llvm-6502/lib/Target/PowerPC/PPC32ISelSimple.cpp
Nate Begeman b64af918cb Fix casts of float to unsigned long
Replace STDX (store 64 bit int indexed) with STFDX (store double indexed)
Fix latent bug in indexed load generation
Generate indexed loads and stores in many more cases


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15626 91177308-0d34-0410-b5e6-96231b3b80d8
2004-08-10 20:42:36 +00:00

3400 lines
127 KiB
C++

//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "isel"
#include "PowerPC.h"
#include "PowerPCInstrBuilder.h"
#include "PowerPCInstrInfo.h"
#include "PowerPCTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include <vector>
using namespace llvm;
namespace {
Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
/// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
/// PPC Representation.
///
enum TypeClass {
cByte, cShort, cInt, cFP32, cFP64, cLong
};
}
/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::SByteTyID:
case Type::UByteTyID: return cByte; // Byte operands are class #0
case Type::ShortTyID:
case Type::UShortTyID: return cShort; // Short operands are class #1
case Type::IntTyID:
case Type::UIntTyID:
case Type::PointerTyID: return cInt; // Ints and pointers are class #2
case Type::FloatTyID: return cFP32; // Single float is #3
case Type::DoubleTyID: return cFP64; // Double Point is #4
case Type::LongTyID:
case Type::ULongTyID: return cLong; // Longs are class #5
default:
assert(0 && "Invalid type to getClass!");
return cByte; // not reached
}
}
// getClassB - Just like getClass, but treat boolean values as ints.
static inline TypeClass getClassB(const Type *Ty) {
if (Ty == Type::BoolTy) return cInt;
return getClass(Ty);
}
namespace {
struct ISel : public FunctionPass, InstVisitor<ISel> {
PowerPCTargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
int VarArgsFrameIndex; // FrameIndex for start of varargs area
std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
// External functions used in the Module
Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
*__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
*__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
// MBBMap - Mapping between LLVM BB -> Machine BB
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
// AllocaMap - Mapping from fixed sized alloca instructions to the
// FrameIndex for the alloca.
std::map<AllocaInst*, unsigned> AllocaMap;
// A Reg to hold the base address used for global loads and stores, and a
// flag to set whether or not we need to emit it for this function.
unsigned GlobalBaseReg;
bool GlobalBaseInitialized;
ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
F(0), BB(0) {}
bool doInitialization(Module &M) {
// Add external functions that we may call
Type *i = Type::IntTy;
Type *d = Type::DoubleTy;
Type *f = Type::FloatTy;
Type *l = Type::LongTy;
Type *ul = Type::ULongTy;
Type *voidPtr = PointerType::get(Type::SByteTy);
// float fmodf(float, float);
fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
// double fmod(double, double);
fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
// int __cmpdi2(long, long);
__cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
// long __moddi3(long, long);
__moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
// long __divdi3(long, long);
__divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
// unsigned long __umoddi3(unsigned long, unsigned long);
__umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
// unsigned long __udivdi3(unsigned long, unsigned long);
__udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
// long __fixsfdi(float)
__fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
// long __fixdfdi(double)
__fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
// unsigned long __fixunssfdi(float)
__fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
// unsigned long __fixunsdfdi(double)
__fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
// float __floatdisf(long)
__floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
// double __floatdidf(long)
__floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
// void* malloc(size_t)
mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
// void free(void*)
freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
return false;
}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn) {
// First pass over the function, lower any unknown intrinsic functions
// with the IntrinsicLowering class.
LowerUnknownIntrinsicFunctionCalls(Fn);
F = &MachineFunction::construct(&Fn, TM);
// Create all of the machine basic blocks for the function...
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
BB = &F->front();
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseInitialized = false;
// Copy incoming arguments off of the stack...
LoadArgumentsToVirtualRegs(Fn);
// Instruction select everything except PHI nodes
visit(Fn);
// Select the PHI nodes
SelectPHINodes();
RegMap.clear();
MBBMap.clear();
AllocaMap.clear();
F = 0;
// We always build a machine code representation for the function
return true;
}
virtual const char *getPassName() const {
return "PowerPC Simple Instruction Selection";
}
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = MBBMap[&LLVM_BB];
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
///
void LowerUnknownIntrinsicFunctionCalls(Function &F);
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
/// from the stack into virtual registers.
///
void LoadArgumentsToVirtualRegs(Function &F);
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks,
/// not the current one.
///
void SelectPHINodes();
// Visitation methods for various instructions. These methods simply emit
// fixed PowerPC code for each instruction.
// Control flow operators
void visitReturnInst(ReturnInst &RI);
void visitBranchInst(BranchInst &BI);
struct ValueRecord {
Value *Val;
unsigned Reg;
const Type *Ty;
ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
};
// This struct is for recording the necessary operations to emit the GEP
struct CollapsedGepOp {
bool isMul;
Value *index;
ConstantSInt *size;
CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
isMul(mul), index(i), size(s) {}
};
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
const std::vector<ValueRecord> &Args, bool isVarArg);
void visitCallInst(CallInst &I);
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
// Arithmetic operators
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
void visitMul(BinaryOperator &B);
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
void visitRem(BinaryOperator &B) { visitDivRem(B); }
void visitDivRem(BinaryOperator &B);
// Bitwise operators
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
// Comparison operators...
void visitSetCondInst(SetCondInst &I);
unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI);
void visitSelectInst(SelectInst &SI);
// Memory Instructions
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitAllocaInst(AllocaInst &I);
void visitMallocInst(MallocInst &I);
void visitFreeInst(FreeInst &I);
// Other operators
void visitShiftInst(ShiftInst &I);
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
void visitCastInst(CastInst &I);
void visitVANextInst(VANextInst &I);
void visitVAArgInst(VAArgInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "Cannot instruction select: " << I;
abort();
}
/// promote32 - Make a value 32-bits wide, and put it somewhere.
///
void promote32(unsigned targetReg, const ValueRecord &VR);
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg,
bool CollapseRemainder, ConstantSInt **Remainder,
unsigned *PendingAddReg);
/// emitCastOperation - Common code shared between visitCastInst and
/// constant expression cast support.
///
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy, unsigned TargetReg);
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
/// and constant expression support.
///
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned TargetReg);
/// emitBinaryFPOperation - This method handles emission of floating point
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
void emitBinaryFPOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned TargetReg);
void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned TargetReg);
void doMultiply(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, Value *Op1);
/// doMultiplyConst - This method will multiply the value in Op0Reg by the
/// value of the ContantInt *CI
void doMultiplyConst(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, ConstantInt *CI);
void emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, bool isDiv,
unsigned TargetReg);
/// emitSetCCOperation - Common code shared between visitSetCondInst and
/// constant expression support.
///
void emitSetCCOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned Opcode,
unsigned TargetReg);
/// emitShiftOperation - Common code shared between visitShiftInst and
/// constant expression support.
///
void emitShiftOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op, Value *ShiftAmount, bool isLeftShift,
const Type *ResultTy, unsigned DestReg);
/// emitSelectOperation - Common code shared between visitSelectInst and the
/// constant expression support.
///
void emitSelectOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Cond, Value *TrueVal, Value *FalseVal,
unsigned DestReg);
/// copyGlobalBaseToRegister - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned R);
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI,
Constant *C, unsigned Reg);
void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
unsigned LHS, unsigned RHS);
/// makeAnotherReg - This method returns the next register number we haven't
/// yet used.
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
/// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
"Current target doesn't have PPC reg info??");
const PowerPCRegisterInfo *PPCRI =
static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
// Create the upper part
F->getSSARegMap()->createVirtualRegister(RC);
// Create the lower part.
return F->getSSARegMap()->createVirtualRegister(RC)-1;
}
// Add the mapping of regnumber => reg class to MachineFunction
const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
return F->getSSARegMap()->createVirtualRegister(RC);
}
/// getReg - This method turns an LLVM value into a register number.
///
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
unsigned getReg(Value *V) {
// Just append to the end of the current bb.
MachineBasicBlock::iterator It = BB->end();
return getReg(V, BB, It);
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt);
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
/// is okay to use as an immediate argument to a certain binary operation
bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
unsigned getFixedSizedAllocaFI(AllocaInst *AI);
};
}
/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
/// instruction in the entry block, return it. Otherwise, return a null
/// pointer.
static AllocaInst *dyn_castFixedAlloca(Value *V) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
BasicBlock *BB = AI->getParent();
if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
return AI;
}
return 0;
}
/// getReg - This method turns an LLVM value into a register number.
///
unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt) {
if (Constant *C = dyn_cast<Constant>(V)) {
unsigned Reg = makeAnotherReg(V->getType());
copyConstantToRegister(MBB, IPt, C, Reg);
return Reg;
} else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
unsigned Reg = makeAnotherReg(V->getType());
unsigned FI = getFixedSizedAllocaFI(AI);
addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
return Reg;
}
unsigned &Reg = RegMap[V];
if (Reg == 0) {
Reg = makeAnotherReg(V->getType());
RegMap[V] = Reg;
}
return Reg;
}
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
/// is okay to use as an immediate argument to a certain binary operator.
///
/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
ConstantSInt *Op1Cs;
ConstantUInt *Op1Cu;
// ADDI, Compare, and non-indexed Load take SIMM
bool cond1 = (Operator == 0)
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
&& (Op1Cs->getValue() <= 32767)
&& (Op1Cs->getValue() >= -32768);
// SUBI takes -SIMM since it is a mnemonic for ADDI
bool cond2 = (Operator == 1)
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
&& (Op1Cs->getValue() <= 32768)
&& (Op1Cs->getValue() >= -32767);
// ANDIo, ORI, and XORI take unsigned values
bool cond3 = (Operator >= 2)
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
&& (Op1Cs->getValue() >= 0)
&& (Op1Cs->getValue() <= 32767);
// ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
bool cond4 = (Operator < 2)
&& (Op1Cu = dyn_cast<ConstantUInt>(CI))
&& (Op1Cu->getValue() <= 32767);
// ANDIo, ORI, and XORI take UIMMs, so they can be larger
bool cond5 = (Operator >= 2)
&& (Op1Cu = dyn_cast<ConstantUInt>(CI))
&& (Op1Cu->getValue() <= 65535);
if (cond1 || cond2 || cond3 || cond4 || cond5)
return true;
return false;
}
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
// Already computed this?
std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
if (I != AllocaMap.end() && I->first == AI) return I->second;
const Type *Ty = AI->getAllocatedType();
ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
TySize *= CUI->getValue(); // Get total allocated size...
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
// Create a new stack object using the frame manager...
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
return FrameIdx;
}
/// copyGlobalBaseToRegister - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned R) {
if (!GlobalBaseInitialized) {
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = F->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
GlobalBaseReg = makeAnotherReg(Type::IntTy);
BuildMI(FirstMBB, MBBI, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
BuildMI(FirstMBB, MBBI, PPC32::MovePCtoLR, 0, GlobalBaseReg);
GlobalBaseInitialized = true;
}
// Emit our copy of GlobalBaseReg to the destination register in the
// current MBB
BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(GlobalBaseReg)
.addReg(GlobalBaseReg);
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R) {
if (C->getType()->isIntegral()) {
unsigned Class = getClassB(C->getType());
if (Class == cLong) {
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
uint64_t uval = CUI->getValue();
unsigned hiUVal = uval >> 32;
unsigned loUVal = uval;
ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
copyConstantToRegister(MBB, IP, CUHi, R);
copyConstantToRegister(MBB, IP, CULo, R+1);
return;
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
int64_t sval = CSI->getValue();
int hiSVal = sval >> 32;
int loSVal = sval;
ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
copyConstantToRegister(MBB, IP, CSHi, R);
copyConstantToRegister(MBB, IP, CSLo, R+1);
return;
} else {
std::cerr << "Unhandled long constant type!\n";
abort();
}
}
assert(Class <= cInt && "Type not handled yet!");
// Handle bool
if (C->getType() == Type::BoolTy) {
BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
return;
}
// Handle int
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
unsigned uval = CUI->getValue();
if (uval < 32768) {
BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(uval);
} else {
unsigned Temp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm(uval >> 16);
BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(uval);
}
return;
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
int sval = CSI->getValue();
if (sval < 32768 && sval >= -32768) {
BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(sval);
} else {
unsigned Temp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm(sval >> 16);
BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(sval);
}
return;
}
std::cerr << "Unhandled integer constant!\n";
abort();
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
// We need to spill the constant to memory...
MachineConstantPool *CP = F->getConstantPool();
unsigned CPI = CP->getConstantPoolIndex(CFP);
const Type *Ty = CFP->getType();
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
// Load addr of constant to reg; constant is located at base + distance
unsigned GlobalBase = makeAnotherReg(Type::IntTy);
unsigned Reg1 = makeAnotherReg(Type::IntTy);
unsigned Reg2 = makeAnotherReg(Type::IntTy);
// Move value at base + distance into return reg
copyGlobalBaseToRegister(MBB, IP, GlobalBase);
BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
.addConstantPoolIndex(CPI);
BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
.addConstantPoolIndex(CPI);
unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
} else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register.
BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// GV is located at base + distance
unsigned GlobalBase = makeAnotherReg(Type::IntTy);
unsigned TmpReg = makeAnotherReg(GV->getType());
unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
// Move value at base + distance into return reg
copyGlobalBaseToRegister(MBB, IP, GlobalBase);
BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
.addGlobalAddress(GV);
BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
// Add the GV to the list of things whose addresses have been taken.
TM.AddressTaken.insert(GV);
} else {
std::cerr << "Offending constant: " << *C << "\n";
assert(0 && "Type not handled yet!");
}
}
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
/// the stack into virtual registers.
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
unsigned ArgOffset = 24;
unsigned GPR_remaining = 8;
unsigned FPR_remaining = 13;
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
};
static const unsigned FPR[] = {
PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
};
MachineFrameInfo *MFI = F->getFrameInfo();
for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
bool ArgLive = !I->use_empty();
unsigned Reg = ArgLive ? getReg(*I) : 0;
int FI; // Frame object index
switch (getClassB(I->getType())) {
case cByte:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
} else {
addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
}
}
break;
case cShort:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
} else {
addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
}
}
break;
case cInt:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
} else {
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
}
}
break;
case cLong:
if (ArgLive) {
FI = MFI->CreateFixedObject(8, ArgOffset);
if (GPR_remaining > 1) {
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
.addReg(GPR[GPR_idx+1]);
} else {
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
}
}
// longs require 4 additional bytes and use 2 GPRs
ArgOffset += 4;
if (GPR_remaining > 1) {
GPR_remaining--;
GPR_idx++;
}
break;
case cFP32:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (FPR_remaining > 0) {
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
FPR_remaining--;
FPR_idx++;
} else {
addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
}
}
break;
case cFP64:
if (ArgLive) {
FI = MFI->CreateFixedObject(8, ArgOffset);
if (FPR_remaining > 0) {
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
FPR_remaining--;
FPR_idx++;
} else {
addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
}
}
// doubles require 4 additional bytes and use 2 GPRs of param space
ArgOffset += 4;
if (GPR_remaining > 0) {
GPR_remaining--;
GPR_idx++;
}
break;
default:
assert(0 && "Unhandled argument type!");
}
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
if (GPR_remaining > 0) {
GPR_remaining--; // uses up 2 GPRs
GPR_idx++;
}
}
// If the function takes variable number of arguments, add a frame offset for
// the start of the first vararg value... this is used to expand
// llvm.va_start.
if (Fn.getFunctionType()->isVarArg())
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
}
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks, not
/// the current one.
///
void ISel::SelectPHINodes() {
const TargetInstrInfo &TII = *TM.getInstrInfo();
const Function &LF = *F->getFunction(); // The LLVM function...
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
const BasicBlock *BB = I;
MachineBasicBlock &MBB = *MBBMap[I];
// Loop over all of the PHI nodes in the LLVM basic block...
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
for (BasicBlock::const_iterator I = BB->begin();
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
// Create a new machine instr PHI node, and insert it.
unsigned PHIReg = getReg(*PN);
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
PPC32::PHI, PN->getNumOperands(), PHIReg);
MachineInstr *LongPhiMI = 0;
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
PPC32::PHI, PN->getNumOperands(), PHIReg+1);
// PHIValues - Map of blocks to incoming virtual registers. We use this
// so that we only initialize one incoming value for a particular block,
// even if the block has multiple entries in the PHI node.
//
std::map<MachineBasicBlock*, unsigned> PHIValues;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
MachineBasicBlock *PredMBB = 0;
for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
PE = MBB.pred_end (); PI != PE; ++PI)
if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
PredMBB = *PI;
break;
}
assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
unsigned ValReg;
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
PHIValues.lower_bound(PredMBB);
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
// We already inserted an initialization of the register for this
// predecessor. Recycle it.
ValReg = EntryIt->second;
} else {
// Get the incoming value into a virtual register.
//
Value *Val = PN->getIncomingValue(i);
// If this is a constant or GlobalValue, we may have to insert code
// into the basic block to compute it into a virtual register.
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
isa<GlobalValue>(Val)) {
// Simple constants get emitted at the end of the basic block,
// before any terminator instructions. We "know" that the code to
// move a constant into a register will never clobber any flags.
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
} else {
// Because we don't want to clobber any values which might be in
// physical registers with the computation of this constant (which
// might be arbitrarily complex if it is a constant expression),
// just insert the computation at the top of the basic block.
MachineBasicBlock::iterator PI = PredMBB->begin();
// Skip over any PHI nodes though!
while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
++PI;
ValReg = getReg(Val, PredMBB, PI);
}
// Remember that we inserted a value for this PHI for this predecessor
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
}
PhiMI->addRegOperand(ValReg);
PhiMI->addMachineBasicBlockOperand(PredMBB);
if (LongPhiMI) {
LongPhiMI->addRegOperand(ValReg+1);
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
}
}
// Now that we emitted all of the incoming values for the PHI node, make
// sure to reposition the InsertPoint after the PHI that we just added.
// This is needed because we might have inserted a constant into this
// block, right after the PHI's which is before the old insert point!
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
++PHIInsertPoint;
}
}
}
// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
// it into the conditional branch or select instruction which is the only user
// of the cc instruction. This is the case if the conditional branch is the
// only user of the setcc, and if the setcc is in the same basic block as the
// conditional branch.
//
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
if (SCI->hasOneUse()) {
Instruction *User = cast<Instruction>(SCI->use_back());
if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
SCI->getParent() == User->getParent())
return SCI;
}
return 0;
}
// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
// the load or store instruction that is the only user of the GEP.
//
static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
if (GEPI->hasOneUse()) {
Instruction *User = cast<Instruction>(GEPI->use_back());
if (isa<StoreInst>(User) &&
GEPI->getParent() == User->getParent() &&
User->getOperand(0) != GEPI &&
User->getOperand(1) == GEPI) {
++GEPFolds;
return GEPI;
}
if (isa<LoadInst>(User) &&
GEPI->getParent() == User->getParent() &&
User->getOperand(0) == GEPI) {
++GEPFolds;
return GEPI;
}
}
return 0;
}
// Return a fixed numbering for setcc instructions which does not depend on the
// order of the opcodes.
//
static unsigned getSetCCNumber(unsigned Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: return 0;
case Instruction::SetNE: return 1;
case Instruction::SetLT: return 2;
case Instruction::SetGE: return 3;
case Instruction::SetGT: return 4;
case Instruction::SetLE: return 5;
}
}
static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: return PPC32::BEQ;
case Instruction::SetNE: return PPC32::BNE;
case Instruction::SetLT: return PPC32::BLT;
case Instruction::SetGE: return PPC32::BGE;
case Instruction::SetGT: return PPC32::BGT;
case Instruction::SetLE: return PPC32::BLE;
}
}
/// emitUCOM - emits an unordered FP compare.
void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
unsigned LHS, unsigned RHS) {
BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
}
/// EmitComparison - emits a comparison of the two operands, returning the
/// extended setcc code to use. The result is in CR0.
///
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP) {
// The arguments are already supposed to be of the same type.
const Type *CompTy = Op0->getType();
unsigned Class = getClassB(CompTy);
unsigned Op0r = getReg(Op0, MBB, IP);
// Before we do a comparison, we have to make sure that we're truncating our
// registers appropriately.
if (Class == cByte) {
unsigned TmpReg = makeAnotherReg(CompTy);
if (CompTy->isSigned())
BuildMI(*MBB, IP, PPC32::EXTSB, 1, TmpReg).addReg(Op0r);
else
BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
.addImm(24).addImm(31);
Op0r = TmpReg;
} else if (Class == cShort) {
unsigned TmpReg = makeAnotherReg(CompTy);
if (CompTy->isSigned())
BuildMI(*MBB, IP, PPC32::EXTSH, 1, TmpReg).addReg(Op0r);
else
BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
.addImm(16).addImm(31);
Op0r = TmpReg;
}
// Use crand for lt, gt and crandc for le, ge
unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
// ? cr1[lt] : cr1[gt]
unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
// ? cr0[lt] : cr0[gt]
unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
// Special case handling of: cmp R, i
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Class == cByte || Class == cShort || Class == cInt) {
unsigned Op1v = CI->getRawValue() & 0xFFFF;
// Treat compare like ADDI for the purposes of immediate suitability
if (canUseAsImmediateForOpcode(CI, 0)) {
BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
} else {
unsigned Op1r = getReg(Op1, MBB, IP);
BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
}
return OpNum;
} else {
assert(Class == cLong && "Unknown integer class!");
unsigned LowCst = CI->getRawValue();
unsigned HiCst = CI->getRawValue() >> 32;
if (OpNum < 2) { // seteq, setne
unsigned LoLow = makeAnotherReg(Type::IntTy);
unsigned LoTmp = makeAnotherReg(Type::IntTy);
unsigned HiLow = makeAnotherReg(Type::IntTy);
unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
.addImm(LowCst & 0xFFFF);
BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
.addImm(LowCst >> 16);
BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
.addImm(HiCst & 0xFFFF);
BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
.addImm(HiCst >> 16);
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
return OpNum;
} else {
unsigned ConstReg = makeAnotherReg(CompTy);
copyConstantToRegister(MBB, IP, CI, ConstReg);
// cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r)
.addReg(ConstReg);
BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1)
.addReg(ConstReg+1);
BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
.addImm(2);
return OpNum;
}
}
}
unsigned Op1r = getReg(Op1, MBB, IP);
switch (Class) {
default: assert(0 && "Unknown type class!");
case cByte:
case cShort:
case cInt:
BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
break;
case cFP32:
case cFP64:
emitUCOM(MBB, IP, Op0r, Op1r);
break;
case cLong:
if (OpNum < 2) { // seteq, setne
unsigned LoTmp = makeAnotherReg(Type::IntTy);
unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
break; // Allow the sete or setne to be generated from flags set by OR
} else {
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
// cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
.addImm(2);
return OpNum;
}
}
return OpNum;
}
/// visitSetCondInst - emit code to calculate the condition via
/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
///
void ISel::visitSetCondInst(SetCondInst &I) {
if (canFoldSetCCIntoBranchOrSelect(&I))
return;
unsigned DestReg = getReg(I);
unsigned OpNum = I.getOpcode();
const Type *Ty = I.getOperand (0)->getType();
EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// cmpTY cr0, r1, r2
// bCC copy1MBB
// b copy0MBB
// FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
// if we could insert other, non-terminator instructions after the
// bCC. But MBB->getFirstTerminator() can't understand this.
MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy1MBB);
BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy0MBB);
BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy1MBB);
BB->addSuccessor(copy0MBB);
// copy1MBB:
// %TrueValue = li 1
// b sinkMBB
BB = copy1MBB;
unsigned TrueValue = makeAnotherReg(I.getType());
BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = li 0
// fallthrough
BB = copy0MBB;
unsigned FalseValue = makeAnotherReg(I.getType());
BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
}
void ISel::visitSelectInst(SelectInst &SI) {
unsigned DestReg = getReg(SI);
MachineBasicBlock::iterator MII = BB->end();
emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
SI.getFalseValue(), DestReg);
}
/// emitSelect - Common code shared between visitSelectInst and the constant
/// expression support.
/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
/// no select instruction. FSEL only works for comparisons against zero.
void ISel::emitSelectOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Cond, Value *TrueVal, Value *FalseVal,
unsigned DestReg) {
unsigned SelectClass = getClassB(TrueVal->getType());
unsigned Opcode;
// See if we can fold the setcc into the select instruction, or if we have
// to get the register of the Cond value
if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
// We successfully folded the setcc into the select instruction.
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
} else {
unsigned CondReg = getReg(Cond, MBB, IP);
BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
}
// thisMBB:
// ...
// cmpTY cr0, r1, r2
// bCC copy1MBB
// b copy0MBB
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
// if we could insert other, non-terminator instructions after the
// bCC. But MBB->getFirstTerminator() can't understand this.
MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy1MBB);
BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy0MBB);
BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy1MBB);
BB->addSuccessor(copy0MBB);
// copy1MBB:
// %TrueValue = ...
// b sinkMBB
BB = copy1MBB;
unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// fallthrough
BB = copy0MBB;
unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
// For a register pair representing a long value, define the second reg
if (getClass(TrueVal->getType()) == cLong)
BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
return;
}
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
/// operand, in the specified target register.
///
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Value *Val = VR.Val;
const Type *Ty = VR.Ty;
if (Val) {
if (Constant *C = dyn_cast<Constant>(Val)) {
Val = ConstantExpr::getCast(C, Type::IntTy);
Ty = Type::IntTy;
}
// If this is a simple constant, just emit a load directly to avoid the copy
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
if (TheVal < 32768 && TheVal >= -32768) {
BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
} else {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
.addImm(TheVal & 0xFFFF);
}
return;
}
}
// Make sure we have the register number for this value...
unsigned Reg = Val ? getReg(Val) : VR.Reg;
switch (getClassB(Ty)) {
case cByte:
// Extend value into target register (8->32)
if (isUnsigned)
BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
.addZImm(24).addZImm(31);
else
BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
break;
case cShort:
// Extend value into target register (16->32)
if (isUnsigned)
BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
.addZImm(16).addZImm(31);
else
BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
break;
case cInt:
// Move value into target register (32->32)
BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
break;
default:
assert(0 && "Unpromotable operand class in promote32");
}
}
/// visitReturnInst - implemented with BLR
///
void ISel::visitReturnInst(ReturnInst &I) {
// Only do the processing if this is a non-void return
if (I.getNumOperands() > 0) {
Value *RetVal = I.getOperand(0);
switch (getClassB(RetVal->getType())) {
case cByte: // integral return values: extend or move into r3 and return
case cShort:
case cInt:
promote32(PPC32::R3, ValueRecord(RetVal));
break;
case cFP32:
case cFP64: { // Floats & Doubles: Return in f1
unsigned RetReg = getReg(RetVal);
BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
break;
}
case cLong: {
unsigned RetReg = getReg(RetVal);
BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
break;
}
default:
visitInstruction(I);
}
}
BuildMI(BB, PPC32::BLR, 1).addImm(0);
}
// getBlockAfter - Return the basic block which occurs lexically after the
// specified one.
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
Function::iterator I = BB; ++I; // Get iterator to next block
return I != BB->getParent()->end() ? &*I : 0;
}
/// visitBranchInst - Handle conditional and unconditional branches here. Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through (but we don't currently).
///
void ISel::visitBranchInst(BranchInst &BI) {
// Update machine-CFG edges
BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
if (BI.isConditional())
BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
if (!BI.isConditional()) { // Unconditional branch?
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
return;
}
// See if we can fold the setcc into the branch itself...
SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
if (SCI == 0) {
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
// computed some other way...
unsigned condReg = getReg(BI.getCondition());
BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
.addImm(0);
if (BI.getSuccessor(1) == NextBB) {
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BNE)
.addMBB(MBBMap[BI.getSuccessor(0)])
.addMBB(MBBMap[BI.getSuccessor(1)]);
} else {
BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BEQ)
.addMBB(MBBMap[BI.getSuccessor(1)])
.addMBB(MBBMap[BI.getSuccessor(0)]);
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
}
return;
}
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
MachineBasicBlock::iterator MII = BB->end();
OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
if (BI.getSuccessor(0) != NextBB) {
BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
.addMBB(MBBMap[BI.getSuccessor(0)])
.addMBB(MBBMap[BI.getSuccessor(1)]);
if (BI.getSuccessor(1) != NextBB)
BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
} else {
// Change to the inverse condition...
if (BI.getSuccessor(1) != NextBB) {
Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
.addMBB(MBBMap[BI.getSuccessor(1)])
.addMBB(MBBMap[BI.getSuccessor(0)]);
}
}
}
/// doCall - This emits an abstract call instruction, setting up the arguments
/// and the return value as appropriate. For the actual function call itself,
/// it inserts the specified CallMI instruction into the stream.
///
/// FIXME: See Documentation at the following URL for "correct" behavior
/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
const std::vector<ValueRecord> &Args, bool isVarArg) {
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area.
unsigned NumBytes = 24;
unsigned ArgOffset = 24;
if (!Args.empty()) {
for (unsigned i = 0, e = Args.size(); i != e; ++i)
switch (getClassB(Args[i].Ty)) {
case cByte: case cShort: case cInt:
NumBytes += 4; break;
case cLong:
NumBytes += 8; break;
case cFP32:
NumBytes += 4; break;
case cFP64:
NumBytes += 8; break;
break;
default: assert(0 && "Unknown class!");
}
// Just to be safe, we'll always reserve the full 32 bytes worth of
// argument passing space in case any called code gets funky on us.
if (NumBytes < 24 + 32) NumBytes = 24 + 32;
// Adjust the stack pointer for the new arguments...
// These functions are automatically eliminated by the prolog/epilog pass
BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
// Arguments go on the stack in reverse order, as specified by the ABI.
// Offset to the paramater area on the stack is 24.
int GPR_remaining = 8, FPR_remaining = 13;
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
};
static const unsigned FPR[] = {
PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
PPC32::F13
};
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
unsigned ArgReg;
switch (getClassB(Args[i].Ty)) {
case cByte:
case cShort:
// Promote arg to 32 bits wide into a temporary register...
ArgReg = makeAnotherReg(Type::UIntTy);
promote32(ArgReg, Args[i]);
// Reg or stack?
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
if (GPR_remaining <= 0 || isVarArg) {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
case cInt:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack?
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
if (GPR_remaining <= 0 || isVarArg) {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
case cLong:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack? Note that PPC calling conventions state that long args
// are passed rN = hi, rN+1 = lo, opposite of LLVM.
if (GPR_remaining > 1) {
BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
.addReg(ArgReg+1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
}
if (GPR_remaining <= 1 || isVarArg) {
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
.addReg(PPC32::R1);
}
ArgOffset += 4; // 8 byte entry, not 4.
GPR_remaining -= 1; // uses up 2 GPRs
GPR_idx += 1;
break;
case cFP32:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack?
if (FPR_remaining > 0) {
BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
FPR_remaining--;
FPR_idx++;
// If this is a vararg function, and there are GPRs left, also
// pass the float in an int. Otherwise, put it on the stack.
if (isVarArg) {
BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
.addSImm(ArgOffset).addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
}
} else {
BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
case cFP64:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack?
if (FPR_remaining > 0) {
BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
FPR_remaining--;
FPR_idx++;
// For vararg functions, must pass doubles via int regs as well
if (isVarArg) {
BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
// Doubles can be split across reg + stack for varargs
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
.addReg(PPC32::R1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
if (GPR_remaining > 1) {
BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
.addSImm(ArgOffset+4).addReg(PPC32::R1);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
}
}
} else {
BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
// Doubles use 8 bytes, and 2 GPRs worth of param space
ArgOffset += 4;
GPR_remaining--;
GPR_idx++;
break;
default: assert(0 && "Unknown class!");
}
ArgOffset += 4;
GPR_remaining--;
GPR_idx++;
}
} else {
BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
}
BuildMI(BB, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
BB->push_back(CallMI);
// These functions are automatically eliminated by the prolog/epilog pass
BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
// If there is a return value, scavenge the result from the location the call
// leaves it in...
//
if (Ret.Ty != Type::VoidTy) {
unsigned DestClass = getClassB(Ret.Ty);
switch (DestClass) {
case cByte:
case cShort:
case cInt:
// Integral results are in r3
BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
break;
case cFP32: // Floating-point return values live in f1
case cFP64:
BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
break;
case cLong: // Long values are in r3:r4
BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
break;
default: assert(0 && "Unknown class!");
}
}
}
/// visitCallInst - Push args on stack and do a procedure call instruction.
void ISel::visitCallInst(CallInst &CI) {
MachineInstr *TheCall;
Function *F = CI.getCalledFunction();
if (F) {
// Is it an intrinsic function call?
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
return;
}
// Emit a CALL instruction with PC-relative displacement.
TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
// Add it to the set of functions called to be used by the Printer
TM.CalledFunctions.insert(F);
} else { // Emit an indirect call through the CTR
unsigned Reg = getReg(CI.getCalledValue());
BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
}
std::vector<ValueRecord> Args;
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Args.push_back(ValueRecord(CI.getOperand(i)));
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
}
/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
///
static Value *dyncastIsNan(Value *V) {
if (CallInst *CI = dyn_cast<CallInst>(V))
if (Function *F = CI->getCalledFunction())
if (F->getIntrinsicID() == Intrinsic::isunordered)
return CI->getOperand(1);
return 0;
}
/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
/// or's whos operands are all calls to the isnan predicate.
static bool isOnlyUsedByUnorderedComparisons(Value *V) {
assert(dyncastIsNan(V) && "The value isn't an isnan call!");
// Check all uses, which will be or's of isnans if this predicate is true.
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Instruction *I = cast<Instruction>(*UI);
if (I->getOpcode() != Instruction::Or) return false;
if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
}
return true;
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
///
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
case Intrinsic::vastart:
case Intrinsic::vacopy:
case Intrinsic::vaend:
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
// FIXME: should lower these ourselves
// case Intrinsic::isunordered:
// case Intrinsic::memcpy: -> doCall(). system memcpy almost
// guaranteed to be faster than anything we generate ourselves
// We directly implement these intrinsics
break;
case Intrinsic::readio: {
// On PPC, memory operations are in-order. Lower this intrinsic
// into a volatile load.
Instruction *Before = CI->getPrev();
LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
CI->replaceAllUsesWith(LI);
BB->getInstList().erase(CI);
break;
}
case Intrinsic::writeio: {
// On PPC, memory operations are in-order. Lower this intrinsic
// into a volatile store.
Instruction *Before = CI->getPrev();
StoreInst *SI = new StoreInst(CI->getOperand(1),
CI->getOperand(2), true, CI);
CI->replaceAllUsesWith(SI);
BB->getInstList().erase(CI);
break;
}
default:
// All other intrinsic calls we must lower.
Instruction *Before = CI->getPrev();
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
}
}
void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
unsigned TmpReg1, TmpReg2, TmpReg3;
switch (ID) {
case Intrinsic::vastart:
// Get the address of the first vararg value...
TmpReg1 = getReg(CI);
addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
0, false);
return;
case Intrinsic::vacopy:
TmpReg1 = getReg(CI);
TmpReg2 = getReg(CI.getOperand(1));
BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
return;
case Intrinsic::vaend: return;
case Intrinsic::returnaddress:
TmpReg1 = getReg(CI);
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
MachineFrameInfo *MFI = F->getFrameInfo();
unsigned NumBytes = MFI->getStackSize();
BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
.addReg(PPC32::R1);
} else {
// Values other than zero are not implemented yet.
BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
}
return;
case Intrinsic::frameaddress:
TmpReg1 = getReg(CI);
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
} else {
// Values other than zero are not implemented yet.
BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
}
return;
#if 0
// This may be useful for supporting isunordered
case Intrinsic::isnan:
// If this is only used by 'isunordered' style comparisons, don't emit it.
if (isOnlyUsedByUnorderedComparisons(&CI)) return;
TmpReg1 = getReg(CI.getOperand(1));
emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
TmpReg2 = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC32::MFCR, TmpReg2);
TmpReg3 = getReg(CI);
BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
return;
#endif
default: assert(0 && "Error: unknown intrinsics should have been lowered!");
}
}
/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
/// Xor.
///
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
unsigned DestReg = getReg(B);
MachineBasicBlock::iterator MI = BB->end();
Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
unsigned Class = getClassB(B.getType());
emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
}
/// emitBinaryFPOperation - This method handles emission of floating point
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned DestReg) {
// Special case: op Reg, <const fp>
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
// Create a constant pool entry for this constant.
MachineConstantPool *CP = F->getConstantPool();
unsigned CPI = CP->getConstantPoolIndex(Op1C);
const Type *Ty = Op1->getType();
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
static const unsigned OpcodeTab[][4] = {
{ PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
{ PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
};
unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
unsigned Op1Reg = getReg(Op1C, BB, IP);
unsigned Op0r = getReg(Op0, BB, IP);
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
return;
}
// Special case: R1 = op <const fp>, R2
if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
// -0.0 - X === -X
unsigned op1Reg = getReg(Op1, BB, IP);
BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
return;
} else {
// R1 = op CST, R2 --> R1 = opr R2, CST
// Create a constant pool entry for this constant.
MachineConstantPool *CP = F->getConstantPool();
unsigned CPI = CP->getConstantPoolIndex(Op0C);
const Type *Ty = Op0C->getType();
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
static const unsigned OpcodeTab[][4] = {
{ PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
{ PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
};
unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
unsigned Op0Reg = getReg(Op0C, BB, IP);
unsigned Op1Reg = getReg(Op1, BB, IP);
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
return;
}
// General case.
static const unsigned OpcodeTab[] = {
PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
};
unsigned Opcode = OpcodeTab[OperatorClass];
unsigned Op0r = getReg(Op0, BB, IP);
unsigned Op1r = getReg(Op1, BB, IP);
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
}
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
/// Or, 4 for Xor.
///
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
/// and constant expression support.
///
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned DestReg) {
unsigned Class = getClassB(Op0->getType());
// Arithmetic and Bitwise operators
static const unsigned OpcodeTab[] = {
PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
};
static const unsigned ImmOpcodeTab[] = {
PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
};
static const unsigned RImmOpcodeTab[] = {
PPC32::ADDI, PPC32::SUBFIC, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
};
// Otherwise, code generate the full operation with a constant.
static const unsigned BottomTab[] = {
PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
};
static const unsigned TopTab[] = {
PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
};
if (Class == cFP32 || Class == cFP64) {
assert(OperatorClass < 2 && "No logical ops for FP!");
emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
return;
}
if (Op0->getType() == Type::BoolTy) {
if (OperatorClass == 3)
// If this is an or of two isnan's, emit an FP comparison directly instead
// of or'ing two isnan's together.
if (Value *LHS = dyncastIsNan(Op0))
if (Value *RHS = dyncastIsNan(Op1)) {
unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
unsigned TmpReg = makeAnotherReg(Type::IntTy);
emitUCOM(MBB, IP, Op0Reg, Op1Reg);
BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
.addImm(31).addImm(31);
return;
}
}
// Special case: op <const int>, Reg
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
// sub 0, X -> subfic
if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
unsigned Op1r = getReg(Op1, MBB, IP);
int imm = CI->getRawValue() & 0xFFFF;
if (Class == cLong) {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
.addSImm(imm);
BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
} else {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
}
return;
}
// If it is easy to do, swap the operands and emit an immediate op
if (Class != cLong && OperatorClass != 1 &&
canUseAsImmediateForOpcode(CI, OperatorClass)) {
unsigned Op1r = getReg(Op1, MBB, IP);
int imm = CI->getRawValue() & 0xFFFF;
if (OperatorClass < 2)
BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
.addSImm(imm);
else
BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
.addZImm(imm);
return;
}
}
// Special case: op Reg, <const int>
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
unsigned Op0r = getReg(Op0, MBB, IP);
// xor X, -1 -> not X
if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
if (Class == cLong) // Invert the low part too
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
.addReg(Op0r+1);
return;
}
if (Class != cLong) {
if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
int immediate = Op1C->getRawValue() & 0xFFFF;
if (OperatorClass < 2)
BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
.addSImm(immediate);
else
BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
.addZImm(immediate);
} else {
unsigned Op1r = getReg(Op1, MBB, IP);
BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
.addReg(Op1r);
}
return;
}
unsigned Op1r = getReg(Op1, MBB, IP);
BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
.addReg(Op1r+1);
BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
.addReg(Op1r);
return;
}
// We couldn't generate an immediate variant of the op, load both halves into
// registers and emit the appropriate opcode.
unsigned Op0r = getReg(Op0, MBB, IP);
unsigned Op1r = getReg(Op1, MBB, IP);
if (Class != cLong) {
unsigned Opcode = OpcodeTab[OperatorClass];
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
} else {
BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
.addReg(Op1r+1);
BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
.addReg(Op1r);
}
return;
}
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
if (Val == 0 || (Val & (Val-1))) return 0;
unsigned Count = 0;
while (Val != 1) {
Val >>= 1;
++Count;
}
return Count;
}
/// doMultiply - Emit appropriate instructions to multiply together the
/// Values Op0 and Op1, and put the result in DestReg.
///
void ISel::doMultiply(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, Value *Op1) {
unsigned Class0 = getClass(Op0->getType());
unsigned Class1 = getClass(Op1->getType());
unsigned Op0r = getReg(Op0, MBB, IP);
unsigned Op1r = getReg(Op1, MBB, IP);
// 64 x 64 -> 64
if (Class0 == cLong && Class1 == cLong) {
unsigned Tmp1 = makeAnotherReg(Type::IntTy);
unsigned Tmp2 = makeAnotherReg(Type::IntTy);
unsigned Tmp3 = makeAnotherReg(Type::IntTy);
unsigned Tmp4 = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
return;
}
// 64 x 32 or less, promote 32 to 64 and do a 64 x 64
if (Class0 == cLong && Class1 <= cInt) {
unsigned Tmp0 = makeAnotherReg(Type::IntTy);
unsigned Tmp1 = makeAnotherReg(Type::IntTy);
unsigned Tmp2 = makeAnotherReg(Type::IntTy);
unsigned Tmp3 = makeAnotherReg(Type::IntTy);
unsigned Tmp4 = makeAnotherReg(Type::IntTy);
if (Op1->getType()->isSigned())
BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
else
BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
return;
}
// 32 x 32 -> 32
if (Class0 <= cInt && Class1 <= cInt) {
BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
return;
}
assert(0 && "doMultiply cannot operate on unknown type!");
}
/// doMultiplyConst - This method will multiply the value in Op0 by the
/// value of the ContantInt *CI
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, ConstantInt *CI) {
unsigned Class = getClass(Op0->getType());
// Mul op0, 0 ==> 0
if (CI->isNullValue()) {
BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
if (Class == cLong)
BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
return;
}
// Mul op0, 1 ==> op0
if (CI->equalsInt(1)) {
unsigned Op0r = getReg(Op0, MBB, IP);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
if (Class == cLong)
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
return;
}
// If the element size is exactly a power of 2, use a shift to get it.
if (unsigned Shift = ExactLog2(CI->getRawValue())) {
ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
return;
}
// If 32 bits or less and immediate is in right range, emit mul by immediate
if (Class == cByte || Class == cShort || Class == cInt) {
if (canUseAsImmediateForOpcode(CI, 0)) {
unsigned Op0r = getReg(Op0, MBB, IP);
unsigned imm = CI->getRawValue() & 0xFFFF;
BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
return;
}
}
doMultiply(MBB, IP, DestReg, Op0, CI);
}
void ISel::visitMul(BinaryOperator &I) {
unsigned ResultReg = getReg(I);
Value *Op0 = I.getOperand(0);
Value *Op1 = I.getOperand(1);
MachineBasicBlock::iterator IP = BB->end();
emitMultiply(BB, IP, Op0, Op1, ResultReg);
}
void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned DestReg) {
TypeClass Class = getClass(Op0->getType());
switch (Class) {
case cByte:
case cShort:
case cInt:
case cLong:
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
doMultiplyConst(MBB, IP, DestReg, Op0, CI);
} else {
doMultiply(MBB, IP, DestReg, Op0, Op1);
}
return;
case cFP32:
case cFP64:
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
return;
break;
}
}
/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register. Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
unsigned ResultReg = getReg(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
MachineBasicBlock::iterator IP = BB->end();
emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
ResultReg);
}
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, bool isDiv,
unsigned ResultReg) {
const Type *Ty = Op0->getType();
unsigned Class = getClass(Ty);
switch (Class) {
case cFP32:
if (isDiv) {
// Floating point divide...
emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
return;
} else {
// Floating point remainder via fmodf(float x, float y);
unsigned Op0Reg = getReg(Op0, BB, IP);
unsigned Op1Reg = getReg(Op1, BB, IP);
MachineInstr *TheCall =
BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
TM.CalledFunctions.insert(fmodfFn);
}
return;
case cFP64:
if (isDiv) {
// Floating point divide...
emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
return;
} else {
// Floating point remainder via fmod(double x, double y);
unsigned Op0Reg = getReg(Op0, BB, IP);
unsigned Op1Reg = getReg(Op1, BB, IP);
MachineInstr *TheCall =
BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
TM.CalledFunctions.insert(fmodFn);
}
return;
case cLong: {
static Function* const Funcs[] =
{ __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
unsigned Op0Reg = getReg(Op0, BB, IP);
unsigned Op1Reg = getReg(Op1, BB, IP);
unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
MachineInstr *TheCall =
BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
TM.CalledFunctions.insert(Funcs[NameIdx]);
return;
}
case cByte: case cShort: case cInt:
break; // Small integrals, handled below...
default: assert(0 && "Unknown class!");
}
// Special case signed division by power of 2.
if (isDiv)
if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
assert(Class != cLong && "This doesn't handle 64-bit divides!");
int V = CI->getValue();
if (V == 1) { // X /s 1 => X
unsigned Op0Reg = getReg(Op0, BB, IP);
BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
return;
}
if (V == -1) { // X /s -1 => -X
unsigned Op0Reg = getReg(Op0, BB, IP);
BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
return;
}
unsigned log2V = ExactLog2(V);
if (log2V != 0 && Ty->isSigned()) {
unsigned Op0Reg = getReg(Op0, BB, IP);
unsigned TmpReg = makeAnotherReg(Op0->getType());
BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
return;
}
}
unsigned Op0Reg = getReg(Op0, BB, IP);
unsigned Op1Reg = getReg(Op1, BB, IP);
unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
if (isDiv) {
BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
} else { // Remainder
unsigned TmpReg1 = makeAnotherReg(Op0->getType());
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
}
}
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst(ShiftInst &I) {
MachineBasicBlock::iterator IP = BB->end();
emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
I.getOpcode() == Instruction::Shl, I.getType(),
getReg(I));
}
/// emitShiftOperation - Common code shared between visitShiftInst and
/// constant expression support.
///
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op, Value *ShiftAmount, bool isLeftShift,
const Type *ResultTy, unsigned DestReg) {
unsigned SrcReg = getReg (Op, MBB, IP);
bool isSigned = ResultTy->isSigned ();
unsigned Class = getClass (ResultTy);
// Longs, as usual, are handled specially...
if (Class == cLong) {
// If we have a constant shift, we can generate much more efficient code
// than otherwise...
//
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
unsigned Amount = CUI->getValue();
if (Amount < 32) {
if (isLeftShift) {
// FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(Amount).addImm(0).addImm(31-Amount);
BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
.addImm(Amount).addImm(32-Amount).addImm(31);
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
// FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
.addImm(32-Amount).addImm(Amount).addImm(31);
BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
.addImm(32-Amount).addImm(0).addImm(Amount-1);
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
}
} else { // Shifting more than 32 bits
Amount -= 32;
if (isLeftShift) {
if (Amount != 0) {
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
.addReg(SrcReg+1);
}
BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
} else {
if (Amount != 0) {
if (isSigned)
BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
.addImm(Amount);
else
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
} else {
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
}
BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
}
}
} else {
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
if (isLeftShift) {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
.addSImm(32);
BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
.addReg(ShiftAmountReg);
BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1)
.addReg(TmpReg1);
BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
.addSImm(-32);
BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1)
.addReg(TmpReg5);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
.addReg(TmpReg6);
BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
} else {
if (isSigned) {
// FIXME: Unimplemented
// Page C-3 of the PowerPC 32bit Programming Environments Manual
std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
abort();
} else {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
.addSImm(32);
BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
.addReg(TmpReg1);
BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
.addReg(TmpReg3);
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
.addSImm(-32);
BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
.addReg(TmpReg5);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
.addReg(TmpReg6);
BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
.addReg(ShiftAmountReg);
}
}
}
return;
}
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
unsigned Amount = CUI->getValue();
if (isLeftShift) {
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
if (isSigned) {
BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
} else {
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
}
}
} else { // The shift amount is non-constant.
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
if (isLeftShift) {
BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
.addReg(ShiftAmountReg);
} else {
BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
.addReg(SrcReg).addReg(ShiftAmountReg);
}
}
}
/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
/// mapping of LLVM classes to PPC load instructions, with the exception of
/// signed byte loads, which need a sign extension following them.
///
void ISel::visitLoadInst(LoadInst &I) {
// Immediate opcodes, for reg+imm addressing
static const unsigned ImmOpcodes[] = {
PPC32::LBZ, PPC32::LHZ, PPC32::LWZ,
PPC32::LFS, PPC32::LFD, PPC32::LWZ
};
// Indexed opcodes, for reg+reg addressing
static const unsigned IdxOpcodes[] = {
PPC32::LBZX, PPC32::LHZX, PPC32::LWZX,
PPC32::LFSX, PPC32::LFDX, PPC32::LWZX
};
unsigned Class = getClassB(I.getType());
unsigned ImmOpcode = ImmOpcodes[Class];
unsigned IdxOpcode = IdxOpcodes[Class];
unsigned DestReg = getReg(I);
Value *SourceAddr = I.getOperand(0);
if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC32::LHA;
if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC32::LHAX;
if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
unsigned FI = getFixedSizedAllocaFI(AI);
if (Class == cLong) {
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
} else if (Class == cByte && I.getType()->isSigned()) {
unsigned TmpReg = makeAnotherReg(I.getType());
addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
} else {
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
}
return;
}
// If this load is the only use of the GEP instruction that is its address,
// then we can fold the GEP directly into the load instruction.
// emitGEPOperation with a second to last arg of 'true' will place the
// base register for the GEP into baseReg, and the constant offset from that
// into offset. If the offset fits in 16 bits, we can emit a reg+imm store
// otherwise, we copy the offset into another reg, and use reg+reg addressing.
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
unsigned baseReg = getReg(GEPI);
unsigned pendingAdd;
ConstantSInt *offset;
emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
if (pendingAdd == 0 && Class != cLong &&
canUseAsImmediateForOpcode(offset, 0)) {
if (Class == cByte && I.getType()->isSigned()) {
unsigned TmpReg = makeAnotherReg(I.getType());
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
.addReg(baseReg);
BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
} else {
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
.addReg(baseReg);
}
return;
}
unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
if (Class == cLong) {
unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
} else if (Class == cByte && I.getType()->isSigned()) {
unsigned TmpReg = makeAnotherReg(I.getType());
BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
} else {
BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
}
return;
}
// The fallback case, where the load was from a source that could not be
// folded into the load instruction.
unsigned SrcAddrReg = getReg(SourceAddr);
if (Class == cLong) {
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
} else if (Class == cByte && I.getType()->isSigned()) {
unsigned TmpReg = makeAnotherReg(I.getType());
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
} else {
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
}
}
/// visitStoreInst - Implement LLVM store instructions
///
void ISel::visitStoreInst(StoreInst &I) {
// Immediate opcodes, for reg+imm addressing
static const unsigned ImmOpcodes[] = {
PPC32::STB, PPC32::STH, PPC32::STW,
PPC32::STFS, PPC32::STFD, PPC32::STW
};
// Indexed opcodes, for reg+reg addressing
static const unsigned IdxOpcodes[] = {
PPC32::STBX, PPC32::STHX, PPC32::STWX,
PPC32::STFSX, PPC32::STFDX, PPC32::STWX
};
Value *SourceAddr = I.getOperand(1);
const Type *ValTy = I.getOperand(0)->getType();
unsigned Class = getClassB(ValTy);
unsigned ImmOpcode = ImmOpcodes[Class];
unsigned IdxOpcode = IdxOpcodes[Class];
unsigned ValReg = getReg(I.getOperand(0));
// If this store is the only use of the GEP instruction that is its address,
// then we can fold the GEP directly into the store instruction.
// emitGEPOperation with a second to last arg of 'true' will place the
// base register for the GEP into baseReg, and the constant offset from that
// into offset. If the offset fits in 16 bits, we can emit a reg+imm store
// otherwise, we copy the offset into another reg, and use reg+reg addressing.
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
unsigned baseReg = getReg(GEPI);
unsigned pendingAdd;
ConstantSInt *offset;
emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
if (0 == pendingAdd && Class != cLong &&
canUseAsImmediateForOpcode(offset, 0)) {
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
.addReg(baseReg);
return;
}
unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
if (Class == cLong) {
unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
.addReg(baseReg);
return;
}
BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
return;
}
// If the store address wasn't the only use of a GEP, we fall back to the
// standard path: store the ValReg at the value in AddressReg.
unsigned AddressReg = getReg(I.getOperand(1));
if (Class == cLong) {
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
return;
}
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
}
/// visitCastInst - Here we have various kinds of copying with or without sign
/// extension going on.
///
void ISel::visitCastInst(CastInst &CI) {
Value *Op = CI.getOperand(0);
unsigned SrcClass = getClassB(Op->getType());
unsigned DestClass = getClassB(CI.getType());
// If this is a cast from a 32-bit integer to a Long type, and the only uses
// of the case are GEP instructions, then the cast does not need to be
// generated explicitly, it will be folded into the GEP.
if (DestClass == cLong && SrcClass == cInt) {
bool AllUsesAreGEPs = true;
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
if (!isa<GetElementPtrInst>(*I)) {
AllUsesAreGEPs = false;
break;
}
// No need to codegen this cast if all users are getelementptr instrs...
if (AllUsesAreGEPs) return;
}
unsigned DestReg = getReg(CI);
MachineBasicBlock::iterator MI = BB->end();
emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
}
/// emitCastOperation - Common code shared between visitCastInst and constant
/// expression cast support.
///
void ISel::emitCastOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy,
unsigned DestReg) {
const Type *SrcTy = Src->getType();
unsigned SrcClass = getClassB(SrcTy);
unsigned DestClass = getClassB(DestTy);
unsigned SrcReg = getReg(Src, MBB, IP);
// Implement casts to bool by using compare on the operand followed by set if
// not zero on the result.
if (DestTy == Type::BoolTy) {
switch (SrcClass) {
case cByte:
case cShort:
case cInt: {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
break;
}
case cLong: {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
.addReg(SrcReg2);
break;
}
case cFP32:
case cFP64:
// FSEL perhaps?
std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
abort();
}
return;
}
// Handle cast of Float -> Double
if (SrcClass == cFP32 && DestClass == cFP64) {
BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
return;
}
// Handle cast of Double -> Float
if (SrcClass == cFP64 && DestClass == cFP32) {
BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
return;
}
// Handle casts from integer to floating point now...
if (DestClass == cFP32 || DestClass == cFP64) {
// Emit a library call for long to float conversion
if (SrcClass == cLong) {
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(SrcReg, SrcTy));
Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
MachineInstr *TheCall =
BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
TM.CalledFunctions.insert(floatFn);
return;
}
// Make sure we're dealing with a full 32 bits
unsigned TmpReg = makeAnotherReg(Type::IntTy);
promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
SrcReg = TmpReg;
// Spill the integer to memory and reload it from there.
// Also spill room for a special conversion constant
int ConstantFrameIndex =
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
int ValueFrameIdx =
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
unsigned constantHi = makeAnotherReg(Type::IntTy);
unsigned constantLo = makeAnotherReg(Type::IntTy);
unsigned ConstF = makeAnotherReg(Type::DoubleTy);
unsigned TempF = makeAnotherReg(Type::DoubleTy);
if (!SrcTy->isSigned()) {
BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
ConstantFrameIndex, 4);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ValueFrameIdx);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
ValueFrameIdx, 4);
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
} else {
unsigned TempLo = makeAnotherReg(Type::IntTy);
BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
ConstantFrameIndex, 4);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ValueFrameIdx);
BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
ValueFrameIdx, 4);
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
}
return;
}
// Handle casts from floating point to integer now...
if (SrcClass == cFP32 || SrcClass == cFP64) {
static Function* const Funcs[] =
{ __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
// emit library call
if (DestClass == cLong) {
bool isDouble = SrcClass == cFP64;
unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(SrcReg, SrcTy));
Function *floatFn = Funcs[nameIndex];
MachineInstr *TheCall =
BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
TM.CalledFunctions.insert(floatFn);
return;
}
int ValueFrameIdx =
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
if (DestTy->isSigned()) {
unsigned TempReg = makeAnotherReg(Type::DoubleTy);
// Convert to integer in the FP reg and store it to a stack slot
BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
.addReg(TempReg), ValueFrameIdx);
// There is no load signed byte opcode, so we must emit a sign extend for
// that particular size. Make sure to source the new integer from the
// correct offset.
if (DestClass == cByte) {
unsigned TempReg2 = makeAnotherReg(DestTy);
addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, TempReg2),
ValueFrameIdx, 7);
BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
} else {
int offset = (DestClass == cShort) ? 6 : 4;
unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
ValueFrameIdx, offset);
}
} else {
unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
double maxInt = (1LL << 32) - 1;
unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
double border = 1LL << 31;
unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
unsigned UseZero = makeAnotherReg(Type::DoubleTy);
unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
unsigned IntTmp = makeAnotherReg(Type::IntTy);
unsigned XorReg = makeAnotherReg(Type::IntTy);
int FrameIdx =
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
// Update machine-CFG edges
MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *OldMBB = BB;
ilist<MachineBasicBlock>::iterator It = BB; ++It;
F->getBasicBlockList().insert(It, XorMBB);
F->getBasicBlockList().insert(It, PhiMBB);
BB->addSuccessor(XorMBB);
BB->addSuccessor(PhiMBB);
// Convert from floating point to unsigned 32-bit value
// Use 0 if incoming value is < 0.0
BuildMI(*BB, IP, PPC32::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
.addReg(Zero);
// Use 2**32 - 1 if incoming value is >= 2**32
BuildMI(*BB, IP, PPC32::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
BuildMI(*BB, IP, PPC32::FSEL, 3, UseChoice).addReg(UseMaxInt)
.addReg(UseZero).addReg(MaxInt);
// Subtract 2**31
BuildMI(*BB, IP, PPC32::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
// Use difference if >= 2**31
BuildMI(*BB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(UseChoice)
.addReg(Border);
BuildMI(*BB, IP, PPC32::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
.addReg(UseChoice);
// Convert to integer
BuildMI(*BB, IP, PPC32::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(ConvReg),
FrameIdx);
if (DestClass == cByte) {
addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, DestReg),
FrameIdx, 7);
} else if (DestClass == cShort) {
addFrameReference(BuildMI(*BB, IP, PPC32::LHZ, 2, DestReg),
FrameIdx, 6);
} if (DestClass == cInt) {
addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, IntTmp),
FrameIdx, 4);
BuildMI(*BB, IP, PPC32::BLT, 2).addReg(PPC32::CR0).addMBB(PhiMBB);
BuildMI(*BB, IP, PPC32::B, 1).addMBB(XorMBB);
// XorMBB:
// add 2**31 if input was >= 2**31
BB = XorMBB;
BuildMI(BB, PPC32::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
XorMBB->addSuccessor(PhiMBB);
// PhiMBB:
// DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
BB = PhiMBB;
BuildMI(BB, PPC32::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
.addReg(XorReg).addMBB(XorMBB);
}
}
return;
}
// Check our invariants
assert((SrcClass <= cInt || SrcClass == cLong) &&
"Unhandled source class for cast operation!");
assert((DestClass <= cInt || DestClass == cLong) &&
"Unhandled destination class for cast operation!");
bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
bool destUnsigned = DestTy->isUnsigned();
// Unsigned -> Unsigned, clear if larger,
if (sourceUnsigned && destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
if (SrcClass == cLong) {
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
.addReg(SrcReg+1);
} else {
BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
}
return;
}
// handle u{ byte, short, int } x u{ byte, short, int }
unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
switch (SrcClass) {
case cByte:
case cShort:
if (SrcClass == DestClass)
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
if (DestClass == cInt)
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
break;
}
return;
}
// Signed -> Signed
if (!sourceUnsigned && !destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
if (SrcClass == cLong) {
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
.addReg(SrcReg+1);
} else {
BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
}
return;
}
// handle { byte, short, int } x { byte, short, int }
switch (SrcClass) {
case cByte:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
break;
case cShort:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
else if (DestClass == cShort)
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
else if (DestClass == cShort)
BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
break;
}
return;
}
// Unsigned -> Signed
if (sourceUnsigned && !destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
if (SrcClass == cLong) {
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).
addReg(SrcReg+1);
} else {
BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
}
return;
}
// handle u{ byte, short, int } -> { byte, short, int }
switch (SrcClass) {
case cByte:
if (DestClass == cByte)
// uByte 255 -> signed byte == -1
BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
else
// uByte 255 -> signed short/int == 255
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
.addImm(24).addImm(31);
break;
case cShort:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
else if (DestClass == cShort)
BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
.addImm(16).addImm(31);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
else if (DestClass == cShort)
BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
break;
}
return;
}
// Signed -> Unsigned
if (!sourceUnsigned && destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
if (SrcClass == cLong) {
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
.addReg(SrcReg+1);
} else {
BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
}
return;
}
// handle { byte, short, int } -> u{ byte, short, int }
unsigned clearBits = (DestClass == cByte) ? 24 : 16;
switch (SrcClass) {
case cByte:
case cShort:
if (DestClass == cByte || DestClass == cShort)
// sbyte -1 -> ubyte 0x000000FF
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
else
// sbyte -1 -> ubyte 0xFFFFFFFF
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
if (DestClass == cInt)
BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
break;
}
return;
}
// Anything we haven't handled already, we can't (yet) handle at all.
std::cerr << "Unhandled cast from " << SrcTy->getDescription()
<< "to " << DestTy->getDescription() << '\n';
abort();
}
/// visitVANextInst - Implement the va_next instruction...
///
void ISel::visitVANextInst(VANextInst &I) {
unsigned VAList = getReg(I.getOperand(0));
unsigned DestReg = getReg(I);
unsigned Size;
switch (I.getArgType()->getTypeID()) {
default:
std::cerr << I;
assert(0 && "Error: bad type for va_next instruction!");
return;
case Type::PointerTyID:
case Type::UIntTyID:
case Type::IntTyID:
Size = 4;
break;
case Type::ULongTyID:
case Type::LongTyID:
case Type::DoubleTyID:
Size = 8;
break;
}
// Increment the VAList pointer...
BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
}
void ISel::visitVAArgInst(VAArgInst &I) {
unsigned VAList = getReg(I.getOperand(0));
unsigned DestReg = getReg(I);
switch (I.getType()->getTypeID()) {
default:
std::cerr << I;
assert(0 && "Error: bad type for va_next instruction!");
return;
case Type::PointerTyID:
case Type::UIntTyID:
case Type::IntTyID:
BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
break;
case Type::ULongTyID:
case Type::LongTyID:
BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
break;
case Type::FloatTyID:
BuildMI(BB, PPC32::LFS, 2, DestReg).addSImm(0).addReg(VAList);
break;
case Type::DoubleTyID:
BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
break;
}
}
/// visitGetElementPtrInst - instruction-select GEP instructions
///
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
if (canFoldGEPIntoLoadOrStore(&I))
return;
unsigned outputReg = getReg(I);
emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
outputReg, false, 0, 0);
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg,
bool GEPIsFolded, ConstantSInt **RemainderPtr,
unsigned *PendingAddReg) {
const TargetData &TD = TM.getTargetData();
const Type *Ty = Src->getType();
unsigned basePtrReg = getReg(Src, MBB, IP);
int64_t constValue = 0;
// Record the operations to emit the GEP in a vector so that we can emit them
// after having analyzed the entire instruction.
std::vector<CollapsedGepOp> ops;
// GEPs have zero or more indices; we must perform a struct access
// or array access for each one.
for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
++oi) {
Value *idx = *oi;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
// It's a struct access. idx is the index into the structure,
// which names the field. Use the TargetData structure to
// pick out what the layout of the structure is in memory.
// Use the (constant) structure index's value to find the
// right byte offset from the StructLayout class's list of
// structure member offsets.
unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
unsigned memberOffset =
TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
// StructType member offsets are always constant values. Add it to the
// running total.
constValue += memberOffset;
// The next type is the member of the structure selected by the
// index.
Ty = StTy->getElementType (fieldIndex);
} else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
// operand. Handle this case directly now...
if (CastInst *CI = dyn_cast<CastInst>(idx))
if (CI->getOperand(0)->getType() == Type::IntTy ||
CI->getOperand(0)->getType() == Type::UIntTy)
idx = CI->getOperand(0);
// It's an array or pointer access: [ArraySize x ElementType].
// We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
// must find the size of the pointed-to type (Not coincidentally, the next
// type is the type of the elements in the array).
Ty = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(Ty);
if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
constValue += CS->getValue() * elementSize;
else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
constValue += CU->getValue() * elementSize;
else
assert(0 && "Invalid ConstantInt GEP index type!");
} else {
// Push current gep state to this point as an add
ops.push_back(CollapsedGepOp(false, 0,
ConstantSInt::get(Type::IntTy,constValue)));
// Push multiply gep op and reset constant value
ops.push_back(CollapsedGepOp(true, idx,
ConstantSInt::get(Type::IntTy, elementSize)));
constValue = 0;
}
}
}
// Emit instructions for all the collapsed ops
bool pendingAdd = false;
unsigned pendingAddReg = 0;
for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
CollapsedGepOp& cgo = *cgo_i;
unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
// If we didn't emit an add last time through the loop, we need to now so
// that the base reg is updated appropriately.
if (pendingAdd) {
assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
.addReg(pendingAddReg);
basePtrReg = nextBasePtrReg;
nextBasePtrReg = makeAnotherReg(Type::IntTy);
pendingAddReg = 0;
pendingAdd = false;
}
if (cgo.isMul) {
// We know the elementSize is a constant, so we can emit a constant mul
unsigned TmpReg = makeAnotherReg(Type::IntTy);
doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
pendingAddReg = basePtrReg;
pendingAdd = true;
} else {
// Try and generate an immediate addition if possible
if (cgo.size->isNullValue()) {
BuildMI(*MBB, IP, PPC32::OR, 2, nextBasePtrReg).addReg(basePtrReg)
.addReg(basePtrReg);
} else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
BuildMI(*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
.addSImm(cgo.size->getValue());
} else {
unsigned Op1r = getReg(cgo.size, MBB, IP);
BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
.addReg(Op1r);
}
}
basePtrReg = nextBasePtrReg;
}
// Add the current base register plus any accumulated constant value
ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
// If we are emitting this during a fold, copy the current base register to
// the target, and save the current constant offset so the folding load or
// store can try and use it as an immediate.
if (GEPIsFolded) {
// If this is a folded GEP and the last element was an index, then we need
// to do some extra work to turn a shift/add/stw into a shift/stwx
if (pendingAdd && 0 == remainder->getValue()) {
assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
*PendingAddReg = pendingAddReg;
} else {
*PendingAddReg = 0;
if (pendingAdd) {
unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
.addReg(pendingAddReg);
basePtrReg = nextBasePtrReg;
}
}
BuildMI (*MBB, IP, PPC32::OR, 2, TargetReg).addReg(basePtrReg)
.addReg(basePtrReg);
*RemainderPtr = remainder;
return;
}
// If we still have a pending add at this point, emit it now
if (pendingAdd) {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::ADD, 2, TmpReg).addReg(pendingAddReg)
.addReg(basePtrReg);
basePtrReg = TmpReg;
}
// After we have processed all the indices, the result is left in
// basePtrReg. Move it to the register where we were expected to
// put the answer.
if (remainder->isNullValue()) {
BuildMI (*MBB, IP, PPC32::OR, 2, TargetReg).addReg(basePtrReg)
.addReg(basePtrReg);
} else if (canUseAsImmediateForOpcode(remainder, 0)) {
BuildMI(*MBB, IP, PPC32::ADDI, 2, TargetReg).addReg(basePtrReg)
.addSImm(remainder->getValue());
} else {
unsigned Op1r = getReg(remainder, MBB, IP);
BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
}
}
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
/// frame manager, otherwise do it the hard way.
///
void ISel::visitAllocaInst(AllocaInst &I) {
// If this is a fixed size alloca in the entry block for the function, we
// statically stack allocate the space, so we don't need to do anything here.
//
if (dyn_castFixedAlloca(&I)) return;
// Find the data size of the alloca inst's getAllocatedType.
const Type *Ty = I.getAllocatedType();
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
// Create a register to hold the temporary result of multiplying the type size
// constant by the variable amount.
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
// TotalSizeReg = mul <numelements>, <TypeSize>
MachineBasicBlock::iterator MBBI = BB->end();
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
// AddedSize = add <TotalSizeReg>, 15
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
// AlignedSize = and <AddedSize>, ~15
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
.addImm(0).addImm(27);
// Subtract size from stack pointer, thereby allocating some space.
BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
// Put a pointer to the space into the result register, by copying
// the stack pointer.
BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
// Inform the Frame Information that we have just allocated a variable-sized
// object.
F->getFrameInfo()->CreateVariableSizedObject();
}
/// visitMallocInst - Malloc instructions are code generated into direct calls
/// to the library malloc.
///
void ISel::visitMallocInst(MallocInst &I) {
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
unsigned Arg;
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
} else {
Arg = makeAnotherReg(Type::UIntTy);
MachineBasicBlock::iterator MBBI = BB->end();
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
}
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Arg, Type::UIntTy));
MachineInstr *TheCall =
BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
TM.CalledFunctions.insert(mallocFn);
}
/// visitFreeInst - Free instructions are code gen'd to call the free libc
/// function.
///
void ISel::visitFreeInst(FreeInst &I) {
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(I.getOperand(0)));
MachineInstr *TheCall =
BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
TM.CalledFunctions.insert(freeFn);
}
/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion. The
/// generated code sucks but the implementation is nice and simple.
///
FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
return new ISel(TM);
}