|         cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
 | |
|       if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(0);
 | |
|       } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(1);
 | |
|       }
 | |
|     } else if (Inst->getOpcode() == Instruction::Or) {
 | |
|       if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
 | |
|         if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
 | |
|           if (LHS == RHS)
 | |
|             return LHS;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // GatherConstantSetNEs - Given a potentially 'and'd together collection of
 | |
| // setne instructions that compare a value against a constant, return the value
 | |
| // being compared, and stick the constant into the Values vector.
 | |
| static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(V))
 | |
|     if (Inst->getOpcode() == Instruction::ICmp &&
 | |
|                cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
 | |
|       if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(0);
 | |
|       } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
 | |
|         Values.push_back(C);
 | |
|         return Inst->getOperand(1);
 | |
|       }
 | |
|     } else if (Inst->getOpcode() == Instruction::And) {
 | |
|       if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
 | |
|         if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
 | |
|           if (LHS == RHS)
 | |
|             return LHS;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
 | |
| /// bunch of comparisons of one value against constants, return the value and
 | |
| /// the constants being compared.
 | |
| static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
 | |
|                                    std::vector<ConstantInt*> &Values) {
 | |
|   if (Cond->getOpcode() == Instruction::Or) {
 | |
|     CompVal = GatherConstantSetEQs(Cond, Values);
 | |
| 
 | |
|     // Return true to indicate that the condition is true if the CompVal is
 | |
|     // equal to one of the constants.
 | |
|     return true;
 | |
|   } else if (Cond->getOpcode() == Instruction::And) {
 | |
|     CompVal = GatherConstantSetNEs(Cond, Values);
 | |
| 
 | |
|     // Return false to indicate that the condition is false if the CompVal is
 | |
|     // equal to one of the constants.
 | |
|     return false;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
 | |
| /// has no side effects, nuke it.  If it uses any instructions that become dead
 | |
| /// because the instruction is now gone, nuke them too.
 | |
| static void ErasePossiblyDeadInstructionTree(Instruction *I) {
 | |
|   if (!isInstructionTriviallyDead(I)) return;
 | |
|   
 | |
|   std::vector<Instruction*> InstrsToInspect;
 | |
|   InstrsToInspect.push_back(I);
 | |
| 
 | |
|   while (!InstrsToInspect.empty()) {
 | |
|     I = InstrsToInspect.back();
 | |
|     InstrsToInspect.pop_back();
 | |
| 
 | |
|     if (!isInstructionTriviallyDead(I)) continue;
 | |
| 
 | |
|     // If I is in the work list multiple times, remove previous instances.
 | |
|     for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
 | |
|       if (InstrsToInspect[i] == I) {
 | |
|         InstrsToInspect.erase(InstrsToInspect.begin()+i);
 | |
|         --i, --e;
 | |
|       }
 | |
| 
 | |
|     // Add operands of dead instruction to worklist.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|         InstrsToInspect.push_back(OpI);
 | |
| 
 | |
|     // Remove dead instruction.
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // isValueEqualityComparison - Return true if the specified terminator checks to
 | |
| // see if a value is equal to constant integer value.
 | |
| static Value *isValueEqualityComparison(TerminatorInst *TI) {
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     // Do not permit merging of large switch instructions into their
 | |
|     // predecessors unless there is only one predecessor.
 | |
|     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
 | |
|                                                pred_end(SI->getParent())) > 128)
 | |
|       return 0;
 | |
| 
 | |
|     return SI->getCondition();
 | |
|   }
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | |
|     if (BI->isConditional() && BI->getCondition()->hasOneUse())
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
 | |
|         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
 | |
|              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
 | |
|             isa<ConstantInt>(ICI->getOperand(1)))
 | |
|           return ICI->getOperand(0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Given a value comparison instruction, decode all of the 'cases' that it
 | |
| // represents and return the 'default' block.
 | |
| static BasicBlock *
 | |
| GetValueEqualityComparisonCases(TerminatorInst *TI,
 | |
|                                 std::vector<std::pair<ConstantInt*,
 | |
|                                                       BasicBlock*> > &Cases) {
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     Cases.reserve(SI->getNumCases());
 | |
|     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | |
|       Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
 | |
|     return SI->getDefaultDest();
 | |
|   }
 | |
| 
 | |
|   BranchInst *BI = cast<BranchInst>(TI);
 | |
|   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
 | |
|   Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
 | |
|                                  BI->getSuccessor(ICI->getPredicate() ==
 | |
|                                                   ICmpInst::ICMP_NE)));
 | |
|   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
 | |
| }
 | |
| 
 | |
| 
 | |
| // EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
 | |
| // in the list that match the specified block.
 | |
| static void EliminateBlockCases(BasicBlock *BB,
 | |
|                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
 | |
|   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
 | |
|     if (Cases[i].second == BB) {
 | |
|       Cases.erase(Cases.begin()+i);
 | |
|       --i; --e;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
 | |
| // well.
 | |
| static bool
 | |
| ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
 | |
|               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
 | |
|   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
 | |
| 
 | |
|   // Make V1 be smaller than V2.
 | |
|   if (V1->size() > V2->size())
 | |
|     std::swap(V1, V2);
 | |
| 
 | |
|   if (V1->size() == 0) return false;
 | |
|   if (V1->size() == 1) {
 | |
|     // Just scan V2.
 | |
|     ConstantInt *TheVal = (*V1)[0].first;
 | |
|     for (unsigned i = 0, e = V2->size(); i != e; ++i)
 | |
|       if (TheVal == (*V2)[i].first)
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, just sort both lists and compare element by element.
 | |
|   std::sort(V1->begin(), V1->end());
 | |
|   std::sort(V2->begin(), V2->end());
 | |
|   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
 | |
|   while (i1 != e1 && i2 != e2) {
 | |
|     if ((*V1)[i1].first == (*V2)[i2].first)
 | |
|       return true;
 | |
|     if ((*V1)[i1].first < (*V2)[i2].first)
 | |
|       ++i1;
 | |
|     else
 | |
|       ++i2;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
 | |
| // terminator instruction and its block is known to only have a single
 | |
| // predecessor block, check to see if that predecessor is also a value
 | |
| // comparison with the same value, and if that comparison determines the outcome
 | |
| // of this comparison.  If so, simplify TI.  This does a very limited form of
 | |
| // jump threading.
 | |
| static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
 | |
|                                                           BasicBlock *Pred) {
 | |
|   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
 | |
|   if (!PredVal) return false;  // Not a value comparison in predecessor.
 | |
| 
 | |
|   Value *ThisVal = isValueEqualityComparison(TI);
 | |
|   assert(ThisVal && "This isn't a value comparison!!");
 | |
|   if (ThisVal != PredVal) return false;  // Different predicates.
 | |
| 
 | |
|   // Find out information about when control will move from Pred to TI's block.
 | |
|   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
 | |
|   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
 | |
|                                                         PredCases);
 | |
|   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
 | |
| 
 | |
|   // Find information about how control leaves this block.
 | |
|   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
 | |
|   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
 | |
|   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
 | |
| 
 | |
|   // If TI's block is the default block from Pred's comparison, potentially
 | |
|   // simplify TI based on this knowledge.
 | |
|   if (PredDef == TI->getParent()) {
 | |
|     // If we are here, we know that the value is none of those cases listed in
 | |
|     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
 | |
|     // can simplify TI.
 | |
|     if (ValuesOverlap(PredCases, ThisCases)) {
 | |
|       if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
 | |
|         // Okay, one of the successors of this condbr is dead.  Convert it to a
 | |
|         // uncond br.
 | |
|         assert(ThisCases.size() == 1 && "Branch can only have one case!");
 | |
|         Value *Cond = BTI->getCondition();
 | |
|         // Insert the new branch.
 | |
|         Instruction *NI = new BranchInst(ThisDef, TI);
 | |
| 
 | |
|         // Remove PHI node entries for the dead edge.
 | |
|         ThisCases[0].second->removePredecessor(TI->getParent());
 | |
| 
 | |
|         DOUT << "Threading pred instr: " << *Pred->getTerminator()
 | |
|              << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
 | |
| 
 | |
|         TI->eraseFromParent();   // Nuke the old one.
 | |
|         // If condition is now dead, nuke it.
 | |
|         if (Instruction *CondI = dyn_cast<Instruction>(Cond))
 | |
|           ErasePossiblyDeadInstructionTree(CondI);
 | |
|         return true;
 | |
| 
 | |
|       } else {
 | |
|         SwitchInst *SI = cast<SwitchInst>(TI);
 | |
|         // Okay, TI has cases that are statically dead, prune them away.
 | |
|         SmallPtrSet<Constant*, 16> DeadCases;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           DeadCases.insert(PredCases[i].first);
 | |
| 
 | |
|         DOUT << "Threading pred instr: " << *Pred->getTerminator()
 | |
|              << "Through successor TI: " << *TI;
 | |
| 
 | |
|         for (unsigned i = SI->getNumCases()-1; i != 0; --i)
 | |
|           if (DeadCases.count(SI->getCaseValue(i))) {
 | |
|             SI->getSuccessor(i)->removePredecessor(TI->getParent());
 | |
|             SI->removeCase(i);
 | |
|           }
 | |
| 
 | |
|         DOUT << "Leaving: " << *TI << "\n";
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // Otherwise, TI's block must correspond to some matched value.  Find out
 | |
|     // which value (or set of values) this is.
 | |
|     ConstantInt *TIV = 0;
 | |
|     BasicBlock *TIBB = TI->getParent();
 | |
|     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|       if (PredCases[i].second == TIBB)
 | |
|         if (TIV == 0)
 | |
|           TIV = PredCases[i].first;
 | |
|         else
 | |
|           return false;  // Cannot handle multiple values coming to this block.
 | |
|     assert(TIV && "No edge from pred to succ?");
 | |
| 
 | |
|     // Okay, we found the one constant that our value can be if we get into TI's
 | |
|     // BB.  Find out which successor will unconditionally be branched to.
 | |
|     BasicBlock *TheRealDest = 0;
 | |
|     for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
 | |
|       if (ThisCases[i].first == TIV) {
 | |
|         TheRealDest = ThisCases[i].second;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // If not handled by any explicit cases, it is handled by the default case.
 | |
|     if (TheRealDest == 0) TheRealDest = ThisDef;
 | |
| 
 | |
|     // Remove PHI node entries for dead edges.
 | |
|     BasicBlock *CheckEdge = TheRealDest;
 | |
|     for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
 | |
|       if (*SI != CheckEdge)
 | |
|         (*SI)->removePredecessor(TIBB);
 | |
|       else
 | |
|         CheckEdge = 0;
 | |
| 
 | |
|     // Insert the new branch.
 | |
|     Instruction *NI = new BranchInst(TheRealDest, TI);
 | |
| 
 | |
|     DOUT << "Threading pred instr: " << *Pred->getTerminator()
 | |
|          << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
 | |
|     Instruction *Cond = 0;
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | |
|       Cond = dyn_cast<Instruction>(BI->getCondition());
 | |
|     TI->eraseFromParent();   // Nuke the old one.
 | |
| 
 | |
|     if (Cond) ErasePossiblyDeadInstructionTree(Cond);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // FoldValueComparisonIntoPredecessors - The specified terminator is a value
 | |
| // equality comparison instruction (either a switch or a branch on "X == c").
 | |
| // See if any of the predecessors of the terminator block are value comparisons
 | |
| // on the same value.  If so, and if safe to do so, fold them together.
 | |
| static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   Value *CV = isValueEqualityComparison(TI);  // CondVal
 | |
|   assert(CV && "Not a comparison?");
 | |
|   bool Changed = false;
 | |
| 
 | |
|   std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | |
|   while (!Preds.empty()) {
 | |
|     BasicBlock *Pred = Preds.back();
 | |
|     Preds.pop_back();
 | |
| 
 | |
|     // See if the predecessor is a comparison with the same value.
 | |
|     TerminatorInst *PTI = Pred->getTerminator();
 | |
|     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
 | |
| 
 | |
|     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
 | |
|       // Figure out which 'cases' to copy from SI to PSI.
 | |
|       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
 | |
|       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
 | |
| 
 | |
|       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
 | |
|       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
 | |
| 
 | |
|       // Based on whether the default edge from PTI goes to BB or not, fill in
 | |
|       // PredCases and PredDefault with the new switch cases we would like to
 | |
|       // build.
 | |
|       std::vector<BasicBlock*> NewSuccessors;
 | |
| 
 | |
|       if (PredDefault == BB) {
 | |
|         // If this is the default destination from PTI, only the edges in TI
 | |
|         // that don't occur in PTI, or that branch to BB will be activated.
 | |
|         std::set<ConstantInt*> PTIHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].second != BB)
 | |
|             PTIHandled.insert(PredCases[i].first);
 | |
|           else {
 | |
|             // The default destination is BB, we don't need explicit targets.
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
|             PredCases.pop_back();
 | |
|             --i; --e;
 | |
|           }
 | |
| 
 | |
|         // Reconstruct the new switch statement we will be building.
 | |
|         if (PredDefault != BBDefault) {
 | |
|           PredDefault->removePredecessor(Pred);
 | |
|           PredDefault = BBDefault;
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (!PTIHandled.count(BBCases[i].first) &&
 | |
|               BBCases[i].second != BBDefault) {
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].second);
 | |
|           }
 | |
| 
 | |
|       } else {
 | |
|         // If this is not the default destination from PSI, only the edges
 | |
|         // in SI that occur in PSI with a destination of BB will be
 | |
|         // activated.
 | |
|         std::set<ConstantInt*> PTIHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].second == BB) {
 | |
|             PTIHandled.insert(PredCases[i].first);
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
|             PredCases.pop_back();
 | |
|             --i; --e;
 | |
|           }
 | |
| 
 | |
|         // Okay, now we know which constants were sent to BB from the
 | |
|         // predecessor.  Figure out where they will all go now.
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (PTIHandled.count(BBCases[i].first)) {
 | |
|             // If this is one we are capable of getting...
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].second);
 | |
|             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
 | |
|           }
 | |
| 
 | |
|         // If there are any constants vectored to BB that TI doesn't handle,
 | |
|         // they must go to the default destination of TI.
 | |
|         for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
 | |
|                E = PTIHandled.end(); I != E; ++I) {
 | |
|           PredCases.push_back(std::make_pair(*I, BBDefault));
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Okay, at this point, we know which new successor Pred will get.  Make
 | |
|       // sure we update the number of entries in the PHI nodes for these
 | |
|       // successors.
 | |
|       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
 | |
|         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
 | |
| 
 | |
|       // Now that the successors are updated, create the new Switch instruction.
 | |
|       SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
 | |
|       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|         NewSI->addCase(PredCases[i].first, PredCases[i].second);
 | |
| 
 | |
|       Instruction *DeadCond = 0;
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
 | |
|         // If PTI is a branch, remember the condition.
 | |
|         DeadCond = dyn_cast<Instruction>(BI->getCondition());
 | |
|       Pred->getInstList().erase(PTI);
 | |
| 
 | |
|       // If the condition is dead now, remove the instruction tree.
 | |
|       if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
 | |
| 
 | |
|       // Okay, last check.  If BB is still a successor of PSI, then we must
 | |
|       // have an infinite loop case.  If so, add an infinitely looping block
 | |
|       // to handle the case to preserve the behavior of the code.
 | |
|       BasicBlock *InfLoopBlock = 0;
 | |
|       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
 | |
|         if (NewSI->getSuccessor(i) == BB) {
 | |
|           if (InfLoopBlock == 0) {
 | |
|             // Insert it at the end of the loop, because it's either code,
 | |
|             // or it won't matter if it's hot. :)
 | |
|             InfLoopBlock = new BasicBlock("infloop", BB->getParent());
 | |
|             new BranchInst(InfLoopBlock, InfLoopBlock);
 | |
|           }
 | |
|           NewSI->setSuccessor(i, InfLoopBlock);
 | |
|         }
 | |
| 
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
 | |
| /// BB2, hoist any common code in the two blocks up into the branch block.  The
 | |
| /// caller of this function guarantees that BI's block dominates BB1 and BB2.
 | |
| static bool HoistThenElseCodeToIf(BranchInst *BI) {
 | |
|   // This does very trivial matching, with limited scanning, to find identical
 | |
|   // instructions in the two blocks.  In particular, we don't want to get into
 | |
|   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
 | |
|   // such, we currently just scan for obviously identical instructions in an
 | |
|   // identical order.
 | |
|   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
 | |
|   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
 | |
| 
 | |
|   Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
 | |
|   if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) || 
 | |
|       isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
 | |
|     return false;
 | |
| 
 | |
|   // If we get here, we can hoist at least one instruction.
 | |
|   BasicBlock *BIParent = BI->getParent();
 | |
| 
 | |
|   do {
 | |
|     // If we are hoisting the terminator instruction, don't move one (making a
 | |
|     // broken BB), instead clone it, and remove BI.
 | |
|     if (isa<TerminatorInst>(I1))
 | |
|       goto HoistTerminator;
 | |
| 
 | |
|     // For a normal instruction, we just move one to right before the branch,
 | |
|     // then replace all uses of the other with the first.  Finally, we remove
 | |
|     // the now redundant second instruction.
 | |
|     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
 | |
|     if (!I2->use_empty())
 | |
|       I2->replaceAllUsesWith(I1);
 | |
|     BB2->getInstList().erase(I2);
 | |
| 
 | |
|     I1 = BB1->begin();
 | |
|     I2 = BB2->begin();
 | |
|   } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
 | |
| 
 | |
|   return true;
 | |
| 
 | |
| HoistTerminator:
 | |
|   // Okay, it is safe to hoist the terminator.
 | |
|   Instruction *NT = I1->clone();
 | |
|   BIParent->getInstList().insert(BI, NT);
 | |
|   if (NT->getType() != Type::VoidTy) {
 | |
|     I1->replaceAllUsesWith(NT);
 | |
|     I2->replaceAllUsesWith(NT);
 | |
|     NT->takeName(I1);
 | |
|   }
 | |
| 
 | |
|   // Hoisting one of the terminators from our successor is a great thing.
 | |
|   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
 | |
|   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
 | |
|   // nodes, so we insert select instruction to compute the final result.
 | |
|   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
 | |
|   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator BBI = SI->begin();
 | |
|          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|       Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|       Value *BB2V = PN->getIncomingValueForBlock(BB2);
 | |
|       if (BB1V != BB2V) {
 | |
|         // These values do not agree.  Insert a select instruction before NT
 | |
|         // that determines the right value.
 | |
|         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
 | |
|         if (SI == 0)
 | |
|           SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
 | |
|                               BB1V->getName()+"."+BB2V->getName(), NT);
 | |
|         // Make the PHI node use the select for all incoming values for BB1/BB2
 | |
|         for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|           if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
 | |
|             PN->setIncomingValue(i, SI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update any PHI nodes in our new successors.
 | |
|   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
 | |
|     AddPredecessorToBlock(*SI, BIParent, BB1);
 | |
| 
 | |
|   BI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
 | |
| /// across this block.
 | |
| static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   unsigned Size = 0;
 | |
|   
 | |
|   // If this basic block contains anything other than a PHI (which controls the
 | |
|   // branch) and branch itself, bail out.  FIXME: improve this in the future.
 | |
|   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
 | |
|     if (Size > 10) return false;  // Don't clone large BB's.
 | |
|     
 | |
|     // We can only support instructions that are do not define values that are
 | |
|     // live outside of the current basic block.
 | |
|     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       Instruction *U = cast<Instruction>(*UI);
 | |
|       if (U->getParent() != BB || isa<PHINode>(U)) return false;
 | |
|     }
 | |
|     
 | |
|     // Looks ok, continue checking.
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
 | |
| /// that is defined in the same block as the branch and if any PHI entries are
 | |
| /// constants, thread edges corresponding to that entry to be branches to their
 | |
| /// ultimate destination.
 | |
| static bool FoldCondBranchOnPHI(BranchInst *BI) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
|   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
 | |
|   // NOTE: we currently cannot transform this case if the PHI node is used
 | |
|   // outside of the block.
 | |
|   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
 | |
|     return false;
 | |
|   
 | |
|   // Degenerate case of a single entry PHI.
 | |
|   if (PN->getNumIncomingValues() == 1) {
 | |
|     if (PN->getIncomingValue(0) != PN)
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     else
 | |
|       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
|     PN->eraseFromParent();
 | |
|     return true;    
 | |
|   }
 | |
| 
 | |
|   // Now we know that this block has multiple preds and two succs.
 | |
|   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
 | |
|   
 | |
|   // Okay, this is a simple enough basic block.  See if any phi values are
 | |
|   // constants.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     ConstantInt *CB;
 | |
|     if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
 | |
|         CB->getType() == Type::Int1Ty) {
 | |
|       // Okay, we now know that all edges from PredBB should be revectored to
 | |
|       // branch to RealDest.
 | |
|       BasicBlock *PredBB = PN->getIncomingBlock(i);
 | |
|       BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
 | |
|       
 | |
|       if (RealDest == BB) continue;  // Skip self loops.
 | |
|       
 | |
|       // The dest block might have PHI nodes, other predecessors and other
 | |
|       // difficult cases.  Instead of being smart about this, just insert a new
 | |
|       // block that jumps to the destination block, effectively splitting
 | |
|       // the edge we are about to create.
 | |
|       BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
 | |
|                                           RealDest->getParent(), RealDest);
 | |
|       new BranchInst(RealDest, EdgeBB);
 | |
|       PHINode *PN;
 | |
|       for (BasicBlock::iterator BBI = RealDest->begin();
 | |
|            (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|         Value *V = PN->getIncomingValueForBlock(BB);
 | |
|         PN->addIncoming(V, EdgeBB);
 | |
|       }
 | |
| 
 | |
|       // BB may have instructions that are being threaded over.  Clone these
 | |
|       // instructions into EdgeBB.  We know that there will be no uses of the
 | |
|       // cloned instructions outside of EdgeBB.
 | |
|       BasicBlock::iterator InsertPt = EdgeBB->begin();
 | |
|       std::map<Value*, Value*> TranslateMap;  // Track translated values.
 | |
|       for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
 | |
|           TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
 | |
|         } else {
 | |
|           // Clone the instruction.
 | |
|           Instruction *N = BBI->clone();
 | |
|           if (BBI->hasName()) N->setName(BBI->getName()+".c");
 | |
|           
 | |
|           // Update operands due to translation.
 | |
|           for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|             std::map<Value*, Value*>::iterator PI =
 | |
|               TranslateMap.find(N->getOperand(i));
 | |
|             if (PI != TranslateMap.end())
 | |
|               N->setOperand(i, PI->second);
 | |
|           }
 | |
|           
 | |
|           // Check for trivial simplification.
 | |
|           if (Constant *C = ConstantFoldInstruction(N)) {
 | |
|             TranslateMap[BBI] = C;
 | |
|             delete N;   // Constant folded away, don't need actual inst
 | |
|           } else {
 | |
|             // Insert the new instruction into its new home.
 | |
|             EdgeBB->getInstList().insert(InsertPt, N);
 | |
|             if (!BBI->use_empty())
 | |
|               TranslateMap[BBI] = N;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Loop over all of the edges from PredBB to BB, changing them to branch
 | |
|       // to EdgeBB instead.
 | |
|       TerminatorInst *PredBBTI = PredBB->getTerminator();
 | |
|       for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
 | |
|         if (PredBBTI->getSuccessor(i) == BB) {
 | |
|           BB->removePredecessor(PredBB);
 | |
|           PredBBTI->setSuccessor(i, EdgeBB);
 | |
|         }
 | |
|       
 | |
|       // Recurse, simplifying any other constants.
 | |
|       return FoldCondBranchOnPHI(BI) | true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
 | |
| /// PHI node, see if we can eliminate it.
 | |
| static bool FoldTwoEntryPHINode(PHINode *PN) {
 | |
|   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
 | |
|   // statement", which has a very simple dominance structure.  Basically, we
 | |
|   // are trying to find the condition that is being branched on, which
 | |
|   // subsequently causes this merge to happen.  We really want control
 | |
|   // dependence information for this check, but simplifycfg can't keep it up
 | |
|   // to date, and this catches most of the cases we care about anyway.
 | |
|   //
 | |
|   BasicBlock *BB = PN->getParent();
 | |
|   BasicBlock *IfTrue, *IfFalse;
 | |
|   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
 | |
|   if (!IfCond) return false;
 | |
|   
 | |
|   // Okay, we found that we can merge this two-entry phi node into a select.
 | |
|   // Doing so would require us to fold *all* two entry phi nodes in this block.
 | |
|   // At some point this becomes non-profitable (particularly if the target
 | |
|   // doesn't support cmov's).  Only do this transformation if there are two or
 | |
|   // fewer PHI nodes in this block.
 | |
|   unsigned NumPhis = 0;
 | |
|   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
 | |
|     if (NumPhis > 2)
 | |
|       return false;
 | |
|   
 | |
|   DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
 | |
|        << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
 | |
|   
 | |
|   // Loop over the PHI's seeing if we can promote them all to select
 | |
|   // instructions.  While we are at it, keep track of the instructions
 | |
|   // that need to be moved to the dominating block.
 | |
|   std::set<Instruction*> AggressiveInsts;
 | |
|   
 | |
|   BasicBlock::iterator AfterPHIIt = BB->begin();
 | |
|   while (isa<PHINode>(AfterPHIIt)) {
 | |
|     PHINode *PN = cast<PHINode>(AfterPHIIt++);
 | |
|     if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
 | |
|       if (PN->getIncomingValue(0) != PN)
 | |
|         PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|       else
 | |
|         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
|     } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
 | |
|                                     &AggressiveInsts) ||
 | |
|                !DominatesMergePoint(PN->getIncomingValue(1), BB,
 | |
|                                     &AggressiveInsts)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we all PHI nodes are promotable, check to make sure that all
 | |
|   // instructions in the predecessor blocks can be promoted as well.  If
 | |
|   // not, we won't be able to get rid of the control flow, so it's not
 | |
|   // worth promoting to select instructions.
 | |
|   BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
 | |
|   PN = cast<PHINode>(BB->begin());
 | |
|   BasicBlock *Pred = PN->getIncomingBlock(0);
 | |
|   if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
 | |
|     IfBlock1 = Pred;
 | |
|     DomBlock = *pred_begin(Pred);
 | |
|     for (BasicBlock::iterator I = Pred->begin();
 | |
|          !isa<TerminatorInst>(I); ++I)
 | |
|       if (!AggressiveInsts.count(I)) {
 | |
|         // This is not an aggressive instruction that we can promote.
 | |
|         // Because of this, we won't be able to get rid of the control
 | |
|         // flow, so the xform is not worth it.
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   Pred = PN->getIncomingBlock(1);
 | |
|   if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
 | |
|     IfBlock2 = Pred;
 | |
|     DomBlock = *pred_begin(Pred);
 | |
|     for (BasicBlock::iterator I = Pred->begin();
 | |
|          !isa<TerminatorInst>(I); ++I)
 | |
|       if (!AggressiveInsts.count(I)) {
 | |
|         // This is not an aggressive instruction that we can promote.
 | |
|         // Because of this, we won't be able to get rid of the control
 | |
|         // flow, so the xform is not worth it.
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
|       
 | |
|   // If we can still promote the PHI nodes after this gauntlet of tests,
 | |
|   // do all of the PHI's now.
 | |
| 
 | |
|   // Move all 'aggressive' instructions, which are defined in the
 | |
|   // conditional parts of the if's up to the dominating block.
 | |
|   if (IfBlock1) {
 | |
|     DomBlock->getInstList().splice(DomBlock->getTerminator(),
 | |
|                                    IfBlock1->getInstList(),
 | |
|                                    IfBlock1->begin(),
 | |
|                                    IfBlock1->getTerminator());
 | |
|   }
 | |
|   if (IfBlock2) {
 | |
|     DomBlock->getInstList().splice(DomBlock->getTerminator(),
 | |
|                                    IfBlock2->getInstList(),
 | |
|                                    IfBlock2->begin(),
 | |
|                                    IfBlock2->getTerminator());
 | |
|   }
 | |
|   
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // Change the PHI node into a select instruction.
 | |
|     Value *TrueVal =
 | |
|       PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
 | |
|     Value *FalseVal =
 | |
|       PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
 | |
|     
 | |
|     Value *NV = new SelectInst(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
 | |
|     PN->replaceAllUsesWith(NV);
 | |
|     NV->takeName(PN);
 | |
|     
 | |
|     BB->getInstList().erase(PN);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// ConstantIntOrdering - This class implements a stable ordering of constant
 | |
|   /// integers that does not depend on their address.  This is important for
 | |
|   /// applications that sort ConstantInt's to ensure uniqueness.
 | |
|   struct ConstantIntOrdering {
 | |
|     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
 | |
|       return LHS->getValue().ult(RHS->getValue());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // SimplifyCFG - This function is used to do simplification of a CFG.  For
 | |
| // example, it adjusts branches to branches to eliminate the extra hop, it
 | |
| // eliminates unreachable basic blocks, and does other "peephole" optimization
 | |
| // of the CFG.  It returns true if a modification was made.
 | |
| //
 | |
| // WARNING:  The entry node of a function may not be simplified.
 | |
| //
 | |
| bool llvm::SimplifyCFG(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
|   Function *M = BB->getParent();
 | |
| 
 | |
|   assert(BB && BB->getParent() && "Block not embedded in function!");
 | |
|   assert(BB->getTerminator() && "Degenerate basic block encountered!");
 | |
|   assert(&BB->getParent()->getEntryBlock() != BB &&
 | |
|          "Can't Simplify entry block!");
 | |
| 
 | |
|   // Remove basic blocks that have no predecessors... which are unreachable.
 | |
|   if (pred_begin(BB) == pred_end(BB) ||
 | |
|       *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
 | |
|     DOUT << "Removing BB: \n" << *BB;
 | |
| 
 | |
|     // Loop through all of our successors and make sure they know that one
 | |
|     // of their predecessors is going away.
 | |
|     for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | |
|       SI->removePredecessor(BB);
 | |
| 
 | |
|     while (!BB->empty()) {
 | |
|       Instruction &I = BB->back();
 | |
|       // If this instruction is used, replace uses with an arbitrary
 | |
|       // value.  Because control flow can't get here, we don't care
 | |
|       // what we replace the value with.  Note that since this block is
 | |
|       // unreachable, and all values contained within it must dominate their
 | |
|       // uses, that all uses will eventually be removed.
 | |
|       if (!I.use_empty())
 | |
|         // Make all users of this instruction use undef instead
 | |
|         I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
| 
 | |
|       // Remove the instruction from the basic block
 | |
|       BB->getInstList().pop_back();
 | |
|     }
 | |
|     M->getBasicBlockList().erase(BB);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check to see if we can constant propagate this terminator instruction
 | |
|   // away...
 | |
|   Changed |= ConstantFoldTerminator(BB);
 | |
| 
 | |
|   // If this is a returning block with only PHI nodes in it, fold the return
 | |
|   // instruction into any unconditional branch predecessors.
 | |
|   //
 | |
|   // If any predecessor is a conditional branch that just selects among
 | |
|   // different return values, fold the replace the branch/return with a select
 | |
|   // and return.
 | |
|   if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | |
|     BasicBlock::iterator BBI = BB->getTerminator();
 | |
|     if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
 | |
|       // Find predecessors that end with branches.
 | |
|       std::vector<BasicBlock*> UncondBranchPreds;
 | |
|       std::vector<BranchInst*> CondBranchPreds;
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|         TerminatorInst *PTI = (*PI)->getTerminator();
 | |
|         if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
 | |
|           if (BI->isUnconditional())
 | |
|             UncondBranchPreds.push_back(*PI);
 | |
|           else
 | |
|             CondBranchPreds.push_back(BI);
 | |
|       }
 | |
| 
 | |
|       // If we found some, do the transformation!
 | |
|       if (!UncondBranchPreds.empty()) {
 | |
|         while (!UncondBranchPreds.empty()) {
 | |
|           BasicBlock *Pred = UncondBranchPreds.back();
 | |
|           DOUT << "FOLDING: " << *BB
 | |
|                << "INTO UNCOND BRANCH PRED: " << *Pred;
 | |
|           UncondBranchPreds.pop_back();
 | |
|           Instruction *UncondBranch = Pred->getTerminator();
 | |
|           // Clone the return and add it to the end of the predecessor.
 | |
|           Instruction *NewRet = RI->clone();
 | |
|           Pred->getInstList().push_back(NewRet);
 | |
| 
 | |
|           // If the return instruction returns a value, and if the value was a
 | |
|           // PHI node in "BB", propagate the right value into the return.
 | |
|           if (NewRet->getNumOperands() == 1)
 | |
|             if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
 | |
|               if (PN->getParent() == BB)
 | |
|                 NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | |
|           // Update any PHI nodes in the returning block to realize that we no
 | |
|           // longer branch to them.
 | |
|           BB->removePredecessor(Pred);
 | |
|           Pred->getInstList().erase(UncondBranch);
 | |
|         }
 | |
| 
 | |
|         // If we eliminated all predecessors of the block, delete the block now.
 | |
|         if (pred_begin(BB) == pred_end(BB))
 | |
|           // We know there are no successors, so just nuke the block.
 | |
|           M->getBasicBlockList().erase(BB);
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Check out all of the conditional branches going to this return
 | |
|       // instruction.  If any of them just select between returns, change the
 | |
|       // branch itself into a select/return pair.
 | |
|       while (!CondBranchPreds.empty()) {
 | |
|         BranchInst *BI = CondBranchPreds.back();
 | |
|         CondBranchPreds.pop_back();
 | |
|         BasicBlock *TrueSucc = BI->getSuccessor(0);
 | |
|         BasicBlock *FalseSucc = BI->getSuccessor(1);
 | |
|         BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
 | |
| 
 | |
|         // Check to see if the non-BB successor is also a return block.
 | |
|         if (isa<ReturnInst>(OtherSucc->getTerminator())) {
 | |
|           // Check to see if there are only PHI instructions in this block.
 | |
|           BasicBlock::iterator OSI = OtherSucc->getTerminator();
 | |
|           if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
 | |
|             // Okay, we found a branch that is going to two return nodes.  If
 | |
|             // there is no return value for this function, just change the
 | |
|             // branch into a return.
 | |
|             if (RI->getNumOperands() == 0) {
 | |
|               TrueSucc->removePredecessor(BI->getParent());
 | |
|               FalseSucc->removePredecessor(BI->getParent());
 | |
|               new ReturnInst(0, BI);
 | |
|               BI->getParent()->getInstList().erase(BI);
 | |
|               return true;
 | |
|             }
 | |
| 
 | |
|             // Otherwise, figure out what the true and false return values are
 | |
|             // so we can insert a new select instruction.
 | |
|             Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
 | |
|             Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
 | |
| 
 | |
|             // Unwrap any PHI nodes in the return blocks.
 | |
|             if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
 | |
|               if (TVPN->getParent() == TrueSucc)
 | |
|                 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
 | |
|             if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
 | |
|               if (FVPN->getParent() == FalseSucc)
 | |
|                 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
 | |
| 
 | |
|             // In order for this transformation to be safe, we must be able to
 | |
|             // unconditionally execute both operands to the return.  This is
 | |
|             // normally the case, but we could have a potentially-trapping
 | |
|             // constant expression that prevents this transformation from being
 | |
|             // safe.
 | |
|             if ((!isa<ConstantExpr>(TrueValue) ||
 | |
|                  !cast<ConstantExpr>(TrueValue)->canTrap()) &&
 | |
|                 (!isa<ConstantExpr>(TrueValue) ||
 | |
|                  !cast<ConstantExpr>(TrueValue)->canTrap())) {
 | |
|               TrueSucc->removePredecessor(BI->getParent());
 | |
|               FalseSucc->removePredecessor(BI->getParent());
 | |
| 
 | |
|               // Insert a new select instruction.
 | |
|               Value *NewRetVal;
 | |
|               Value *BrCond = BI->getCondition();
 | |
|               if (TrueValue != FalseValue)
 | |
|                 NewRetVal = new SelectInst(BrCond, TrueValue,
 | |
|                                            FalseValue, "retval", BI);
 | |
|               else
 | |
|                 NewRetVal = TrueValue;
 | |
|               
 | |
|               DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
 | |
|                    << "\n  " << *BI << "Select = " << *NewRetVal
 | |
|                    << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
 | |
| 
 | |
|               new ReturnInst(NewRetVal, BI);
 | |
|               BI->eraseFromParent();
 | |
|               if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
 | |
|                 if (isInstructionTriviallyDead(BrCondI))
 | |
|                   BrCondI->eraseFromParent();
 | |
|               return true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (isa<UnwindInst>(BB->begin())) {
 | |
|     // Check to see if the first instruction in this block is just an unwind.
 | |
|     // If so, replace any invoke instructions which use this as an exception
 | |
|     // destination with call instructions, and any unconditional branch
 | |
|     // predecessor with an unwind.
 | |
|     //
 | |
|     std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | |
|     while (!Preds.empty()) {
 | |
|       BasicBlock *Pred = Preds.back();
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
 | |
|         if (BI->isUnconditional()) {
 | |
|           Pred->getInstList().pop_back();  // nuke uncond branch
 | |
|           new UnwindInst(Pred);            // Use unwind.
 | |
|           Changed = true;
 | |
|         }
 | |
|       } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
 | |
|         if (II->getUnwindDest() == BB) {
 | |
|           // Insert a new branch instruction before the invoke, because this
 | |
|           // is now a fall through...
 | |
|           BranchInst *BI = new BranchInst(II->getNormalDest(), II);
 | |
|           Pred->getInstList().remove(II);   // Take out of symbol table
 | |
| 
 | |
|           // Insert the call now...
 | |
|           SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
 | |
|           CallInst *CI = new CallInst(II->getCalledValue(),
 | |
|                                       Args.begin(), Args.end(), II->getName(), BI);
 | |
|           CI->setCallingConv(II->getCallingConv());
 | |
|           // If the invoke produced a value, the Call now does instead
 | |
|           II->replaceAllUsesWith(CI);
 | |
|           delete II;
 | |
|           Changed = true;
 | |
|         }
 | |
| 
 | |
|       Preds.pop_back();
 | |
|     }
 | |
| 
 | |
|     // If this block is now dead, remove it.
 | |
|     if (pred_begin(BB) == pred_end(BB)) {
 | |
|       // We know there are no successors, so just nuke the block.
 | |
|       M->getBasicBlockList().erase(BB);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
 | |
|     if (isValueEqualityComparison(SI)) {
 | |
|       // If we only have one predecessor, and if it is a branch on this value,
 | |
|       // see if that predecessor totally determines the outcome of this switch.
 | |
|       if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
 | |
|         if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
 | |
|           return SimplifyCFG(BB) || 1;
 | |
| 
 | |
|       // If the block only contains the switch, see if we can fold the block
 | |
|       // away into any preds.
 | |
|       if (SI == &BB->front())
 | |
|         if (FoldValueComparisonIntoPredecessors(SI))
 | |
|           return SimplifyCFG(BB) || 1;
 | |
|     }
 | |
|   } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | |
|     if (BI->isUnconditional()) {
 | |
|       BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
 | |
|       while (isa<PHINode>(*BBI)) ++BBI;
 | |
| 
 | |
|       BasicBlock *Succ = BI->getSuccessor(0);
 | |
|       if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
 | |
|           Succ != BB)             // Don't hurt infinite loops!
 | |
|         if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
 | |
|           return 1;
 | |
|       
 | |
|     } else {  // Conditional branch
 | |
|       if (isValueEqualityComparison(BI)) {
 | |
|         // If we only have one predecessor, and if it is a branch on this value,
 | |
|         // see if that predecessor totally determines the outcome of this
 | |
|         // switch.
 | |
|         if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
 | |
|           if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
 | |
|             return SimplifyCFG(BB) || 1;
 | |
| 
 | |
|         // This block must be empty, except for the setcond inst, if it exists.
 | |
|         BasicBlock::iterator I = BB->begin();
 | |
|         if (&*I == BI ||
 | |
|             (&*I == cast<Instruction>(BI->getCondition()) &&
 | |
|              &*++I == BI))
 | |
|           if (FoldValueComparisonIntoPredecessors(BI))
 | |
|             return SimplifyCFG(BB) | true;
 | |
|       }
 | |
|       
 | |
|       // If this is a branch on a phi node in the current block, thread control
 | |
|       // through this block if any PHI node entries are constants.
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
 | |
|         if (PN->getParent() == BI->getParent())
 | |
|           if (FoldCondBranchOnPHI(BI))
 | |
|             return SimplifyCFG(BB) | true;
 | |
| 
 | |
|       // If this basic block is ONLY a setcc and a branch, and if a predecessor
 | |
|       // branches to us and one of our successors, fold the setcc into the
 | |
|       // predecessor and use logical operations to pick the right destination.
 | |
|       BasicBlock *TrueDest  = BI->getSuccessor(0);
 | |
|       BasicBlock *FalseDest = BI->getSuccessor(1);
 | |
|       if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition())) {
 | |
|         BasicBlock::iterator CondIt = Cond;
 | |
|         if ((isa<CmpInst>(Cond) || isa<BinaryOperator>(Cond)) &&
 | |
|             Cond->getParent() == BB && &BB->front() == Cond &&
 | |
|             &*++CondIt == BI && Cond->hasOneUse() &&
 | |
|             TrueDest != BB && FalseDest != BB)
 | |
|           for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
 | |
|             if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|               if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
 | |
|                 BasicBlock *PredBlock = *PI;
 | |
|                 if (PBI->getSuccessor(0) == FalseDest ||
 | |
|                     PBI->getSuccessor(1) == TrueDest) {
 | |
|                   // Invert the predecessors condition test (xor it with true),
 | |
|                   // which allows us to write this code once.
 | |
|                   Value *NewCond =
 | |
|                     BinaryOperator::createNot(PBI->getCondition(),
 | |
|                                     PBI->getCondition()->getName()+".not", PBI);
 | |
|                   PBI->setCondition(NewCond);
 | |
|                   BasicBlock *OldTrue = PBI->getSuccessor(0);
 | |
|                   BasicBlock *OldFalse = PBI->getSuccessor(1);
 | |
|                   PBI->setSuccessor(0, OldFalse);
 | |
|                   PBI->setSuccessor(1, OldTrue);
 | |
|                 }
 | |
| 
 | |
|                 if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
 | |
|                     (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
 | |
|                   // Clone Cond into the predecessor basic block, and or/and the
 | |
|                   // two conditions together.
 | |
|                   Instruction *New = Cond->clone();
 | |
|                   PredBlock->getInstList().insert(PBI, New);
 | |
|                   New->takeName(Cond);
 | |
|                   Cond->setName(New->getName()+".old");
 | |
|                   Instruction::BinaryOps Opcode =
 | |
|                     PBI->getSuccessor(0) == TrueDest ?
 | |
|                     Instruction::Or : Instruction::And;
 | |
|                   Value *NewCond =
 | |
|                     BinaryOperator::create(Opcode, PBI->getCondition(),
 | |
|                                            New, "bothcond", PBI);
 | |
|                   PBI->setCondition(NewCond);
 | |
|                   if (PBI->getSuccessor(0) == BB) {
 | |
|                     AddPredecessorToBlock(TrueDest, PredBlock, BB);
 | |
|                     PBI->setSuccessor(0, TrueDest);
 | |
|                   }
 | |
|                   if (PBI->getSuccessor(1) == BB) {
 | |
|                     AddPredecessorToBlock(FalseDest, PredBlock, BB);
 | |
|                     PBI->setSuccessor(1, FalseDest);
 | |
|                   }
 | |
|                   return SimplifyCFG(BB) | 1;
 | |
|                 }
 | |
|               }
 | |
|       }
 | |
| 
 | |
|       // Scan predessor blocks for conditional branches.
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|         if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|           if (PBI != BI && PBI->isConditional()) {
 | |
|               
 | |
|             // If this block ends with a branch instruction, and if there is a
 | |
|             // predecessor that ends on a branch of the same condition, make 
 | |
|             // this conditional branch redundant.
 | |
|             if (PBI->getCondition() == BI->getCondition() &&
 | |
|                 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
 | |
|               // Okay, the outcome of this conditional branch is statically
 | |
|               // knowable.  If this block had a single pred, handle specially.
 | |
|               if (BB->getSinglePredecessor()) {
 | |
|                 // Turn this into a branch on constant.
 | |
|                 bool CondIsTrue = PBI->getSuccessor(0) == BB;
 | |
|                 BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
 | |
|                 return SimplifyCFG(BB);  // Nuke the branch on constant.
 | |
|               }
 | |
|               
 | |
|               // Otherwise, if there are multiple predecessors, insert a PHI 
 | |
|               // that merges in the constant and simplify the block result.
 | |
|               if (BlockIsSimpleEnoughToThreadThrough(BB)) {
 | |
|                 PHINode *NewPN = new PHINode(Type::Int1Ty,
 | |
|                                             BI->getCondition()->getName()+".pr",
 | |
|                                             BB->begin());
 | |
|                 for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|                   if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
 | |
|                       PBI != BI && PBI->isConditional() &&
 | |
|                       PBI->getCondition() == BI->getCondition() &&
 | |
|                       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
 | |
|                     bool CondIsTrue = PBI->getSuccessor(0) == BB;
 | |
|                     NewPN->addIncoming(ConstantInt::get(Type::Int1Ty, 
 | |
|                                                         CondIsTrue), *PI);
 | |
|                   } else {
 | |
|                     NewPN->addIncoming(BI->getCondition(), *PI);
 | |
|                   }
 | |
|                 
 | |
|                 BI->setCondition(NewPN);
 | |
|                 // This will thread the branch.
 | |
|                 return SimplifyCFG(BB) | true;
 | |
|               }
 | |
|             }
 | |
|             
 | |
|             // If this is a conditional branch in an empty block, and if any
 | |
|             // predecessors is a conditional branch to one of our destinations,
 | |
|             // fold the conditions into logical ops and one cond br.
 | |
|             if (&BB->front() == BI) {
 | |
|               int PBIOp, BIOp;
 | |
|               if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
 | |
|                 PBIOp = BIOp = 0;
 | |
|               } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
 | |
|                 PBIOp = 0; BIOp = 1;
 | |
|               } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
 | |
|                 PBIOp = 1; BIOp = 0;
 | |
|               } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
 | |
|                 PBIOp = BIOp = 1;
 | |
|               } else {
 | |
|                 PBIOp = BIOp = -1;
 | |
|               }
 | |
|               
 | |
|               // Check to make sure that the other destination of this branch
 | |
|               // isn't BB itself.  If so, this is an infinite loop that will
 | |
|               // keep getting unwound.
 | |
|               if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
 | |
|                 PBIOp = BIOp = -1;
 | |
|               
 | |
|               // Do not perform this transformation if it would require 
 | |
|               // insertion of a large number of select instructions. For targets
 | |
|               // without predication/cmovs, this is a big pessimization.
 | |
|               if (PBIOp != -1) {
 | |
|                 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
 | |
|            
 | |
|                 unsigned NumPhis = 0;
 | |
|                 for (BasicBlock::iterator II = CommonDest->begin();
 | |
|                      isa<PHINode>(II); ++II, ++NumPhis) {
 | |
|                   if (NumPhis > 2) {
 | |
|                     // Disable this xform.
 | |
|                     PBIOp = -1;
 | |
|                     break;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
| 
 | |
|               // Finally, if everything is ok, fold the branches to logical ops.
 | |
|               if (PBIOp != -1) {
 | |
|                 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
 | |
|                 BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
 | |
| 
 | |
|                 // If OtherDest *is* BB, then this is a basic block with just
 | |
|                 // a conditional branch in it, where one edge (OtherDesg) goes
 | |
|                 // back to the block.  We know that the program doesn't get
 | |
|                 // stuck in the infinite loop, so the condition must be such
 | |
|                 // that OtherDest isn't branched through. Forward to CommonDest,
 | |
|                 // and avoid an infinite loop at optimizer time.
 | |
|                 if (OtherDest == BB)
 | |
|                   OtherDest = CommonDest;
 | |
|                 
 | |
|                 DOUT << "FOLDING BRs:" << *PBI->getParent()
 | |
|                      << "AND: " << *BI->getParent();
 | |
|                                 
 | |
|                 // BI may have other predecessors.  Because of this, we leave
 | |
|                 // it alone, but modify PBI.
 | |
|                 
 | |
|                 // Make sure we get to CommonDest on True&True directions.
 | |
|                 Value *PBICond = PBI->getCondition();
 | |
|                 if (PBIOp)
 | |
|                   PBICond = BinaryOperator::createNot(PBICond,
 | |
|                                                       PBICond->getName()+".not",
 | |
|                                                       PBI);
 | |
|                 Value *BICond = BI->getCondition();
 | |
|                 if (BIOp)
 | |
|                   BICond = BinaryOperator::createNot(BICond,
 | |
|                                                      BICond->getName()+".not",
 | |
|                                                      PBI);
 | |
|                 // Merge the conditions.
 | |
|                 Value *Cond =
 | |
|                   BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
 | |
|                 
 | |
|                 // Modify PBI to branch on the new condition to the new dests.
 | |
|                 PBI->setCondition(Cond);
 | |
|                 PBI->setSuccessor(0, CommonDest);
 | |
|                 PBI->setSuccessor(1, OtherDest);
 | |
| 
 | |
|                 // OtherDest may have phi nodes.  If so, add an entry from PBI's
 | |
|                 // block that are identical to the entries for BI's block.
 | |
|                 PHINode *PN;
 | |
|                 for (BasicBlock::iterator II = OtherDest->begin();
 | |
|                      (PN = dyn_cast<PHINode>(II)); ++II) {
 | |
|                   Value *V = PN->getIncomingValueForBlock(BB);
 | |
|                   PN->addIncoming(V, PBI->getParent());
 | |
|                 }
 | |
|                 
 | |
|                 // We know that the CommonDest already had an edge from PBI to
 | |
|                 // it.  If it has PHIs though, the PHIs may have different
 | |
|                 // entries for BB and PBI's BB.  If so, insert a select to make
 | |
|                 // them agree.
 | |
|                 for (BasicBlock::iterator II = CommonDest->begin();
 | |
|                      (PN = dyn_cast<PHINode>(II)); ++II) {
 | |
|                   Value * BIV = PN->getIncomingValueForBlock(BB);
 | |
|                   unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
 | |
|                   Value *PBIV = PN->getIncomingValue(PBBIdx);
 | |
|                   if (BIV != PBIV) {
 | |
|                     // Insert a select in PBI to pick the right value.
 | |
|                     Value *NV = new SelectInst(PBICond, PBIV, BIV,
 | |
|                                                PBIV->getName()+".mux", PBI);
 | |
|                     PN->setIncomingValue(PBBIdx, NV);
 | |
|                   }
 | |
|                 }
 | |
| 
 | |
|                 DOUT << "INTO: " << *PBI->getParent();
 | |
| 
 | |
|                 // This basic block is probably dead.  We know it has at least
 | |
|                 // one fewer predecessor.
 | |
|                 return SimplifyCFG(BB) | true;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|     }
 | |
|   } else if (isa<UnreachableInst>(BB->getTerminator())) {
 | |
|     // If there are any instructions immediately before the unreachable that can
 | |
|     // be removed, do so.
 | |
|     Instruction *Unreachable = BB->getTerminator();
 | |
|     while (Unreachable != BB->begin()) {
 | |
|       BasicBlock::iterator BBI = Unreachable;
 | |
|       --BBI;
 | |
|       if (isa<CallInst>(BBI)) break;
 | |
|       // Delete this instruction
 | |
|       BB->getInstList().erase(BBI);
 | |
|       Changed = true;
 | |
|     }
 | |
| 
 | |
|     // If the unreachable instruction is the first in the block, take a gander
 | |
|     // at all of the predecessors of this instruction, and simplify them.
 | |
|     if (&BB->front() == Unreachable) {
 | |
|       std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
 | |
|       for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|         TerminatorInst *TI = Preds[i]->getTerminator();
 | |
| 
 | |
|         if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|           if (BI->isUnconditional()) {
 | |
|             if (BI->getSuccessor(0) == BB) {
 | |
|               new UnreachableInst(TI);
 | |
|               TI->eraseFromParent();
 | |
|               Changed = true;
 | |
|             }
 | |
|           } else {
 | |
|             if (BI->getSuccessor(0) == BB) {
 | |
|               new BranchInst(BI->getSuccessor(1), BI);
 | |
|               BI->eraseFromParent();
 | |
|             } else if (BI->getSuccessor(1) == BB) {
 | |
|               new BranchInst(BI->getSuccessor(0), BI);
 | |
|               BI->eraseFromParent();
 | |
|               Changed = true;
 | |
|             }
 | |
|           }
 | |
|         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | |
|             if (SI->getSuccessor(i) == BB) {
 | |
|               BB->removePredecessor(SI->getParent());
 | |
|               SI->removeCase(i);
 | |
|               --i; --e;
 | |
|               Changed = true;
 | |
|             }
 | |
|           // If the default value is unreachable, figure out the most popular
 | |
|           // destination and make it the default.
 | |
|           if (SI->getSuccessor(0) == BB) {
 | |
|             std::map<BasicBlock*, unsigned> Popularity;
 | |
|             for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | |
|               Popularity[SI->getSuccessor(i)]++;
 | |
| 
 | |
|             // Find the most popular block.
 | |
|             unsigned MaxPop = 0;
 | |
|             BasicBlock *MaxBlock = 0;
 | |
|             for (std::map<BasicBlock*, unsigned>::iterator
 | |
|                    I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
 | |
|               if (I->second > MaxPop) {
 | |
|                 MaxPop = I->second;
 | |
|                 MaxBlock = I->first;
 | |
|               }
 | |
|             }
 | |
|             if (MaxBlock) {
 | |
|               // Make this the new default, allowing us to delete any explicit
 | |
|               // edges to it.
 | |
|               SI->setSuccessor(0, MaxBlock);
 | |
|               Changed = true;
 | |
| 
 | |
|               // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
 | |
|               // it.
 | |
|               if (isa<PHINode>(MaxBlock->begin()))
 | |
|                 for (unsigned i = 0; i != MaxPop-1; ++i)
 | |
|                   MaxBlock->removePredecessor(SI->getParent());
 | |
| 
 | |
|               for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
 | |
|                 if (SI->getSuccessor(i) == MaxBlock) {
 | |
|                   SI->removeCase(i);
 | |
|                   --i; --e;
 | |
|                 }
 | |
|             }
 | |
|           }
 | |
|         } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
 | |
|           if (II->getUnwindDest() == BB) {
 | |
|             // Convert the invoke to a call instruction.  This would be a good
 | |
|             // place to note that the call does not throw though.
 | |
|             BranchInst *BI = new BranchInst(II->getNormalDest(), II);
 | |
|             II->removeFromParent();   // Take out of symbol table
 | |
| 
 | |
|             // Insert the call now...
 | |
|             SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
 | |
|             CallInst *CI = new CallInst(II->getCalledValue(),
 | |
|                                         Args.begin(), Args.end(),
 | |
|                                         II->getName(), BI);
 | |
|             CI->setCallingConv(II->getCallingConv());
 | |
|             // If the invoke produced a value, the Call does now instead.
 | |
|             II->replaceAllUsesWith(CI);
 | |
|             delete II;
 | |
|             Changed = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this block is now dead, remove it.
 | |
|       if (pred_begin(BB) == pred_end(BB)) {
 | |
|         // We know there are no successors, so just nuke the block.
 | |
|         M->getBasicBlockList().erase(BB);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge basic blocks into their predecessor if there is only one distinct
 | |
|   // pred, and if there is only one distinct successor of the predecessor, and
 | |
|   // if there are no PHI nodes.
 | |
|   //
 | |
|   pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
 | |
|   BasicBlock *OnlyPred = *PI++;
 | |
|   for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
 | |
|     if (*PI != OnlyPred) {
 | |
|       OnlyPred = 0;       // There are multiple different predecessors...
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   BasicBlock *OnlySucc = 0;
 | |
|   if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
 | |
|       OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
 | |
|     // Check to see if there is only one distinct successor...
 | |
|     succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
 | |
|     OnlySucc = BB;
 | |
|     for (; SI != SE; ++SI)
 | |
|       if (*SI != OnlySucc) {
 | |
|         OnlySucc = 0;     // There are multiple distinct successors!
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (OnlySucc) {
 | |
|     DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
 | |
| 
 | |
|     // Resolve any PHI nodes at the start of the block.  They are all
 | |
|     // guaranteed to have exactly one entry if they exist, unless there are
 | |
|     // multiple duplicate (but guaranteed to be equal) entries for the
 | |
|     // incoming edges.  This occurs when there are multiple edges from
 | |
|     // OnlyPred to OnlySucc.
 | |
|     //
 | |
|     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|       BB->getInstList().pop_front();  // Delete the phi node.
 | |
|     }
 | |
| 
 | |
|     // Delete the unconditional branch from the predecessor.
 | |
|     OnlyPred->getInstList().pop_back();
 | |
| 
 | |
|     // Move all definitions in the successor to the predecessor.
 | |
|     OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | |
| 
 | |
|     // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|     // source.
 | |
|     BB->replaceAllUsesWith(OnlyPred);
 | |
| 
 | |
|     // Inherit predecessors name if it exists.
 | |
|     if (!OnlyPred->hasName())
 | |
|       OnlyPred->takeName(BB);
 | |
|     
 | |
|     // Erase basic block from the function.
 | |
|     M->getBasicBlockList().erase(BB);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if this block only has a single predecessor, and if that block
 | |
|   // is a conditional branch, see if we can hoist any code from this block up
 | |
|   // into our predecessor.
 | |
|   if (OnlyPred)
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
 | |
|       if (BI->isConditional()) {
 | |
|         // Get the other block.
 | |
|         BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
 | |
|         PI = pred_begin(OtherBB);
 | |
|         ++PI;
 | |
|         if (PI == pred_end(OtherBB)) {
 | |
|           // We have a conditional branch to two blocks that are only reachable
 | |
|           // from the condbr.  We know that the condbr dominates the two blocks,
 | |
|           // so see if there is any identical code in the "then" and "else"
 | |
|           // blocks.  If so, we can hoist it up to the branching block.
 | |
|           Changed |= HoistThenElseCodeToIf(BI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|       // Change br (X == 0 | X == 1), T, F into a switch instruction.
 | |
|       if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
 | |
|         Instruction *Cond = cast<Instruction>(BI->getCondition());
 | |
|         // If this is a bunch of seteq's or'd together, or if it's a bunch of
 | |
|         // 'setne's and'ed together, collect them.
 | |
|         Value *CompVal = 0;
 | |
|         std::vector<ConstantInt*> Values;
 | |
|         bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
 | |
|         if (CompVal && CompVal->getType()->isInteger()) {
 | |
|           // There might be duplicate constants in the list, which the switch
 | |
|           // instruction can't handle, remove them now.
 | |
|           std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
 | |
|           Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
 | |
| 
 | |
|           // Figure out which block is which destination.
 | |
|           BasicBlock *DefaultBB = BI->getSuccessor(1);
 | |
|           BasicBlock *EdgeBB    = BI->getSuccessor(0);
 | |
|           if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
 | |
| 
 | |
|           // Create the new switch instruction now.
 | |
|           SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
 | |
| 
 | |
|           // Add all of the 'cases' to the switch instruction.
 | |
|           for (unsigned i = 0, e = Values.size(); i != e; ++i)
 | |
|             New->addCase(Values[i], EdgeBB);
 | |
| 
 | |
|           // We added edges from PI to the EdgeBB.  As such, if there were any
 | |
|           // PHI nodes in EdgeBB, they need entries to be added corresponding to
 | |
|           // the number of edges added.
 | |
|           for (BasicBlock::iterator BBI = EdgeBB->begin();
 | |
|                isa<PHINode>(BBI); ++BBI) {
 | |
|             PHINode *PN = cast<PHINode>(BBI);
 | |
|             Value *InVal = PN->getIncomingValueForBlock(*PI);
 | |
|             for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
 | |
|               PN->addIncoming(InVal, *PI);
 | |
|           }
 | |
| 
 | |
|           // Erase the old branch instruction.
 | |
|           (*PI)->getInstList().erase(BI);
 | |
| 
 | |
|           // Erase the potentially condition tree that was used to computed the
 | |
|           // branch condition.
 | |
|           ErasePossiblyDeadInstructionTree(Cond);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // If there is a trivial two-entry PHI node in this basic block, and we can
 | |
|   // eliminate it, do so now.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
 | |
|     if (PN->getNumIncomingValues() == 2)
 | |
|       Changed |= FoldTwoEntryPHINode(PN); 
 | |
| 
 | |
|   return Changed;
 | |
| }
 |