mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	of the comparison is defined inside the loop. This fixes a use-before-def problem, because the transformation puts a use of the RHS outside the loop. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72149 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2600 lines
		
	
	
		
			107 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2600 lines
		
	
	
		
			107 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation analyzes and transforms the induction variables (and
 | |
| // computations derived from them) into forms suitable for efficient execution
 | |
| // on the target.
 | |
| //
 | |
| // This pass performs a strength reduction on array references inside loops that
 | |
| // have as one or more of their components the loop induction variable, it
 | |
| // rewrites expressions to take advantage of scaled-index addressing modes
 | |
| // available on the target, and it performs a variety of other optimizations
 | |
| // related to loop induction variables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-reduce"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/IVUsers.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Transforms/Utils/AddrModeMatcher.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumReduced ,    "Number of IV uses strength reduced");
 | |
| STATISTIC(NumInserted,    "Number of PHIs inserted");
 | |
| STATISTIC(NumVariable,    "Number of PHIs with variable strides");
 | |
| STATISTIC(NumEliminated,  "Number of strides eliminated");
 | |
| STATISTIC(NumShadow,      "Number of Shadow IVs optimized");
 | |
| STATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
 | |
| STATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");
 | |
| 
 | |
| static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
 | |
|                                        cl::init(false),
 | |
|                                        cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   struct BasedUser;
 | |
| 
 | |
|   /// IVInfo - This structure keeps track of one IV expression inserted during
 | |
|   /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
 | |
|   /// well as the PHI node and increment value created for rewrite.
 | |
|   struct VISIBILITY_HIDDEN IVExpr {
 | |
|     SCEVHandle  Stride;
 | |
|     SCEVHandle  Base;
 | |
|     PHINode    *PHI;
 | |
| 
 | |
|     IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi)
 | |
|       : Stride(stride), Base(base), PHI(phi) {}
 | |
|   };
 | |
| 
 | |
|   /// IVsOfOneStride - This structure keeps track of all IV expression inserted
 | |
|   /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
 | |
|   struct VISIBILITY_HIDDEN IVsOfOneStride {
 | |
|     std::vector<IVExpr> IVs;
 | |
| 
 | |
|     void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI) {
 | |
|       IVs.push_back(IVExpr(Stride, Base, PHI));
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
 | |
|     IVUsers *IU;
 | |
|     LoopInfo *LI;
 | |
|     DominatorTree *DT;
 | |
|     ScalarEvolution *SE;
 | |
|     bool Changed;
 | |
| 
 | |
|     /// IVsByStride - Keep track of all IVs that have been inserted for a
 | |
|     /// particular stride.
 | |
|     std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
 | |
| 
 | |
|     /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
 | |
|     /// reused (nor should they be rewritten to reuse other strides).
 | |
|     SmallSet<SCEVHandle, 4> StrideNoReuse;
 | |
| 
 | |
|     /// DeadInsts - Keep track of instructions we may have made dead, so that
 | |
|     /// we can remove them after we are done working.
 | |
|     SmallVector<WeakVH, 16> DeadInsts;
 | |
| 
 | |
|     /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | |
|     /// transformation profitability.
 | |
|     const TargetLowering *TLI;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : 
 | |
|       LoopPass(&ID), TLI(tli) {
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       // We split critical edges, so we change the CFG.  However, we do update
 | |
|       // many analyses if they are around.
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addPreserved<DominanceFrontier>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
| 
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addRequired<IVUsers>();
 | |
|       AU.addPreserved<IVUsers>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
 | |
|                                   IVStrideUse* &CondUse,
 | |
|                                   const SCEVHandle* &CondStride);
 | |
| 
 | |
|     void OptimizeIndvars(Loop *L);
 | |
|     void OptimizeLoopCountIV(Loop *L);
 | |
|     void OptimizeLoopTermCond(Loop *L);
 | |
| 
 | |
|     /// OptimizeShadowIV - If IV is used in a int-to-float cast
 | |
|     /// inside the loop then try to eliminate the cast opeation.
 | |
|     void OptimizeShadowIV(Loop *L);
 | |
| 
 | |
|     /// OptimizeSMax - Rewrite the loop's terminating condition
 | |
|     /// if it uses an smax computation.
 | |
|     ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
 | |
|                            IVStrideUse* &CondUse);
 | |
| 
 | |
|     bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
 | |
|                            const SCEVHandle *&CondStride);
 | |
|     bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
 | |
|     SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
 | |
|                              IVExpr&, const Type*,
 | |
|                              const std::vector<BasedUser>& UsersToProcess);
 | |
|     bool ValidScale(bool, int64_t,
 | |
|                     const std::vector<BasedUser>& UsersToProcess);
 | |
|     bool ValidOffset(bool, int64_t, int64_t,
 | |
|                      const std::vector<BasedUser>& UsersToProcess);
 | |
|     SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
 | |
|                               IVUsersOfOneStride &Uses,
 | |
|                               Loop *L,
 | |
|                               bool &AllUsesAreAddresses,
 | |
|                               bool &AllUsesAreOutsideLoop,
 | |
|                               std::vector<BasedUser> &UsersToProcess);
 | |
|     bool ShouldUseFullStrengthReductionMode(
 | |
|                                 const std::vector<BasedUser> &UsersToProcess,
 | |
|                                 const Loop *L,
 | |
|                                 bool AllUsesAreAddresses,
 | |
|                                 SCEVHandle Stride);
 | |
|     void PrepareToStrengthReduceFully(
 | |
|                              std::vector<BasedUser> &UsersToProcess,
 | |
|                              SCEVHandle Stride,
 | |
|                              SCEVHandle CommonExprs,
 | |
|                              const Loop *L,
 | |
|                              SCEVExpander &PreheaderRewriter);
 | |
|     void PrepareToStrengthReduceFromSmallerStride(
 | |
|                                          std::vector<BasedUser> &UsersToProcess,
 | |
|                                          Value *CommonBaseV,
 | |
|                                          const IVExpr &ReuseIV,
 | |
|                                          Instruction *PreInsertPt);
 | |
|     void PrepareToStrengthReduceWithNewPhi(
 | |
|                                   std::vector<BasedUser> &UsersToProcess,
 | |
|                                   SCEVHandle Stride,
 | |
|                                   SCEVHandle CommonExprs,
 | |
|                                   Value *CommonBaseV,
 | |
|                                   Instruction *IVIncInsertPt,
 | |
|                                   const Loop *L,
 | |
|                                   SCEVExpander &PreheaderRewriter);
 | |
|     void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
 | |
|                                       IVUsersOfOneStride &Uses,
 | |
|                                       Loop *L);
 | |
|     void DeleteTriviallyDeadInstructions();
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopStrengthReduce::ID = 0;
 | |
| static RegisterPass<LoopStrengthReduce>
 | |
| X("loop-reduce", "Loop Strength Reduction");
 | |
| 
 | |
| Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
 | |
|   return new LoopStrengthReduce(TLI);
 | |
| }
 | |
| 
 | |
| /// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | |
| /// specified set are trivially dead, delete them and see if this makes any of
 | |
| /// their operands subsequently dead.
 | |
| void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
 | |
|   if (DeadInsts.empty()) return;
 | |
|   
 | |
|   while (!DeadInsts.empty()) {
 | |
|     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
 | |
|     DeadInsts.pop_back();
 | |
|     
 | |
|     if (I == 0 || !isInstructionTriviallyDead(I))
 | |
|       continue;
 | |
| 
 | |
|     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
 | |
|       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | |
|         *OI = 0;
 | |
|         if (U->use_empty())
 | |
|           DeadInsts.push_back(U);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     I->eraseFromParent();
 | |
|     Changed = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// containsAddRecFromDifferentLoop - Determine whether expression S involves a 
 | |
| /// subexpression that is an AddRec from a loop other than L.  An outer loop 
 | |
| /// of L is OK, but not an inner loop nor a disjoint loop.
 | |
| static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
 | |
|   // This is very common, put it first.
 | |
|   if (isa<SCEVConstant>(S))
 | |
|     return false;
 | |
|   if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
 | |
|     for (unsigned int i=0; i< AE->getNumOperands(); i++)
 | |
|       if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
|   if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     if (const Loop *newLoop = AE->getLoop()) {
 | |
|       if (newLoop == L)
 | |
|         return false;
 | |
|       // if newLoop is an outer loop of L, this is OK.
 | |
|       if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
 | |
|     return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
 | |
|            containsAddRecFromDifferentLoop(DE->getRHS(), L);
 | |
| #if 0
 | |
|   // SCEVSDivExpr has been backed out temporarily, but will be back; we'll 
 | |
|   // need this when it is.
 | |
|   if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
 | |
|     return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
 | |
|            containsAddRecFromDifferentLoop(DE->getRHS(), L);
 | |
| #endif
 | |
|   if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
 | |
|     return containsAddRecFromDifferentLoop(CE->getOperand(), L);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isAddressUse - Returns true if the specified instruction is using the
 | |
| /// specified value as an address.
 | |
| static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
 | |
|   bool isAddress = isa<LoadInst>(Inst);
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|     if (SI->getOperand(1) == OperandVal)
 | |
|       isAddress = true;
 | |
|   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | |
|     // Addressing modes can also be folded into prefetches and a variety
 | |
|     // of intrinsics.
 | |
|     switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::prefetch:
 | |
|       case Intrinsic::x86_sse2_loadu_dq:
 | |
|       case Intrinsic::x86_sse2_loadu_pd:
 | |
|       case Intrinsic::x86_sse_loadu_ps:
 | |
|       case Intrinsic::x86_sse_storeu_ps:
 | |
|       case Intrinsic::x86_sse2_storeu_pd:
 | |
|       case Intrinsic::x86_sse2_storeu_dq:
 | |
|       case Intrinsic::x86_sse2_storel_dq:
 | |
|         if (II->getOperand(1) == OperandVal)
 | |
|           isAddress = true;
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   return isAddress;
 | |
| }
 | |
| 
 | |
| /// getAccessType - Return the type of the memory being accessed.
 | |
| static const Type *getAccessType(const Instruction *Inst) {
 | |
|   const Type *AccessTy = Inst->getType();
 | |
|   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|     AccessTy = SI->getOperand(0)->getType();
 | |
|   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | |
|     // Addressing modes can also be folded into prefetches and a variety
 | |
|     // of intrinsics.
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: break;
 | |
|     case Intrinsic::x86_sse_storeu_ps:
 | |
|     case Intrinsic::x86_sse2_storeu_pd:
 | |
|     case Intrinsic::x86_sse2_storeu_dq:
 | |
|     case Intrinsic::x86_sse2_storel_dq:
 | |
|       AccessTy = II->getOperand(1)->getType();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return AccessTy;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// BasedUser - For a particular base value, keep information about how we've
 | |
|   /// partitioned the expression so far.
 | |
|   struct BasedUser {
 | |
|     /// SE - The current ScalarEvolution object.
 | |
|     ScalarEvolution *SE;
 | |
| 
 | |
|     /// Base - The Base value for the PHI node that needs to be inserted for
 | |
|     /// this use.  As the use is processed, information gets moved from this
 | |
|     /// field to the Imm field (below).  BasedUser values are sorted by this
 | |
|     /// field.
 | |
|     SCEVHandle Base;
 | |
|     
 | |
|     /// Inst - The instruction using the induction variable.
 | |
|     Instruction *Inst;
 | |
| 
 | |
|     /// OperandValToReplace - The operand value of Inst to replace with the
 | |
|     /// EmittedBase.
 | |
|     Value *OperandValToReplace;
 | |
| 
 | |
|     /// isSigned - The stride (and thus also the Base) of this use may be in
 | |
|     /// a narrower type than the use itself (OperandValToReplace->getType()).
 | |
|     /// When this is the case, the isSigned field indicates whether the
 | |
|     /// IV expression should be signed-extended instead of zero-extended to
 | |
|     /// fit the type of the use.
 | |
|     bool isSigned;
 | |
| 
 | |
|     /// Imm - The immediate value that should be added to the base immediately
 | |
|     /// before Inst, because it will be folded into the imm field of the
 | |
|     /// instruction.  This is also sometimes used for loop-variant values that
 | |
|     /// must be added inside the loop.
 | |
|     SCEVHandle Imm;
 | |
| 
 | |
|     /// Phi - The induction variable that performs the striding that
 | |
|     /// should be used for this user.
 | |
|     PHINode *Phi;
 | |
| 
 | |
|     // isUseOfPostIncrementedValue - True if this should use the
 | |
|     // post-incremented version of this IV, not the preincremented version.
 | |
|     // This can only be set in special cases, such as the terminating setcc
 | |
|     // instruction for a loop and uses outside the loop that are dominated by
 | |
|     // the loop.
 | |
|     bool isUseOfPostIncrementedValue;
 | |
|     
 | |
|     BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
 | |
|       : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
 | |
|         OperandValToReplace(IVSU.getOperandValToReplace()),
 | |
|         isSigned(IVSU.isSigned()),
 | |
|         Imm(SE->getIntegerSCEV(0, Base->getType())), 
 | |
|         isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
 | |
| 
 | |
|     // Once we rewrite the code to insert the new IVs we want, update the
 | |
|     // operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | |
|     // to it.
 | |
|     void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
 | |
|                                         Instruction *InsertPt,
 | |
|                                        SCEVExpander &Rewriter, Loop *L, Pass *P,
 | |
|                                         LoopInfo &LI,
 | |
|                                         SmallVectorImpl<WeakVH> &DeadInsts);
 | |
|     
 | |
|     Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
 | |
|                                        const Type *Ty,
 | |
|                                        SCEVExpander &Rewriter,
 | |
|                                        Instruction *IP, Loop *L,
 | |
|                                        LoopInfo &LI);
 | |
|     void dump() const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| void BasedUser::dump() const {
 | |
|   cerr << " Base=" << *Base;
 | |
|   cerr << " Imm=" << *Imm;
 | |
|   cerr << "   Inst: " << *Inst;
 | |
| }
 | |
| 
 | |
| Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
 | |
|                                               const Type *Ty,
 | |
|                                               SCEVExpander &Rewriter,
 | |
|                                               Instruction *IP, Loop *L,
 | |
|                                               LoopInfo &LI) {
 | |
|   // Figure out where we *really* want to insert this code.  In particular, if
 | |
|   // the user is inside of a loop that is nested inside of L, we really don't
 | |
|   // want to insert this expression before the user, we'd rather pull it out as
 | |
|   // many loops as possible.
 | |
|   Instruction *BaseInsertPt = IP;
 | |
|   
 | |
|   // Figure out the most-nested loop that IP is in.
 | |
|   Loop *InsertLoop = LI.getLoopFor(IP->getParent());
 | |
|   
 | |
|   // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
 | |
|   // the preheader of the outer-most loop where NewBase is not loop invariant.
 | |
|   if (L->contains(IP->getParent()))
 | |
|     while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
 | |
|       BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
 | |
|       InsertLoop = InsertLoop->getParentLoop();
 | |
|     }
 | |
|   
 | |
|   Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);
 | |
| 
 | |
|   SCEVHandle NewValSCEV = SE->getUnknown(Base);
 | |
| 
 | |
|   // If there is no immediate value, skip the next part.
 | |
|   if (!Imm->isZero()) {
 | |
|     // If we are inserting the base and imm values in the same block, make sure
 | |
|     // to adjust the IP position if insertion reused a result.
 | |
|     if (IP == BaseInsertPt)
 | |
|       IP = Rewriter.getInsertionPoint();
 | |
| 
 | |
|     // Always emit the immediate (if non-zero) into the same block as the user.
 | |
|     NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
 | |
|   }
 | |
| 
 | |
|   if (isSigned)
 | |
|     NewValSCEV = SE->getTruncateOrSignExtend(NewValSCEV, Ty);
 | |
|   else
 | |
|     NewValSCEV = SE->getTruncateOrZeroExtend(NewValSCEV, Ty);
 | |
| 
 | |
|   return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Once we rewrite the code to insert the new IVs we want, update the
 | |
| // operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | |
| // to it. NewBasePt is the last instruction which contributes to the
 | |
| // value of NewBase in the case that it's a diffferent instruction from
 | |
| // the PHI that NewBase is computed from, or null otherwise.
 | |
| //
 | |
| void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
 | |
|                                                Instruction *NewBasePt,
 | |
|                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
 | |
|                                       LoopInfo &LI,
 | |
|                                       SmallVectorImpl<WeakVH> &DeadInsts) {
 | |
|   if (!isa<PHINode>(Inst)) {
 | |
|     // By default, insert code at the user instruction.
 | |
|     BasicBlock::iterator InsertPt = Inst;
 | |
|     
 | |
|     // However, if the Operand is itself an instruction, the (potentially
 | |
|     // complex) inserted code may be shared by many users.  Because of this, we
 | |
|     // want to emit code for the computation of the operand right before its old
 | |
|     // computation.  This is usually safe, because we obviously used to use the
 | |
|     // computation when it was computed in its current block.  However, in some
 | |
|     // cases (e.g. use of a post-incremented induction variable) the NewBase
 | |
|     // value will be pinned to live somewhere after the original computation.
 | |
|     // In this case, we have to back off.
 | |
|     //
 | |
|     // If this is a use outside the loop (which means after, since it is based
 | |
|     // on a loop indvar) we use the post-incremented value, so that we don't
 | |
|     // artificially make the preinc value live out the bottom of the loop. 
 | |
|     if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
 | |
|       if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
 | |
|         InsertPt = NewBasePt;
 | |
|         ++InsertPt;
 | |
|       } else if (Instruction *OpInst
 | |
|                  = dyn_cast<Instruction>(OperandValToReplace)) {
 | |
|         InsertPt = OpInst;
 | |
|         while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|       }
 | |
|     }
 | |
|     Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
 | |
|                                                 OperandValToReplace->getType(),
 | |
|                                                 Rewriter, InsertPt, L, LI);
 | |
|     // Replace the use of the operand Value with the new Phi we just created.
 | |
|     Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
 | |
| 
 | |
|     DOUT << "      Replacing with ";
 | |
|     DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
 | |
|     DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
 | |
|   // expression into each operand block that uses it.  Note that PHI nodes can
 | |
|   // have multiple entries for the same predecessor.  We use a map to make sure
 | |
|   // that a PHI node only has a single Value* for each predecessor (which also
 | |
|   // prevents us from inserting duplicate code in some blocks).
 | |
|   DenseMap<BasicBlock*, Value*> InsertedCode;
 | |
|   PHINode *PN = cast<PHINode>(Inst);
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     if (PN->getIncomingValue(i) == OperandValToReplace) {
 | |
|       // If the original expression is outside the loop, put the replacement
 | |
|       // code in the same place as the original expression,
 | |
|       // which need not be an immediate predecessor of this PHI.  This way we 
 | |
|       // need only one copy of it even if it is referenced multiple times in
 | |
|       // the PHI.  We don't do this when the original expression is inside the
 | |
|       // loop because multiple copies sometimes do useful sinking of code in
 | |
|       // that case(?).
 | |
|       Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
 | |
|       if (L->contains(OldLoc->getParent())) {
 | |
|         // If this is a critical edge, split the edge so that we do not insert
 | |
|         // the code on all predecessor/successor paths.  We do this unless this
 | |
|         // is the canonical backedge for this loop, as this can make some
 | |
|         // inserted code be in an illegal position.
 | |
|         BasicBlock *PHIPred = PN->getIncomingBlock(i);
 | |
|         if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
 | |
|             (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
 | |
| 
 | |
|           // First step, split the critical edge.
 | |
|           SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
 | |
| 
 | |
|           // Next step: move the basic block.  In particular, if the PHI node
 | |
|           // is outside of the loop, and PredTI is in the loop, we want to
 | |
|           // move the block to be immediately before the PHI block, not
 | |
|           // immediately after PredTI.
 | |
|           if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
 | |
|             BasicBlock *NewBB = PN->getIncomingBlock(i);
 | |
|             NewBB->moveBefore(PN->getParent());
 | |
|           }
 | |
| 
 | |
|           // Splitting the edge can reduce the number of PHI entries we have.
 | |
|           e = PN->getNumIncomingValues();
 | |
|         }
 | |
|       }
 | |
|       Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
 | |
|       if (!Code) {
 | |
|         // Insert the code into the end of the predecessor block.
 | |
|         Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
 | |
|                                 PN->getIncomingBlock(i)->getTerminator() :
 | |
|                                 OldLoc->getParent()->getTerminator();
 | |
|         Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
 | |
|                                            Rewriter, InsertPt, L, LI);
 | |
| 
 | |
|         DOUT << "      Changing PHI use to ";
 | |
|         DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
 | |
|         DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
 | |
|       }
 | |
| 
 | |
|       // Replace the use of the operand Value with the new Phi we just created.
 | |
|       PN->setIncomingValue(i, Code);
 | |
|       Rewriter.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // PHI node might have become a constant value after SplitCriticalEdge.
 | |
|   DeadInsts.push_back(Inst);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// fitsInAddressMode - Return true if V can be subsumed within an addressing
 | |
| /// mode, and does not need to be put in a register first.
 | |
| static bool fitsInAddressMode(const SCEVHandle &V, const Type *AccessTy,
 | |
|                              const TargetLowering *TLI, bool HasBaseReg) {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
 | |
|     int64_t VC = SC->getValue()->getSExtValue();
 | |
|     if (TLI) {
 | |
|       TargetLowering::AddrMode AM;
 | |
|       AM.BaseOffs = VC;
 | |
|       AM.HasBaseReg = HasBaseReg;
 | |
|       return TLI->isLegalAddressingMode(AM, AccessTy);
 | |
|     } else {
 | |
|       // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
 | |
|       return (VC > -(1 << 16) && VC < (1 << 16)-1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
 | |
|     if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
 | |
|       if (TLI) {
 | |
|         TargetLowering::AddrMode AM;
 | |
|         AM.BaseGV = GV;
 | |
|         AM.HasBaseReg = HasBaseReg;
 | |
|         return TLI->isLegalAddressingMode(AM, AccessTy);
 | |
|       } else {
 | |
|         // Default: assume global addresses are not legal.
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
 | |
| /// loop varying to the Imm operand.
 | |
| static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
 | |
|                                              Loop *L, ScalarEvolution *SE) {
 | |
|   if (Val->isLoopInvariant(L)) return;  // Nothing to do.
 | |
|   
 | |
|   if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | |
|     std::vector<SCEVHandle> NewOps;
 | |
|     NewOps.reserve(SAE->getNumOperands());
 | |
|     
 | |
|     for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
 | |
|       if (!SAE->getOperand(i)->isLoopInvariant(L)) {
 | |
|         // If this is a loop-variant expression, it must stay in the immediate
 | |
|         // field of the expression.
 | |
|         Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
 | |
|       } else {
 | |
|         NewOps.push_back(SAE->getOperand(i));
 | |
|       }
 | |
| 
 | |
|     if (NewOps.empty())
 | |
|       Val = SE->getIntegerSCEV(0, Val->getType());
 | |
|     else
 | |
|       Val = SE->getAddExpr(NewOps);
 | |
|   } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | |
|     // Try to pull immediates out of the start value of nested addrec's.
 | |
|     SCEVHandle Start = SARE->getStart();
 | |
|     MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
 | |
|     
 | |
|     std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | |
|     Ops[0] = Start;
 | |
|     Val = SE->getAddRecExpr(Ops, SARE->getLoop());
 | |
|   } else {
 | |
|     // Otherwise, all of Val is variant, move the whole thing over.
 | |
|     Imm = SE->getAddExpr(Imm, Val);
 | |
|     Val = SE->getIntegerSCEV(0, Val->getType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MoveImmediateValues - Look at Val, and pull out any additions of constants
 | |
| /// that can fit into the immediate field of instructions in the target.
 | |
| /// Accumulate these immediate values into the Imm value.
 | |
| static void MoveImmediateValues(const TargetLowering *TLI,
 | |
|                                 const Type *AccessTy,
 | |
|                                 SCEVHandle &Val, SCEVHandle &Imm,
 | |
|                                 bool isAddress, Loop *L,
 | |
|                                 ScalarEvolution *SE) {
 | |
|   if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | |
|     std::vector<SCEVHandle> NewOps;
 | |
|     NewOps.reserve(SAE->getNumOperands());
 | |
|     
 | |
|     for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
 | |
|       SCEVHandle NewOp = SAE->getOperand(i);
 | |
|       MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
 | |
|       
 | |
|       if (!NewOp->isLoopInvariant(L)) {
 | |
|         // If this is a loop-variant expression, it must stay in the immediate
 | |
|         // field of the expression.
 | |
|         Imm = SE->getAddExpr(Imm, NewOp);
 | |
|       } else {
 | |
|         NewOps.push_back(NewOp);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NewOps.empty())
 | |
|       Val = SE->getIntegerSCEV(0, Val->getType());
 | |
|     else
 | |
|       Val = SE->getAddExpr(NewOps);
 | |
|     return;
 | |
|   } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | |
|     // Try to pull immediates out of the start value of nested addrec's.
 | |
|     SCEVHandle Start = SARE->getStart();
 | |
|     MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
 | |
|     
 | |
|     if (Start != SARE->getStart()) {
 | |
|       std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | |
|       Ops[0] = Start;
 | |
|       Val = SE->getAddRecExpr(Ops, SARE->getLoop());
 | |
|     }
 | |
|     return;
 | |
|   } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
 | |
|     // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
 | |
|     if (isAddress &&
 | |
|         fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
 | |
|         SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
 | |
| 
 | |
|       SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
 | |
|       SCEVHandle NewOp = SME->getOperand(1);
 | |
|       MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
 | |
|       
 | |
|       // If we extracted something out of the subexpressions, see if we can 
 | |
|       // simplify this!
 | |
|       if (NewOp != SME->getOperand(1)) {
 | |
|         // Scale SubImm up by "8".  If the result is a target constant, we are
 | |
|         // good.
 | |
|         SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
 | |
|         if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
 | |
|           // Accumulate the immediate.
 | |
|           Imm = SE->getAddExpr(Imm, SubImm);
 | |
|           
 | |
|           // Update what is left of 'Val'.
 | |
|           Val = SE->getMulExpr(SME->getOperand(0), NewOp);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop-variant expressions must stay in the immediate field of the
 | |
|   // expression.
 | |
|   if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
 | |
|       !Val->isLoopInvariant(L)) {
 | |
|     Imm = SE->getAddExpr(Imm, Val);
 | |
|     Val = SE->getIntegerSCEV(0, Val->getType());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, no immediates to move.
 | |
| }
 | |
| 
 | |
| static void MoveImmediateValues(const TargetLowering *TLI,
 | |
|                                 Instruction *User,
 | |
|                                 SCEVHandle &Val, SCEVHandle &Imm,
 | |
|                                 bool isAddress, Loop *L,
 | |
|                                 ScalarEvolution *SE) {
 | |
|   const Type *AccessTy = getAccessType(User);
 | |
|   MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
 | |
| }
 | |
| 
 | |
| /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
 | |
| /// added together.  This is used to reassociate common addition subexprs
 | |
| /// together for maximal sharing when rewriting bases.
 | |
| static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
 | |
|                              SCEVHandle Expr,
 | |
|                              ScalarEvolution *SE) {
 | |
|   if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
 | |
|     for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
 | |
|       SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
 | |
|   } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
 | |
|     SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
 | |
|     if (SARE->getOperand(0) == Zero) {
 | |
|       SubExprs.push_back(Expr);
 | |
|     } else {
 | |
|       // Compute the addrec with zero as its base.
 | |
|       std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | |
|       Ops[0] = Zero;   // Start with zero base.
 | |
|       SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
 | |
|       
 | |
| 
 | |
|       SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
 | |
|     }
 | |
|   } else if (!Expr->isZero()) {
 | |
|     // Do not add zero.
 | |
|     SubExprs.push_back(Expr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This is logically local to the following function, but C++ says we have 
 | |
| // to make it file scope.
 | |
| struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
 | |
| 
 | |
| /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
 | |
| /// the Uses, removing any common subexpressions, except that if all such
 | |
| /// subexpressions can be folded into an addressing mode for all uses inside
 | |
| /// the loop (this case is referred to as "free" in comments herein) we do
 | |
| /// not remove anything.  This looks for things like (a+b+c) and
 | |
| /// (a+c+d) and computes the common (a+c) subexpression.  The common expression
 | |
| /// is *removed* from the Bases and returned.
 | |
| static SCEVHandle 
 | |
| RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
 | |
|                                     ScalarEvolution *SE, Loop *L,
 | |
|                                     const TargetLowering *TLI) {
 | |
|   unsigned NumUses = Uses.size();
 | |
| 
 | |
|   // Only one use?  This is a very common case, so we handle it specially and
 | |
|   // cheaply.
 | |
|   SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
 | |
|   SCEVHandle Result = Zero;
 | |
|   SCEVHandle FreeResult = Zero;
 | |
|   if (NumUses == 1) {
 | |
|     // If the use is inside the loop, use its base, regardless of what it is:
 | |
|     // it is clearly shared across all the IV's.  If the use is outside the loop
 | |
|     // (which means after it) we don't want to factor anything *into* the loop,
 | |
|     // so just use 0 as the base.
 | |
|     if (L->contains(Uses[0].Inst->getParent()))
 | |
|       std::swap(Result, Uses[0].Base);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // To find common subexpressions, count how many of Uses use each expression.
 | |
|   // If any subexpressions are used Uses.size() times, they are common.
 | |
|   // Also track whether all uses of each expression can be moved into an
 | |
|   // an addressing mode "for free"; such expressions are left within the loop.
 | |
|   // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
 | |
|   std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
 | |
|   
 | |
|   // UniqueSubExprs - Keep track of all of the subexpressions we see in the
 | |
|   // order we see them.
 | |
|   std::vector<SCEVHandle> UniqueSubExprs;
 | |
| 
 | |
|   std::vector<SCEVHandle> SubExprs;
 | |
|   unsigned NumUsesInsideLoop = 0;
 | |
|   for (unsigned i = 0; i != NumUses; ++i) {
 | |
|     // If the user is outside the loop, just ignore it for base computation.
 | |
|     // Since the user is outside the loop, it must be *after* the loop (if it
 | |
|     // were before, it could not be based on the loop IV).  We don't want users
 | |
|     // after the loop to affect base computation of values *inside* the loop,
 | |
|     // because we can always add their offsets to the result IV after the loop
 | |
|     // is done, ensuring we get good code inside the loop.
 | |
|     if (!L->contains(Uses[i].Inst->getParent()))
 | |
|       continue;
 | |
|     NumUsesInsideLoop++;
 | |
|     
 | |
|     // If the base is zero (which is common), return zero now, there are no
 | |
|     // CSEs we can find.
 | |
|     if (Uses[i].Base == Zero) return Zero;
 | |
| 
 | |
|     // If this use is as an address we may be able to put CSEs in the addressing
 | |
|     // mode rather than hoisting them.
 | |
|     bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
 | |
|     // We may need the AccessTy below, but only when isAddrUse, so compute it
 | |
|     // only in that case.
 | |
|     const Type *AccessTy = 0;
 | |
|     if (isAddrUse)
 | |
|       AccessTy = getAccessType(Uses[i].Inst);
 | |
| 
 | |
|     // Split the expression into subexprs.
 | |
|     SeparateSubExprs(SubExprs, Uses[i].Base, SE);
 | |
|     // Add one to SubExpressionUseData.Count for each subexpr present, and
 | |
|     // if the subexpr is not a valid immediate within an addressing mode use,
 | |
|     // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
 | |
|     // hoist these out of the loop (if they are common to all uses).
 | |
|     for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
 | |
|       if (++SubExpressionUseData[SubExprs[j]].Count == 1)
 | |
|         UniqueSubExprs.push_back(SubExprs[j]);
 | |
|       if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
 | |
|         SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
 | |
|     }
 | |
|     SubExprs.clear();
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many times each is used, build Result.  Iterate over
 | |
|   // UniqueSubexprs so that we have a stable ordering.
 | |
|   for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
 | |
|     std::map<SCEVHandle, SubExprUseData>::iterator I = 
 | |
|        SubExpressionUseData.find(UniqueSubExprs[i]);
 | |
|     assert(I != SubExpressionUseData.end() && "Entry not found?");
 | |
|     if (I->second.Count == NumUsesInsideLoop) { // Found CSE! 
 | |
|       if (I->second.notAllUsesAreFree)
 | |
|         Result = SE->getAddExpr(Result, I->first);
 | |
|       else 
 | |
|         FreeResult = SE->getAddExpr(FreeResult, I->first);
 | |
|     } else
 | |
|       // Remove non-cse's from SubExpressionUseData.
 | |
|       SubExpressionUseData.erase(I);
 | |
|   }
 | |
| 
 | |
|   if (FreeResult != Zero) {
 | |
|     // We have some subexpressions that can be subsumed into addressing
 | |
|     // modes in every use inside the loop.  However, it's possible that
 | |
|     // there are so many of them that the combined FreeResult cannot
 | |
|     // be subsumed, or that the target cannot handle both a FreeResult
 | |
|     // and a Result in the same instruction (for example because it would
 | |
|     // require too many registers).  Check this.
 | |
|     for (unsigned i=0; i<NumUses; ++i) {
 | |
|       if (!L->contains(Uses[i].Inst->getParent()))
 | |
|         continue;
 | |
|       // We know this is an addressing mode use; if there are any uses that
 | |
|       // are not, FreeResult would be Zero.
 | |
|       const Type *AccessTy = getAccessType(Uses[i].Inst);
 | |
|       if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
 | |
|         // FIXME:  could split up FreeResult into pieces here, some hoisted
 | |
|         // and some not.  There is no obvious advantage to this.
 | |
|         Result = SE->getAddExpr(Result, FreeResult);
 | |
|         FreeResult = Zero;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we found no CSE's, return now.
 | |
|   if (Result == Zero) return Result;
 | |
|   
 | |
|   // If we still have a FreeResult, remove its subexpressions from
 | |
|   // SubExpressionUseData.  This means they will remain in the use Bases.
 | |
|   if (FreeResult != Zero) {
 | |
|     SeparateSubExprs(SubExprs, FreeResult, SE);
 | |
|     for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
 | |
|       std::map<SCEVHandle, SubExprUseData>::iterator I = 
 | |
|          SubExpressionUseData.find(SubExprs[j]);
 | |
|       SubExpressionUseData.erase(I);
 | |
|     }
 | |
|     SubExprs.clear();
 | |
|   }
 | |
| 
 | |
|   // Otherwise, remove all of the CSE's we found from each of the base values.
 | |
|   for (unsigned i = 0; i != NumUses; ++i) {
 | |
|     // Uses outside the loop don't necessarily include the common base, but
 | |
|     // the final IV value coming into those uses does.  Instead of trying to
 | |
|     // remove the pieces of the common base, which might not be there,
 | |
|     // subtract off the base to compensate for this.
 | |
|     if (!L->contains(Uses[i].Inst->getParent())) {
 | |
|       Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Split the expression into subexprs.
 | |
|     SeparateSubExprs(SubExprs, Uses[i].Base, SE);
 | |
| 
 | |
|     // Remove any common subexpressions.
 | |
|     for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
 | |
|       if (SubExpressionUseData.count(SubExprs[j])) {
 | |
|         SubExprs.erase(SubExprs.begin()+j);
 | |
|         --j; --e;
 | |
|       }
 | |
|     
 | |
|     // Finally, add the non-shared expressions together.
 | |
|     if (SubExprs.empty())
 | |
|       Uses[i].Base = Zero;
 | |
|     else
 | |
|       Uses[i].Base = SE->getAddExpr(SubExprs);
 | |
|     SubExprs.clear();
 | |
|   }
 | |
|  
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// ValidScale - Check whether the given Scale is valid for all loads and 
 | |
| /// stores in UsersToProcess.
 | |
| ///
 | |
| bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
 | |
|                                const std::vector<BasedUser>& UsersToProcess) {
 | |
|   if (!TLI)
 | |
|     return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
 | |
|     // If this is a load or other access, pass the type of the access in.
 | |
|     const Type *AccessTy = Type::VoidTy;
 | |
|     if (isAddressUse(UsersToProcess[i].Inst,
 | |
|                      UsersToProcess[i].OperandValToReplace))
 | |
|       AccessTy = getAccessType(UsersToProcess[i].Inst);
 | |
|     else if (isa<PHINode>(UsersToProcess[i].Inst))
 | |
|       continue;
 | |
|     
 | |
|     TargetLowering::AddrMode AM;
 | |
|     if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
 | |
|       AM.BaseOffs = SC->getValue()->getSExtValue();
 | |
|     AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
 | |
|     AM.Scale = Scale;
 | |
| 
 | |
|     // If load[imm+r*scale] is illegal, bail out.
 | |
|     if (!TLI->isLegalAddressingMode(AM, AccessTy))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ValidOffset - Check whether the given Offset is valid for all loads and
 | |
| /// stores in UsersToProcess.
 | |
| ///
 | |
| bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
 | |
|                                int64_t Offset,
 | |
|                                int64_t Scale,
 | |
|                                const std::vector<BasedUser>& UsersToProcess) {
 | |
|   if (!TLI)
 | |
|     return true;
 | |
| 
 | |
|   for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
 | |
|     // If this is a load or other access, pass the type of the access in.
 | |
|     const Type *AccessTy = Type::VoidTy;
 | |
|     if (isAddressUse(UsersToProcess[i].Inst,
 | |
|                      UsersToProcess[i].OperandValToReplace))
 | |
|       AccessTy = getAccessType(UsersToProcess[i].Inst);
 | |
|     else if (isa<PHINode>(UsersToProcess[i].Inst))
 | |
|       continue;
 | |
| 
 | |
|     TargetLowering::AddrMode AM;
 | |
|     if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
 | |
|       AM.BaseOffs = SC->getValue()->getSExtValue();
 | |
|     AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
 | |
|     AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
 | |
|     AM.Scale = Scale;
 | |
| 
 | |
|     // If load[imm+r*scale] is illegal, bail out.
 | |
|     if (!TLI->isLegalAddressingMode(AM, AccessTy))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
 | |
| /// a nop.
 | |
| bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
 | |
|                                                 const Type *Ty2) {
 | |
|   if (Ty1 == Ty2)
 | |
|     return false;
 | |
|   Ty1 = SE->getEffectiveSCEVType(Ty1);
 | |
|   Ty2 = SE->getEffectiveSCEVType(Ty2);
 | |
|   if (Ty1 == Ty2)
 | |
|     return false;
 | |
|   if (Ty1->canLosslesslyBitCastTo(Ty2))
 | |
|     return false;
 | |
|   if (TLI && TLI->isTruncateFree(Ty1, Ty2))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CheckForIVReuse - Returns the multiple if the stride is the multiple
 | |
| /// of a previous stride and it is a legal value for the target addressing
 | |
| /// mode scale component and optional base reg. This allows the users of
 | |
| /// this stride to be rewritten as prev iv * factor. It returns 0 if no
 | |
| /// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
 | |
| ///
 | |
| /// If all uses are outside the loop, we don't require that all multiplies
 | |
| /// be folded into the addressing mode, nor even that the factor be constant; 
 | |
| /// a multiply (executed once) outside the loop is better than another IV 
 | |
| /// within.  Well, usually.
 | |
| SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
 | |
|                                 bool AllUsesAreAddresses,
 | |
|                                 bool AllUsesAreOutsideLoop,
 | |
|                                 const SCEVHandle &Stride, 
 | |
|                                 IVExpr &IV, const Type *Ty,
 | |
|                                 const std::vector<BasedUser>& UsersToProcess) {
 | |
|   if (StrideNoReuse.count(Stride))
 | |
|     return SE->getIntegerSCEV(0, Stride->getType());
 | |
| 
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
 | |
|     int64_t SInt = SC->getValue()->getSExtValue();
 | |
|     for (unsigned NewStride = 0, e = IU->StrideOrder.size();
 | |
|          NewStride != e; ++NewStride) {
 | |
|       std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
 | |
|                 IVsByStride.find(IU->StrideOrder[NewStride]);
 | |
|       if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
 | |
|           StrideNoReuse.count(SI->first))
 | |
|         continue;
 | |
|       int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
 | |
|       if (SI->first != Stride &&
 | |
|           (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
 | |
|         continue;
 | |
|       int64_t Scale = SInt / SSInt;
 | |
|       // Check that this stride is valid for all the types used for loads and
 | |
|       // stores; if it can be used for some and not others, we might as well use
 | |
|       // the original stride everywhere, since we have to create the IV for it
 | |
|       // anyway. If the scale is 1, then we don't need to worry about folding
 | |
|       // multiplications.
 | |
|       if (Scale == 1 ||
 | |
|           (AllUsesAreAddresses &&
 | |
|            ValidScale(HasBaseReg, Scale, UsersToProcess))) {
 | |
|         // Prefer to reuse an IV with a base of zero.
 | |
|         for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | |
|                IE = SI->second.IVs.end(); II != IE; ++II)
 | |
|           // Only reuse previous IV if it would not require a type conversion
 | |
|           // and if the base difference can be folded.
 | |
|           if (II->Base->isZero() &&
 | |
|               !RequiresTypeConversion(II->Base->getType(), Ty)) {
 | |
|             IV = *II;
 | |
|             return SE->getIntegerSCEV(Scale, Stride->getType());
 | |
|           }
 | |
|         // Otherwise, settle for an IV with a foldable base.
 | |
|         if (AllUsesAreAddresses)
 | |
|           for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | |
|                  IE = SI->second.IVs.end(); II != IE; ++II)
 | |
|             // Only reuse previous IV if it would not require a type conversion
 | |
|             // and if the base difference can be folded.
 | |
|             if (SE->getEffectiveSCEVType(II->Base->getType()) ==
 | |
|                 SE->getEffectiveSCEVType(Ty) &&
 | |
|                 isa<SCEVConstant>(II->Base)) {
 | |
|               int64_t Base =
 | |
|                 cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
 | |
|               if (Base > INT32_MIN && Base <= INT32_MAX &&
 | |
|                   ValidOffset(HasBaseReg, -Base * Scale,
 | |
|                               Scale, UsersToProcess)) {
 | |
|                 IV = *II;
 | |
|                 return SE->getIntegerSCEV(Scale, Stride->getType());
 | |
|               }
 | |
|             }
 | |
|       }
 | |
|     }
 | |
|   } else if (AllUsesAreOutsideLoop) {
 | |
|     // Accept nonconstant strides here; it is really really right to substitute
 | |
|     // an existing IV if we can.
 | |
|     for (unsigned NewStride = 0, e = IU->StrideOrder.size();
 | |
|          NewStride != e; ++NewStride) {
 | |
|       std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
 | |
|                 IVsByStride.find(IU->StrideOrder[NewStride]);
 | |
|       if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
 | |
|         continue;
 | |
|       int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
 | |
|       if (SI->first != Stride && SSInt != 1)
 | |
|         continue;
 | |
|       for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | |
|              IE = SI->second.IVs.end(); II != IE; ++II)
 | |
|         // Accept nonzero base here.
 | |
|         // Only reuse previous IV if it would not require a type conversion.
 | |
|         if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
 | |
|           IV = *II;
 | |
|           return Stride;
 | |
|         }
 | |
|     }
 | |
|     // Special case, old IV is -1*x and this one is x.  Can treat this one as
 | |
|     // -1*old.
 | |
|     for (unsigned NewStride = 0, e = IU->StrideOrder.size();
 | |
|          NewStride != e; ++NewStride) {
 | |
|       std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
 | |
|                 IVsByStride.find(IU->StrideOrder[NewStride]);
 | |
|       if (SI == IVsByStride.end()) 
 | |
|         continue;
 | |
|       if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
 | |
|         if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
 | |
|           if (Stride == ME->getOperand(1) &&
 | |
|               SC->getValue()->getSExtValue() == -1LL)
 | |
|             for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
 | |
|                    IE = SI->second.IVs.end(); II != IE; ++II)
 | |
|               // Accept nonzero base here.
 | |
|               // Only reuse previous IV if it would not require type conversion.
 | |
|               if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
 | |
|                 IV = *II;
 | |
|                 return SE->getIntegerSCEV(-1LL, Stride->getType());
 | |
|               }
 | |
|     }
 | |
|   }
 | |
|   return SE->getIntegerSCEV(0, Stride->getType());
 | |
| }
 | |
| 
 | |
| /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
 | |
| /// returns true if Val's isUseOfPostIncrementedValue is true.
 | |
| static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
 | |
|   return Val.isUseOfPostIncrementedValue;
 | |
| }
 | |
| 
 | |
| /// isNonConstantNegative - Return true if the specified scev is negated, but
 | |
| /// not a constant.
 | |
| static bool isNonConstantNegative(const SCEVHandle &Expr) {
 | |
|   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
 | |
|   if (!Mul) return false;
 | |
|   
 | |
|   // If there is a constant factor, it will be first.
 | |
|   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
 | |
|   if (!SC) return false;
 | |
|   
 | |
|   // Return true if the value is negative, this matches things like (-42 * V).
 | |
|   return SC->getValue()->getValue().isNegative();
 | |
| }
 | |
| 
 | |
| // CollectIVUsers - Transform our list of users and offsets to a bit more
 | |
| // complex table. In this new vector, each 'BasedUser' contains 'Base', the base
 | |
| // of the strided accesses, as well as the old information from Uses. We
 | |
| // progressively move information from the Base field to the Imm field, until
 | |
| // we eventually have the full access expression to rewrite the use.
 | |
| SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
 | |
|                                               IVUsersOfOneStride &Uses,
 | |
|                                               Loop *L,
 | |
|                                               bool &AllUsesAreAddresses,
 | |
|                                               bool &AllUsesAreOutsideLoop,
 | |
|                                        std::vector<BasedUser> &UsersToProcess) {
 | |
|   // FIXME: Generalize to non-affine IV's.
 | |
|   if (!Stride->isLoopInvariant(L))
 | |
|     return SE->getIntegerSCEV(0, Stride->getType());
 | |
| 
 | |
|   UsersToProcess.reserve(Uses.Users.size());
 | |
|   for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
 | |
|        E = Uses.Users.end(); I != E; ++I) {
 | |
|     UsersToProcess.push_back(BasedUser(*I, SE));
 | |
| 
 | |
|     // Move any loop variant operands from the offset field to the immediate
 | |
|     // field of the use, so that we don't try to use something before it is
 | |
|     // computed.
 | |
|     MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
 | |
|                                      UsersToProcess.back().Imm, L, SE);
 | |
|     assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
 | |
|            "Base value is not loop invariant!");
 | |
|   }
 | |
| 
 | |
|   // We now have a whole bunch of uses of like-strided induction variables, but
 | |
|   // they might all have different bases.  We want to emit one PHI node for this
 | |
|   // stride which we fold as many common expressions (between the IVs) into as
 | |
|   // possible.  Start by identifying the common expressions in the base values 
 | |
|   // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
 | |
|   // "A+B"), emit it to the preheader, then remove the expression from the
 | |
|   // UsersToProcess base values.
 | |
|   SCEVHandle CommonExprs =
 | |
|     RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
 | |
| 
 | |
|   // Next, figure out what we can represent in the immediate fields of
 | |
|   // instructions.  If we can represent anything there, move it to the imm
 | |
|   // fields of the BasedUsers.  We do this so that it increases the commonality
 | |
|   // of the remaining uses.
 | |
|   unsigned NumPHI = 0;
 | |
|   bool HasAddress = false;
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | |
|     // If the user is not in the current loop, this means it is using the exit
 | |
|     // value of the IV.  Do not put anything in the base, make sure it's all in
 | |
|     // the immediate field to allow as much factoring as possible.
 | |
|     if (!L->contains(UsersToProcess[i].Inst->getParent())) {
 | |
|       UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
 | |
|                                              UsersToProcess[i].Base);
 | |
|       UsersToProcess[i].Base = 
 | |
|         SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
 | |
|     } else {
 | |
|       // Not all uses are outside the loop.
 | |
|       AllUsesAreOutsideLoop = false; 
 | |
| 
 | |
|       // Addressing modes can be folded into loads and stores.  Be careful that
 | |
|       // the store is through the expression, not of the expression though.
 | |
|       bool isPHI = false;
 | |
|       bool isAddress = isAddressUse(UsersToProcess[i].Inst,
 | |
|                                     UsersToProcess[i].OperandValToReplace);
 | |
|       if (isa<PHINode>(UsersToProcess[i].Inst)) {
 | |
|         isPHI = true;
 | |
|         ++NumPHI;
 | |
|       }
 | |
| 
 | |
|       if (isAddress)
 | |
|         HasAddress = true;
 | |
|      
 | |
|       // If this use isn't an address, then not all uses are addresses.
 | |
|       if (!isAddress && !isPHI)
 | |
|         AllUsesAreAddresses = false;
 | |
|       
 | |
|       MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
 | |
|                           UsersToProcess[i].Imm, isAddress, L, SE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If one of the use is a PHI node and all other uses are addresses, still
 | |
|   // allow iv reuse. Essentially we are trading one constant multiplication
 | |
|   // for one fewer iv.
 | |
|   if (NumPHI > 1)
 | |
|     AllUsesAreAddresses = false;
 | |
|     
 | |
|   // There are no in-loop address uses.
 | |
|   if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
 | |
|     AllUsesAreAddresses = false;
 | |
| 
 | |
|   return CommonExprs;
 | |
| }
 | |
| 
 | |
| /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
 | |
| /// is valid and profitable for the given set of users of a stride. In
 | |
| /// full strength-reduction mode, all addresses at the current stride are
 | |
| /// strength-reduced all the way down to pointer arithmetic.
 | |
| ///
 | |
| bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
 | |
|                                    const std::vector<BasedUser> &UsersToProcess,
 | |
|                                    const Loop *L,
 | |
|                                    bool AllUsesAreAddresses,
 | |
|                                    SCEVHandle Stride) {
 | |
|   if (!EnableFullLSRMode)
 | |
|     return false;
 | |
| 
 | |
|   // The heuristics below aim to avoid increasing register pressure, but
 | |
|   // fully strength-reducing all the addresses increases the number of
 | |
|   // add instructions, so don't do this when optimizing for size.
 | |
|   // TODO: If the loop is large, the savings due to simpler addresses
 | |
|   // may oughtweight the costs of the extra increment instructions.
 | |
|   if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     return false;
 | |
| 
 | |
|   // TODO: For now, don't do full strength reduction if there could
 | |
|   // potentially be greater-stride multiples of the current stride
 | |
|   // which could reuse the current stride IV.
 | |
|   if (IU->StrideOrder.back() != Stride)
 | |
|     return false;
 | |
| 
 | |
|   // Iterate through the uses to find conditions that automatically rule out
 | |
|   // full-lsr mode.
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
 | |
|     const SCEV *Base = UsersToProcess[i].Base;
 | |
|     const SCEV *Imm = UsersToProcess[i].Imm;
 | |
|     // If any users have a loop-variant component, they can't be fully
 | |
|     // strength-reduced.
 | |
|     if (Imm && !Imm->isLoopInvariant(L))
 | |
|       return false;
 | |
|     // If there are to users with the same base and the difference between
 | |
|     // the two Imm values can't be folded into the address, full
 | |
|     // strength reduction would increase register pressure.
 | |
|     do {
 | |
|       const SCEV *CurImm = UsersToProcess[i].Imm;
 | |
|       if ((CurImm || Imm) && CurImm != Imm) {
 | |
|         if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
 | |
|         if (!Imm)       Imm = SE->getIntegerSCEV(0, Stride->getType());
 | |
|         const Instruction *Inst = UsersToProcess[i].Inst;
 | |
|         const Type *AccessTy = getAccessType(Inst);
 | |
|         SCEVHandle Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
 | |
|         if (!Diff->isZero() &&
 | |
|             (!AllUsesAreAddresses ||
 | |
|              !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
 | |
|           return false;
 | |
|       }
 | |
|     } while (++i != e && Base == UsersToProcess[i].Base);
 | |
|   }
 | |
| 
 | |
|   // If there's exactly one user in this stride, fully strength-reducing it
 | |
|   // won't increase register pressure. If it's starting from a non-zero base,
 | |
|   // it'll be simpler this way.
 | |
|   if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise, if there are any users in this stride that don't require
 | |
|   // a register for their base, full strength-reduction will increase
 | |
|   // register pressure.
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | |
|     if (UsersToProcess[i].Base->isZero())
 | |
|       return false;
 | |
| 
 | |
|   // Otherwise, go for it.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InsertAffinePhi Create and insert a PHI node for an induction variable
 | |
| /// with the specified start and step values in the specified loop.
 | |
| ///
 | |
| /// If NegateStride is true, the stride should be negated by using a
 | |
| /// subtract instead of an add.
 | |
| ///
 | |
| /// Return the created phi node.
 | |
| ///
 | |
| static PHINode *InsertAffinePhi(SCEVHandle Start, SCEVHandle Step,
 | |
|                                 Instruction *IVIncInsertPt,
 | |
|                                 const Loop *L,
 | |
|                                 SCEVExpander &Rewriter) {
 | |
|   assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
 | |
|   assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   const Type *Ty = Start->getType();
 | |
|   Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
 | |
|   PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
 | |
|                   Preheader);
 | |
| 
 | |
|   // If the stride is negative, insert a sub instead of an add for the
 | |
|   // increment.
 | |
|   bool isNegative = isNonConstantNegative(Step);
 | |
|   SCEVHandle IncAmount = Step;
 | |
|   if (isNegative)
 | |
|     IncAmount = Rewriter.SE.getNegativeSCEV(Step);
 | |
| 
 | |
|   // Insert an add instruction right before the terminator corresponding
 | |
|   // to the back-edge or just before the only use. The location is determined
 | |
|   // by the caller and passed in as IVIncInsertPt.
 | |
|   Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
 | |
|                                         Preheader->getTerminator());
 | |
|   Instruction *IncV;
 | |
|   if (isNegative) {
 | |
|     IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
 | |
|                                      IVIncInsertPt);
 | |
|   } else {
 | |
|     IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
 | |
|                                      IVIncInsertPt);
 | |
|   }
 | |
|   if (!isa<ConstantInt>(StepV)) ++NumVariable;
 | |
| 
 | |
|   PN->addIncoming(IncV, LatchBlock);
 | |
| 
 | |
|   ++NumInserted;
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
 | |
|   // We want to emit code for users inside the loop first.  To do this, we
 | |
|   // rearrange BasedUser so that the entries at the end have
 | |
|   // isUseOfPostIncrementedValue = false, because we pop off the end of the
 | |
|   // vector (so we handle them first).
 | |
|   std::partition(UsersToProcess.begin(), UsersToProcess.end(),
 | |
|                  PartitionByIsUseOfPostIncrementedValue);
 | |
| 
 | |
|   // Sort this by base, so that things with the same base are handled
 | |
|   // together.  By partitioning first and stable-sorting later, we are
 | |
|   // guaranteed that within each base we will pop off users from within the
 | |
|   // loop before users outside of the loop with a particular base.
 | |
|   //
 | |
|   // We would like to use stable_sort here, but we can't.  The problem is that
 | |
|   // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
 | |
|   // we don't have anything to do a '<' comparison on.  Because we think the
 | |
|   // number of uses is small, do a horrible bubble sort which just relies on
 | |
|   // ==.
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | |
|     // Get a base value.
 | |
|     SCEVHandle Base = UsersToProcess[i].Base;
 | |
| 
 | |
|     // Compact everything with this base to be consecutive with this one.
 | |
|     for (unsigned j = i+1; j != e; ++j) {
 | |
|       if (UsersToProcess[j].Base == Base) {
 | |
|         std::swap(UsersToProcess[i+1], UsersToProcess[j]);
 | |
|         ++i;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
 | |
| /// UsersToProcess, meaning lowering addresses all the way down to direct
 | |
| /// pointer arithmetic.
 | |
| ///
 | |
| void
 | |
| LoopStrengthReduce::PrepareToStrengthReduceFully(
 | |
|                                         std::vector<BasedUser> &UsersToProcess,
 | |
|                                         SCEVHandle Stride,
 | |
|                                         SCEVHandle CommonExprs,
 | |
|                                         const Loop *L,
 | |
|                                         SCEVExpander &PreheaderRewriter) {
 | |
|   DOUT << "  Fully reducing all users\n";
 | |
| 
 | |
|   // Rewrite the UsersToProcess records, creating a separate PHI for each
 | |
|   // unique Base value.
 | |
|   Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
 | |
|     // TODO: The uses are grouped by base, but not sorted. We arbitrarily
 | |
|     // pick the first Imm value here to start with, and adjust it for the
 | |
|     // other uses.
 | |
|     SCEVHandle Imm = UsersToProcess[i].Imm;
 | |
|     SCEVHandle Base = UsersToProcess[i].Base;
 | |
|     SCEVHandle Start = SE->getAddExpr(CommonExprs, Base, Imm);
 | |
|     PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
 | |
|                                    PreheaderRewriter);
 | |
|     // Loop over all the users with the same base.
 | |
|     do {
 | |
|       UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
 | |
|       UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
 | |
|       UsersToProcess[i].Phi = Phi;
 | |
|       assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
 | |
|              "ShouldUseFullStrengthReductionMode should reject this!");
 | |
|     } while (++i != e && Base == UsersToProcess[i].Base);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FindIVIncInsertPt - Return the location to insert the increment instruction.
 | |
| /// If the only use if a use of postinc value, (must be the loop termination
 | |
| /// condition), then insert it just before the use.
 | |
| static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
 | |
|                                       const Loop *L) {
 | |
|   if (UsersToProcess.size() == 1 &&
 | |
|       UsersToProcess[0].isUseOfPostIncrementedValue &&
 | |
|       L->contains(UsersToProcess[0].Inst->getParent()))
 | |
|     return UsersToProcess[0].Inst;
 | |
|   return L->getLoopLatch()->getTerminator();
 | |
| }
 | |
| 
 | |
| /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
 | |
| /// given users to share.
 | |
| ///
 | |
| void
 | |
| LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
 | |
|                                          std::vector<BasedUser> &UsersToProcess,
 | |
|                                          SCEVHandle Stride,
 | |
|                                          SCEVHandle CommonExprs,
 | |
|                                          Value *CommonBaseV,
 | |
|                                          Instruction *IVIncInsertPt,
 | |
|                                          const Loop *L,
 | |
|                                          SCEVExpander &PreheaderRewriter) {
 | |
|   DOUT << "  Inserting new PHI:\n";
 | |
| 
 | |
|   PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
 | |
|                                  Stride, IVIncInsertPt, L,
 | |
|                                  PreheaderRewriter);
 | |
| 
 | |
|   // Remember this in case a later stride is multiple of this.
 | |
|   IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
 | |
| 
 | |
|   // All the users will share this new IV.
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | |
|     UsersToProcess[i].Phi = Phi;
 | |
| 
 | |
|   DOUT << "    IV=";
 | |
|   DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
 | |
|   DOUT << "\n";
 | |
| }
 | |
| 
 | |
| /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
 | |
| /// reuse an induction variable with a stride that is a factor of the current
 | |
| /// induction variable.
 | |
| ///
 | |
| void
 | |
| LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
 | |
|                                          std::vector<BasedUser> &UsersToProcess,
 | |
|                                          Value *CommonBaseV,
 | |
|                                          const IVExpr &ReuseIV,
 | |
|                                          Instruction *PreInsertPt) {
 | |
|   DOUT << "  Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
 | |
|        << " and BASE " << *ReuseIV.Base << "\n";
 | |
| 
 | |
|   // All the users will share the reused IV.
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | |
|     UsersToProcess[i].Phi = ReuseIV.PHI;
 | |
| 
 | |
|   Constant *C = dyn_cast<Constant>(CommonBaseV);
 | |
|   if (C &&
 | |
|       (!C->isNullValue() &&
 | |
|        !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
 | |
|                          TLI, false)))
 | |
|     // We want the common base emitted into the preheader! This is just
 | |
|     // using cast as a copy so BitCast (no-op cast) is appropriate
 | |
|     CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
 | |
|                                   "commonbase", PreInsertPt);
 | |
| }
 | |
| 
 | |
| static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
 | |
|                                     const Type *AccessTy,
 | |
|                                    std::vector<BasedUser> &UsersToProcess,
 | |
|                                    const TargetLowering *TLI) {
 | |
|   SmallVector<Instruction*, 16> AddrModeInsts;
 | |
|   for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | |
|     if (UsersToProcess[i].isUseOfPostIncrementedValue)
 | |
|       continue;
 | |
|     ExtAddrMode AddrMode =
 | |
|       AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
 | |
|                                    AccessTy, UsersToProcess[i].Inst,
 | |
|                                    AddrModeInsts, *TLI);
 | |
|     if (GV && GV != AddrMode.BaseGV)
 | |
|       return false;
 | |
|     if (Offset && !AddrMode.BaseOffs)
 | |
|       // FIXME: How to accurate check it's immediate offset is folded.
 | |
|       return false;
 | |
|     AddrModeInsts.clear();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
 | |
| /// stride of IV.  All of the users may have different starting values, and this
 | |
| /// may not be the only stride.
 | |
| void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
 | |
|                                                       IVUsersOfOneStride &Uses,
 | |
|                                                       Loop *L) {
 | |
|   // If all the users are moved to another stride, then there is nothing to do.
 | |
|   if (Uses.Users.empty())
 | |
|     return;
 | |
| 
 | |
|   // Keep track if every use in UsersToProcess is an address. If they all are,
 | |
|   // we may be able to rewrite the entire collection of them in terms of a
 | |
|   // smaller-stride IV.
 | |
|   bool AllUsesAreAddresses = true;
 | |
| 
 | |
|   // Keep track if every use of a single stride is outside the loop.  If so,
 | |
|   // we want to be more aggressive about reusing a smaller-stride IV; a
 | |
|   // multiply outside the loop is better than another IV inside.  Well, usually.
 | |
|   bool AllUsesAreOutsideLoop = true;
 | |
| 
 | |
|   // Transform our list of users and offsets to a bit more complex table.  In
 | |
|   // this new vector, each 'BasedUser' contains 'Base' the base of the
 | |
|   // strided accessas well as the old information from Uses.  We progressively
 | |
|   // move information from the Base field to the Imm field, until we eventually
 | |
|   // have the full access expression to rewrite the use.
 | |
|   std::vector<BasedUser> UsersToProcess;
 | |
|   SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
 | |
|                                           AllUsesAreOutsideLoop,
 | |
|                                           UsersToProcess);
 | |
| 
 | |
|   // Sort the UsersToProcess array so that users with common bases are
 | |
|   // next to each other.
 | |
|   SortUsersToProcess(UsersToProcess);
 | |
| 
 | |
|   // If we managed to find some expressions in common, we'll need to carry
 | |
|   // their value in a register and add it in for each use. This will take up
 | |
|   // a register operand, which potentially restricts what stride values are
 | |
|   // valid.
 | |
|   bool HaveCommonExprs = !CommonExprs->isZero();
 | |
|   const Type *ReplacedTy = CommonExprs->getType();
 | |
| 
 | |
|   // If all uses are addresses, consider sinking the immediate part of the
 | |
|   // common expression back into uses if they can fit in the immediate fields.
 | |
|   if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
 | |
|     SCEVHandle NewCommon = CommonExprs;
 | |
|     SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
 | |
|     MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
 | |
|     if (!Imm->isZero()) {
 | |
|       bool DoSink = true;
 | |
| 
 | |
|       // If the immediate part of the common expression is a GV, check if it's
 | |
|       // possible to fold it into the target addressing mode.
 | |
|       GlobalValue *GV = 0;
 | |
|       if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
 | |
|         GV = dyn_cast<GlobalValue>(SU->getValue());
 | |
|       int64_t Offset = 0;
 | |
|       if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
 | |
|         Offset = SC->getValue()->getSExtValue();
 | |
|       if (GV || Offset)
 | |
|         // Pass VoidTy as the AccessTy to be conservative, because
 | |
|         // there could be multiple access types among all the uses.
 | |
|         DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
 | |
|                                          UsersToProcess, TLI);
 | |
| 
 | |
|       if (DoSink) {
 | |
|         DOUT << "  Sinking " << *Imm << " back down into uses\n";
 | |
|         for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
 | |
|           UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
 | |
|         CommonExprs = NewCommon;
 | |
|         HaveCommonExprs = !CommonExprs->isZero();
 | |
|         ++NumImmSunk;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we know what we need to do, insert the PHI node itself.
 | |
|   //
 | |
|   DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
 | |
|        << *Stride << ":\n"
 | |
|        << "  Common base: " << *CommonExprs << "\n";
 | |
| 
 | |
|   SCEVExpander Rewriter(*SE);
 | |
|   SCEVExpander PreheaderRewriter(*SE);
 | |
| 
 | |
|   BasicBlock  *Preheader = L->getLoopPreheader();
 | |
|   Instruction *PreInsertPt = Preheader->getTerminator();
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   Instruction *IVIncInsertPt = LatchBlock->getTerminator();
 | |
| 
 | |
|   Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
 | |
| 
 | |
|   SCEVHandle RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
 | |
|   IVExpr   ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
 | |
|                    SE->getIntegerSCEV(0, Type::Int32Ty),
 | |
|                    0);
 | |
| 
 | |
|   /// Choose a strength-reduction strategy and prepare for it by creating
 | |
|   /// the necessary PHIs and adjusting the bookkeeping.
 | |
|   if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
 | |
|                                          AllUsesAreAddresses, Stride)) {
 | |
|     PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
 | |
|                                  PreheaderRewriter);
 | |
|   } else {
 | |
|     // Emit the initial base value into the loop preheader.
 | |
|     CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
 | |
|                                                   PreInsertPt);
 | |
| 
 | |
|     // If all uses are addresses, check if it is possible to reuse an IV.  The
 | |
|     // new IV must have a stride that is a multiple of the old stride; the
 | |
|     // multiple must be a number that can be encoded in the scale field of the
 | |
|     // target addressing mode; and we must have a valid instruction after this 
 | |
|     // substitution, including the immediate field, if any.
 | |
|     RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
 | |
|                                     AllUsesAreOutsideLoop,
 | |
|                                     Stride, ReuseIV, ReplacedTy,
 | |
|                                     UsersToProcess);
 | |
|     if (!RewriteFactor->isZero())
 | |
|       PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
 | |
|                                                ReuseIV, PreInsertPt);
 | |
|     else {
 | |
|       IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
 | |
|       PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
 | |
|                                         CommonBaseV, IVIncInsertPt,
 | |
|                                         L, PreheaderRewriter);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process all the users now, replacing their strided uses with
 | |
|   // strength-reduced forms.  This outer loop handles all bases, the inner
 | |
|   // loop handles all users of a particular base.
 | |
|   while (!UsersToProcess.empty()) {
 | |
|     SCEVHandle Base = UsersToProcess.back().Base;
 | |
|     Instruction *Inst = UsersToProcess.back().Inst;
 | |
| 
 | |
|     // Emit the code for Base into the preheader.
 | |
|     Value *BaseV = 0;
 | |
|     if (!Base->isZero()) {
 | |
|       BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
 | |
| 
 | |
|       DOUT << "  INSERTING code for BASE = " << *Base << ":";
 | |
|       if (BaseV->hasName())
 | |
|         DOUT << " Result value name = %" << BaseV->getNameStr();
 | |
|       DOUT << "\n";
 | |
| 
 | |
|       // If BaseV is a non-zero constant, make sure that it gets inserted into
 | |
|       // the preheader, instead of being forward substituted into the uses.  We
 | |
|       // do this by forcing a BitCast (noop cast) to be inserted into the
 | |
|       // preheader in this case.
 | |
|       if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false)) {
 | |
|         // We want this constant emitted into the preheader! This is just
 | |
|         // using cast as a copy so BitCast (no-op cast) is appropriate
 | |
|         BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
 | |
|                                 PreInsertPt);       
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Emit the code to add the immediate offset to the Phi value, just before
 | |
|     // the instructions that we identified as using this stride and base.
 | |
|     do {
 | |
|       // FIXME: Use emitted users to emit other users.
 | |
|       BasedUser &User = UsersToProcess.back();
 | |
| 
 | |
|       DOUT << "    Examining ";
 | |
|       if (User.isUseOfPostIncrementedValue)
 | |
|         DOUT << "postinc";
 | |
|       else
 | |
|         DOUT << "preinc";
 | |
|       DOUT << " use ";
 | |
|       DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
 | |
|                            /*PrintType=*/false));
 | |
|       DOUT << " in Inst: " << *(User.Inst);
 | |
| 
 | |
|       // If this instruction wants to use the post-incremented value, move it
 | |
|       // after the post-inc and use its value instead of the PHI.
 | |
|       Value *RewriteOp = User.Phi;
 | |
|       if (User.isUseOfPostIncrementedValue) {
 | |
|         RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
 | |
|         // If this user is in the loop, make sure it is the last thing in the
 | |
|         // loop to ensure it is dominated by the increment. In case it's the
 | |
|         // only use of the iv, the increment instruction is already before the
 | |
|         // use.
 | |
|         if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
 | |
|           User.Inst->moveBefore(IVIncInsertPt);
 | |
|       }
 | |
| 
 | |
|       SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);
 | |
| 
 | |
|       if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
 | |
|           SE->getEffectiveSCEVType(ReplacedTy)) {
 | |
|         assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
 | |
|                SE->getTypeSizeInBits(ReplacedTy) &&
 | |
|                "Unexpected widening cast!");
 | |
|         RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
 | |
|       }
 | |
| 
 | |
|       // If we had to insert new instructions for RewriteOp, we have to
 | |
|       // consider that they may not have been able to end up immediately
 | |
|       // next to RewriteOp, because non-PHI instructions may never precede
 | |
|       // PHI instructions in a block. In this case, remember where the last
 | |
|       // instruction was inserted so that if we're replacing a different
 | |
|       // PHI node, we can use the later point to expand the final
 | |
|       // RewriteExpr.
 | |
|       Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
 | |
|       if (RewriteOp == User.Phi) NewBasePt = 0;
 | |
| 
 | |
|       // Clear the SCEVExpander's expression map so that we are guaranteed
 | |
|       // to have the code emitted where we expect it.
 | |
|       Rewriter.clear();
 | |
| 
 | |
|       // If we are reusing the iv, then it must be multiplied by a constant
 | |
|       // factor to take advantage of the addressing mode scale component.
 | |
|       if (!RewriteFactor->isZero()) {
 | |
|         // If we're reusing an IV with a nonzero base (currently this happens
 | |
|         // only when all reuses are outside the loop) subtract that base here.
 | |
|         // The base has been used to initialize the PHI node but we don't want
 | |
|         // it here.
 | |
|         if (!ReuseIV.Base->isZero()) {
 | |
|           SCEVHandle typedBase = ReuseIV.Base;
 | |
|           if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
 | |
|               SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
 | |
|             // It's possible the original IV is a larger type than the new IV,
 | |
|             // in which case we have to truncate the Base.  We checked in
 | |
|             // RequiresTypeConversion that this is valid.
 | |
|             assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
 | |
|                    SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
 | |
|                    "Unexpected lengthening conversion!");
 | |
|             typedBase = SE->getTruncateExpr(ReuseIV.Base, 
 | |
|                                             RewriteExpr->getType());
 | |
|           }
 | |
|           RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
 | |
|         }
 | |
| 
 | |
|         // Multiply old variable, with base removed, by new scale factor.
 | |
|         RewriteExpr = SE->getMulExpr(RewriteFactor,
 | |
|                                      RewriteExpr);
 | |
| 
 | |
|         // The common base is emitted in the loop preheader. But since we
 | |
|         // are reusing an IV, it has not been used to initialize the PHI node.
 | |
|         // Add it to the expression used to rewrite the uses.
 | |
|         // When this use is outside the loop, we earlier subtracted the
 | |
|         // common base, and are adding it back here.  Use the same expression
 | |
|         // as before, rather than CommonBaseV, so DAGCombiner will zap it.
 | |
|         if (!CommonExprs->isZero()) {
 | |
|           if (L->contains(User.Inst->getParent()))
 | |
|             RewriteExpr = SE->getAddExpr(RewriteExpr,
 | |
|                                        SE->getUnknown(CommonBaseV));
 | |
|           else
 | |
|             RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Now that we know what we need to do, insert code before User for the
 | |
|       // immediate and any loop-variant expressions.
 | |
|       if (BaseV)
 | |
|         // Add BaseV to the PHI value if needed.
 | |
|         RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
 | |
| 
 | |
|       User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
 | |
|                                           Rewriter, L, this, *LI,
 | |
|                                           DeadInsts);
 | |
| 
 | |
|       // Mark old value we replaced as possibly dead, so that it is eliminated
 | |
|       // if we just replaced the last use of that value.
 | |
|       DeadInsts.push_back(User.OperandValToReplace);
 | |
| 
 | |
|       UsersToProcess.pop_back();
 | |
|       ++NumReduced;
 | |
| 
 | |
|       // If there are any more users to process with the same base, process them
 | |
|       // now.  We sorted by base above, so we just have to check the last elt.
 | |
|     } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
 | |
|     // TODO: Next, find out which base index is the most common, pull it out.
 | |
|   }
 | |
| 
 | |
|   // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
 | |
|   // different starting values, into different PHIs.
 | |
| }
 | |
| 
 | |
| /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
 | |
| /// set the IV user and stride information and return true, otherwise return
 | |
| /// false.
 | |
| bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
 | |
|                                        const SCEVHandle *&CondStride) {
 | |
|   for (unsigned Stride = 0, e = IU->StrideOrder.size();
 | |
|        Stride != e && !CondUse; ++Stride) {
 | |
|     std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
 | |
|       IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
 | |
|     assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | |
| 
 | |
|     for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
 | |
|          E = SI->second->Users.end(); UI != E; ++UI)
 | |
|       if (UI->getUser() == Cond) {
 | |
|         // NOTE: we could handle setcc instructions with multiple uses here, but
 | |
|         // InstCombine does it as well for simple uses, it's not clear that it
 | |
|         // occurs enough in real life to handle.
 | |
|         CondUse = UI;
 | |
|         CondStride = &SI->first;
 | |
|         return true;
 | |
|       }
 | |
|   }
 | |
|   return false;
 | |
| }    
 | |
| 
 | |
| namespace {
 | |
|   // Constant strides come first which in turns are sorted by their absolute
 | |
|   // values. If absolute values are the same, then positive strides comes first.
 | |
|   // e.g.
 | |
|   // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
 | |
|   struct StrideCompare {
 | |
|     const ScalarEvolution *SE;
 | |
|     explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
 | |
| 
 | |
|     bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
 | |
|       const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
 | |
|       const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
 | |
|       if (LHSC && RHSC) {
 | |
|         int64_t  LV = LHSC->getValue()->getSExtValue();
 | |
|         int64_t  RV = RHSC->getValue()->getSExtValue();
 | |
|         uint64_t ALV = (LV < 0) ? -LV : LV;
 | |
|         uint64_t ARV = (RV < 0) ? -RV : RV;
 | |
|         if (ALV == ARV) {
 | |
|           if (LV != RV)
 | |
|             return LV > RV;
 | |
|         } else {
 | |
|           return ALV < ARV;
 | |
|         }
 | |
| 
 | |
|         // If it's the same value but different type, sort by bit width so
 | |
|         // that we emit larger induction variables before smaller
 | |
|         // ones, letting the smaller be re-written in terms of larger ones.
 | |
|         return SE->getTypeSizeInBits(RHS->getType()) <
 | |
|                SE->getTypeSizeInBits(LHS->getType());
 | |
|       }
 | |
|       return LHSC && !RHSC;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// ChangeCompareStride - If a loop termination compare instruction is the
 | |
| /// only use of its stride, and the compaison is against a constant value,
 | |
| /// try eliminate the stride by moving the compare instruction to another
 | |
| /// stride and change its constant operand accordingly. e.g.
 | |
| ///
 | |
| /// loop:
 | |
| /// ...
 | |
| /// v1 = v1 + 3
 | |
| /// v2 = v2 + 1
 | |
| /// if (v2 < 10) goto loop
 | |
| /// =>
 | |
| /// loop:
 | |
| /// ...
 | |
| /// v1 = v1 + 3
 | |
| /// if (v1 < 30) goto loop
 | |
| ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
 | |
|                                                 IVStrideUse* &CondUse,
 | |
|                                                 const SCEVHandle* &CondStride) {
 | |
|   // If there's only one stride in the loop, there's nothing to do here.
 | |
|   if (IU->StrideOrder.size() < 2)
 | |
|     return Cond;
 | |
|   // If there are other users of the condition's stride, don't bother
 | |
|   // trying to change the condition because the stride will still
 | |
|   // remain.
 | |
|   std::map<SCEVHandle, IVUsersOfOneStride *>::iterator I =
 | |
|     IU->IVUsesByStride.find(*CondStride);
 | |
|   if (I == IU->IVUsesByStride.end() ||
 | |
|       I->second->Users.size() != 1)
 | |
|     return Cond;
 | |
|   // Only handle constant strides for now.
 | |
|   const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
 | |
|   if (!SC) return Cond;
 | |
| 
 | |
|   ICmpInst::Predicate Predicate = Cond->getPredicate();
 | |
|   int64_t CmpSSInt = SC->getValue()->getSExtValue();
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
 | |
|   uint64_t SignBit = 1ULL << (BitWidth-1);
 | |
|   const Type *CmpTy = Cond->getOperand(0)->getType();
 | |
|   const Type *NewCmpTy = NULL;
 | |
|   unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
 | |
|   unsigned NewTyBits = 0;
 | |
|   SCEVHandle *NewStride = NULL;
 | |
|   Value *NewCmpLHS = NULL;
 | |
|   Value *NewCmpRHS = NULL;
 | |
|   int64_t Scale = 1;
 | |
|   SCEVHandle NewOffset = SE->getIntegerSCEV(0, CmpTy);
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
 | |
|     int64_t CmpVal = C->getValue().getSExtValue();
 | |
| 
 | |
|     // Check stride constant and the comparision constant signs to detect
 | |
|     // overflow.
 | |
|     if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
 | |
|       return Cond;
 | |
| 
 | |
|     // Look for a suitable stride / iv as replacement.
 | |
|     for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | |
|       std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
 | |
|         IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | |
|       if (!isa<SCEVConstant>(SI->first))
 | |
|         continue;
 | |
|       int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
 | |
|       if (SSInt == CmpSSInt ||
 | |
|           abs64(SSInt) < abs64(CmpSSInt) ||
 | |
|           (SSInt % CmpSSInt) != 0)
 | |
|         continue;
 | |
| 
 | |
|       Scale = SSInt / CmpSSInt;
 | |
|       int64_t NewCmpVal = CmpVal * Scale;
 | |
|       APInt Mul = APInt(BitWidth*2, CmpVal, true);
 | |
|       Mul = Mul * APInt(BitWidth*2, Scale, true);
 | |
|       // Check for overflow.
 | |
|       if (!Mul.isSignedIntN(BitWidth))
 | |
|         continue;
 | |
|       // Check for overflow in the stride's type too.
 | |
|       if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
 | |
|         continue;
 | |
| 
 | |
|       // Watch out for overflow.
 | |
|       if (ICmpInst::isSignedPredicate(Predicate) &&
 | |
|           (CmpVal & SignBit) != (NewCmpVal & SignBit))
 | |
|         continue;
 | |
| 
 | |
|       if (NewCmpVal == CmpVal)
 | |
|         continue;
 | |
|       // Pick the best iv to use trying to avoid a cast.
 | |
|       NewCmpLHS = NULL;
 | |
|       for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
 | |
|              E = SI->second->Users.end(); UI != E; ++UI) {
 | |
|         Value *Op = UI->getOperandValToReplace();
 | |
| 
 | |
|         // If the IVStrideUse implies a cast, check for an actual cast which
 | |
|         // can be used to find the original IV expression.
 | |
|         if (SE->getEffectiveSCEVType(Op->getType()) !=
 | |
|             SE->getEffectiveSCEVType(SI->first->getType())) {
 | |
|           CastInst *CI = dyn_cast<CastInst>(Op);
 | |
|           // If it's not a simple cast, it's complicated.
 | |
|           if (!CI)
 | |
|             continue;
 | |
|           // If it's a cast from a type other than the stride type,
 | |
|           // it's complicated.
 | |
|           if (CI->getOperand(0)->getType() != SI->first->getType())
 | |
|             continue;
 | |
|           // Ok, we found the IV expression in the stride's type.
 | |
|           Op = CI->getOperand(0);
 | |
|         }
 | |
| 
 | |
|         NewCmpLHS = Op;
 | |
|         if (NewCmpLHS->getType() == CmpTy)
 | |
|           break;
 | |
|       }
 | |
|       if (!NewCmpLHS)
 | |
|         continue;
 | |
| 
 | |
|       NewCmpTy = NewCmpLHS->getType();
 | |
|       NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
 | |
|       const Type *NewCmpIntTy = IntegerType::get(NewTyBits);
 | |
|       if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
 | |
|         // Check if it is possible to rewrite it using
 | |
|         // an iv / stride of a smaller integer type.
 | |
|         unsigned Bits = NewTyBits;
 | |
|         if (ICmpInst::isSignedPredicate(Predicate))
 | |
|           --Bits;
 | |
|         uint64_t Mask = (1ULL << Bits) - 1;
 | |
|         if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       // Don't rewrite if use offset is non-constant and the new type is
 | |
|       // of a different type.
 | |
|       // FIXME: too conservative?
 | |
|       if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
 | |
|         continue;
 | |
| 
 | |
|       bool AllUsesAreAddresses = true;
 | |
|       bool AllUsesAreOutsideLoop = true;
 | |
|       std::vector<BasedUser> UsersToProcess;
 | |
|       SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
 | |
|                                               AllUsesAreAddresses,
 | |
|                                               AllUsesAreOutsideLoop,
 | |
|                                               UsersToProcess);
 | |
|       // Avoid rewriting the compare instruction with an iv of new stride
 | |
|       // if it's likely the new stride uses will be rewritten using the
 | |
|       // stride of the compare instruction.
 | |
|       if (AllUsesAreAddresses &&
 | |
|           ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
 | |
|         continue;
 | |
| 
 | |
|       // If scale is negative, use swapped predicate unless it's testing
 | |
|       // for equality.
 | |
|       if (Scale < 0 && !Cond->isEquality())
 | |
|         Predicate = ICmpInst::getSwappedPredicate(Predicate);
 | |
| 
 | |
|       NewStride = &IU->StrideOrder[i];
 | |
|       if (!isa<PointerType>(NewCmpTy))
 | |
|         NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
 | |
|       else {
 | |
|         ConstantInt *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
 | |
|         NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
 | |
|       }
 | |
|       NewOffset = TyBits == NewTyBits
 | |
|         ? SE->getMulExpr(CondUse->getOffset(),
 | |
|                          SE->getConstant(ConstantInt::get(CmpTy, Scale)))
 | |
|         : SE->getConstant(ConstantInt::get(NewCmpIntTy,
 | |
|           cast<SCEVConstant>(CondUse->getOffset())->getValue()
 | |
|             ->getSExtValue()*Scale));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Forgo this transformation if it the increment happens to be
 | |
|   // unfortunately positioned after the condition, and the condition
 | |
|   // has multiple uses which prevent it from being moved immediately
 | |
|   // before the branch. See
 | |
|   // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
 | |
|   // for an example of this situation.
 | |
|   if (!Cond->hasOneUse()) {
 | |
|     for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
 | |
|          I != E; ++I)
 | |
|       if (I == NewCmpLHS)
 | |
|         return Cond;
 | |
|   }
 | |
| 
 | |
|   if (NewCmpRHS) {
 | |
|     // Create a new compare instruction using new stride / iv.
 | |
|     ICmpInst *OldCond = Cond;
 | |
|     // Insert new compare instruction.
 | |
|     Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
 | |
|                         L->getHeader()->getName() + ".termcond",
 | |
|                         OldCond);
 | |
| 
 | |
|     // Remove the old compare instruction. The old indvar is probably dead too.
 | |
|     DeadInsts.push_back(CondUse->getOperandValToReplace());
 | |
|     OldCond->replaceAllUsesWith(Cond);
 | |
|     OldCond->eraseFromParent();
 | |
| 
 | |
|     IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS, false);
 | |
|     CondUse = &IU->IVUsesByStride[*NewStride]->Users.back();
 | |
|     CondStride = NewStride;
 | |
|     ++NumEliminated;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Cond;
 | |
| }
 | |
| 
 | |
| /// OptimizeSMax - Rewrite the loop's terminating condition if it uses
 | |
| /// an smax computation.
 | |
| ///
 | |
| /// This is a narrow solution to a specific, but acute, problem. For loops
 | |
| /// like this:
 | |
| ///
 | |
| ///   i = 0;
 | |
| ///   do {
 | |
| ///     p[i] = 0.0;
 | |
| ///   } while (++i < n);
 | |
| ///
 | |
| /// where the comparison is signed, the trip count isn't just 'n', because
 | |
| /// 'n' could be negative. And unfortunately this can come up even for loops
 | |
| /// where the user didn't use a C do-while loop. For example, seemingly
 | |
| /// well-behaved top-test loops will commonly be lowered like this:
 | |
| //
 | |
| ///   if (n > 0) {
 | |
| ///     i = 0;
 | |
| ///     do {
 | |
| ///       p[i] = 0.0;
 | |
| ///     } while (++i < n);
 | |
| ///   }
 | |
| ///
 | |
| /// and then it's possible for subsequent optimization to obscure the if
 | |
| /// test in such a way that indvars can't find it.
 | |
| ///
 | |
| /// When indvars can't find the if test in loops like this, it creates a
 | |
| /// signed-max expression, which allows it to give the loop a canonical
 | |
| /// induction variable:
 | |
| ///
 | |
| ///   i = 0;
 | |
| ///   smax = n < 1 ? 1 : n;
 | |
| ///   do {
 | |
| ///     p[i] = 0.0;
 | |
| ///   } while (++i != smax);
 | |
| ///
 | |
| /// Canonical induction variables are necessary because the loop passes
 | |
| /// are designed around them. The most obvious example of this is the
 | |
| /// LoopInfo analysis, which doesn't remember trip count values. It
 | |
| /// expects to be able to rediscover the trip count each time it is
 | |
| /// needed, and it does this using a simple analyis that only succeeds if
 | |
| /// the loop has a canonical induction variable.
 | |
| ///
 | |
| /// However, when it comes time to generate code, the maximum operation
 | |
| /// can be quite costly, especially if it's inside of an outer loop.
 | |
| ///
 | |
| /// This function solves this problem by detecting this type of loop and
 | |
| /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
 | |
| /// the instructions for the maximum computation.
 | |
| ///
 | |
| ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
 | |
|                                            IVStrideUse* &CondUse) {
 | |
|   // Check that the loop matches the pattern we're looking for.
 | |
|   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
 | |
|       Cond->getPredicate() != CmpInst::ICMP_NE)
 | |
|     return Cond;
 | |
| 
 | |
|   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
 | |
|   if (!Sel || !Sel->hasOneUse()) return Cond;
 | |
| 
 | |
|   SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
|   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | |
|     return Cond;
 | |
|   SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
 | |
| 
 | |
|   // Add one to the backedge-taken count to get the trip count.
 | |
|   SCEVHandle IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
 | |
| 
 | |
|   // Check for a max calculation that matches the pattern.
 | |
|   const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
 | |
|   if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
 | |
| 
 | |
|   SCEVHandle SMaxLHS = SMax->getOperand(0);
 | |
|   SCEVHandle SMaxRHS = SMax->getOperand(1);
 | |
|   if (!SMaxLHS || SMaxLHS != One) return Cond;
 | |
| 
 | |
|   // Check the relevant induction variable for conformance to
 | |
|   // the pattern.
 | |
|   SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
 | |
|   if (!AR || !AR->isAffine() ||
 | |
|       AR->getStart() != One ||
 | |
|       AR->getStepRecurrence(*SE) != One)
 | |
|     return Cond;
 | |
| 
 | |
|   assert(AR->getLoop() == L &&
 | |
|          "Loop condition operand is an addrec in a different loop!");
 | |
| 
 | |
|   // Check the right operand of the select, and remember it, as it will
 | |
|   // be used in the new comparison instruction.
 | |
|   Value *NewRHS = 0;
 | |
|   if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
 | |
|     NewRHS = Sel->getOperand(1);
 | |
|   else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
 | |
|     NewRHS = Sel->getOperand(2);
 | |
|   if (!NewRHS) return Cond;
 | |
| 
 | |
|   // Ok, everything looks ok to change the condition into an SLT or SGE and
 | |
|   // delete the max calculation.
 | |
|   ICmpInst *NewCond =
 | |
|     new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
 | |
|                    CmpInst::ICMP_SLT :
 | |
|                    CmpInst::ICMP_SGE,
 | |
|                  Cond->getOperand(0), NewRHS, "scmp", Cond);
 | |
| 
 | |
|   // Delete the max calculation instructions.
 | |
|   Cond->replaceAllUsesWith(NewCond);
 | |
|   CondUse->setUser(NewCond);
 | |
|   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
 | |
|   Cond->eraseFromParent();
 | |
|   Sel->eraseFromParent();
 | |
|   if (Cmp->use_empty())
 | |
|     Cmp->eraseFromParent();
 | |
|   return NewCond;
 | |
| }
 | |
| 
 | |
| /// OptimizeShadowIV - If IV is used in a int-to-float cast
 | |
| /// inside the loop then try to eliminate the cast opeation.
 | |
| void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
 | |
| 
 | |
|   SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
|   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | |
|     return;
 | |
| 
 | |
|   for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
 | |
|        ++Stride) {
 | |
|     std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
 | |
|       IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
 | |
|     assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | |
|     if (!isa<SCEVConstant>(SI->first))
 | |
|       continue;
 | |
| 
 | |
|     for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
 | |
|            E = SI->second->Users.end(); UI != E; /* empty */) {
 | |
|       ilist<IVStrideUse>::iterator CandidateUI = UI;
 | |
|       ++UI;
 | |
|       Instruction *ShadowUse = CandidateUI->getUser();
 | |
|       const Type *DestTy = NULL;
 | |
| 
 | |
|       /* If shadow use is a int->float cast then insert a second IV
 | |
|          to eliminate this cast.
 | |
| 
 | |
|            for (unsigned i = 0; i < n; ++i) 
 | |
|              foo((double)i);
 | |
| 
 | |
|          is transformed into
 | |
| 
 | |
|            double d = 0.0;
 | |
|            for (unsigned i = 0; i < n; ++i, ++d) 
 | |
|              foo(d);
 | |
|       */
 | |
|       if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
 | |
|         DestTy = UCast->getDestTy();
 | |
|       else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
 | |
|         DestTy = SCast->getDestTy();
 | |
|       if (!DestTy) continue;
 | |
| 
 | |
|       if (TLI) {
 | |
|         // If target does not support DestTy natively then do not apply
 | |
|         // this transformation.
 | |
|         MVT DVT = TLI->getValueType(DestTy);
 | |
|         if (!TLI->isTypeLegal(DVT)) continue;
 | |
|       }
 | |
| 
 | |
|       PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
 | |
|       if (!PH) continue;
 | |
|       if (PH->getNumIncomingValues() != 2) continue;
 | |
| 
 | |
|       const Type *SrcTy = PH->getType();
 | |
|       int Mantissa = DestTy->getFPMantissaWidth();
 | |
|       if (Mantissa == -1) continue; 
 | |
|       if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
 | |
|         continue;
 | |
| 
 | |
|       unsigned Entry, Latch;
 | |
|       if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
 | |
|         Entry = 0;
 | |
|         Latch = 1;
 | |
|       } else {
 | |
|         Entry = 1;
 | |
|         Latch = 0;
 | |
|       }
 | |
|         
 | |
|       ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
 | |
|       if (!Init) continue;
 | |
|       ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
 | |
| 
 | |
|       BinaryOperator *Incr = 
 | |
|         dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
 | |
|       if (!Incr) continue;
 | |
|       if (Incr->getOpcode() != Instruction::Add
 | |
|           && Incr->getOpcode() != Instruction::Sub)
 | |
|         continue;
 | |
| 
 | |
|       /* Initialize new IV, double d = 0.0 in above example. */
 | |
|       ConstantInt *C = NULL;
 | |
|       if (Incr->getOperand(0) == PH)
 | |
|         C = dyn_cast<ConstantInt>(Incr->getOperand(1));
 | |
|       else if (Incr->getOperand(1) == PH)
 | |
|         C = dyn_cast<ConstantInt>(Incr->getOperand(0));
 | |
|       else
 | |
|         continue;
 | |
| 
 | |
|       if (!C) continue;
 | |
| 
 | |
|       /* Add new PHINode. */
 | |
|       PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
 | |
| 
 | |
|       /* create new increment. '++d' in above example. */
 | |
|       ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
 | |
|       BinaryOperator *NewIncr = 
 | |
|         BinaryOperator::Create(Incr->getOpcode(),
 | |
|                                NewPH, CFP, "IV.S.next.", Incr);
 | |
| 
 | |
|       NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
 | |
|       NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
 | |
| 
 | |
|       /* Remove cast operation */
 | |
|       ShadowUse->replaceAllUsesWith(NewPH);
 | |
|       ShadowUse->eraseFromParent();
 | |
|       NumShadow++;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
 | |
| // uses in the loop, look to see if we can eliminate some, in favor of using
 | |
| // common indvars for the different uses.
 | |
| void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
 | |
|   // TODO: implement optzns here.
 | |
| 
 | |
|   OptimizeShadowIV(L);
 | |
| }
 | |
| 
 | |
| /// OptimizeLoopTermCond - Change loop terminating condition to use the 
 | |
| /// postinc iv when possible.
 | |
| void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
 | |
|   // Finally, get the terminating condition for the loop if possible.  If we
 | |
|   // can, we want to change it to use a post-incremented version of its
 | |
|   // induction variable, to allow coalescing the live ranges for the IV into
 | |
|   // one register value.
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   BasicBlock *ExitBlock = L->getExitingBlock();
 | |
|   if (!ExitBlock)
 | |
|     // Multiple exits, just look at the exit in the latch block if there is one.
 | |
|     ExitBlock = LatchBlock;
 | |
|   BranchInst *TermBr = dyn_cast<BranchInst>(ExitBlock->getTerminator());
 | |
|   if (!TermBr)
 | |
|     return;
 | |
|   if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
 | |
|     return;
 | |
| 
 | |
|   // Search IVUsesByStride to find Cond's IVUse if there is one.
 | |
|   IVStrideUse *CondUse = 0;
 | |
|   const SCEVHandle *CondStride = 0;
 | |
|   ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
 | |
|   if (!FindIVUserForCond(Cond, CondUse, CondStride))
 | |
|     return; // setcc doesn't use the IV.
 | |
| 
 | |
|   if (ExitBlock != LatchBlock) {
 | |
|     if (!Cond->hasOneUse())
 | |
|       // See below, we don't want the condition to be cloned.
 | |
|       return;
 | |
| 
 | |
|     // If exiting block is the latch block, we know it's safe and profitable to
 | |
|     // transform the icmp to use post-inc iv. Otherwise do so only if it would
 | |
|     // not reuse another iv and its iv would be reused by other uses. We are
 | |
|     // optimizing for the case where the icmp is the only use of the iv.
 | |
|     IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride];
 | |
|     for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
 | |
|          E = StrideUses.Users.end(); I != E; ++I) {
 | |
|       if (I->getUser() == Cond)
 | |
|         continue;
 | |
|       if (!I->isUseOfPostIncrementedValue())
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // FIXME: This is expensive, and worse still ChangeCompareStride does a
 | |
|     // similar check. Can we perform all the icmp related transformations after
 | |
|     // StrengthReduceStridedIVUsers?
 | |
|     if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) {
 | |
|       int64_t SInt = SC->getValue()->getSExtValue();
 | |
|       for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
 | |
|            ++NewStride) {
 | |
|         std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
 | |
|           IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
 | |
|         if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
 | |
|           continue;
 | |
|         int64_t SSInt =
 | |
|           cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
 | |
|         if (SSInt == SInt)
 | |
|           return; // This can definitely be reused.
 | |
|         if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
 | |
|           continue;
 | |
|         int64_t Scale = SSInt / SInt;
 | |
|         bool AllUsesAreAddresses = true;
 | |
|         bool AllUsesAreOutsideLoop = true;
 | |
|         std::vector<BasedUser> UsersToProcess;
 | |
|         SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
 | |
|                                                 AllUsesAreAddresses,
 | |
|                                                 AllUsesAreOutsideLoop,
 | |
|                                                 UsersToProcess);
 | |
|         // Avoid rewriting the compare instruction with an iv of new stride
 | |
|         // if it's likely the new stride uses will be rewritten using the
 | |
|         // stride of the compare instruction.
 | |
|         if (AllUsesAreAddresses &&
 | |
|             ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
 | |
|           return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     StrideNoReuse.insert(*CondStride);
 | |
|   }
 | |
| 
 | |
|   // If the trip count is computed in terms of an smax (due to ScalarEvolution
 | |
|   // being unable to find a sufficient guard, for example), change the loop
 | |
|   // comparison to use SLT instead of NE.
 | |
|   Cond = OptimizeSMax(L, Cond, CondUse);
 | |
| 
 | |
|   // If possible, change stride and operands of the compare instruction to
 | |
|   // eliminate one stride.
 | |
|   if (ExitBlock == LatchBlock)
 | |
|     Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
 | |
| 
 | |
|   // It's possible for the setcc instruction to be anywhere in the loop, and
 | |
|   // possible for it to have multiple users.  If it is not immediately before
 | |
|   // the latch block branch, move it.
 | |
|   if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
 | |
|     if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
 | |
|       Cond->moveBefore(TermBr);
 | |
|     } else {
 | |
|       // Otherwise, clone the terminating condition and insert into the loopend.
 | |
|       Cond = cast<ICmpInst>(Cond->clone());
 | |
|       Cond->setName(L->getHeader()->getName() + ".termcond");
 | |
|       LatchBlock->getInstList().insert(TermBr, Cond);
 | |
|       
 | |
|       // Clone the IVUse, as the old use still exists!
 | |
|       IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond,
 | |
|                                               CondUse->getOperandValToReplace(),
 | |
|                                                false);
 | |
|       CondUse = &IU->IVUsesByStride[*CondStride]->Users.back();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we get to here, we know that we can transform the setcc instruction to
 | |
|   // use the post-incremented version of the IV, allowing us to coalesce the
 | |
|   // live ranges for the IV correctly.
 | |
|   CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride));
 | |
|   CondUse->setIsUseOfPostIncrementedValue(true);
 | |
|   Changed = true;
 | |
| 
 | |
|   ++NumLoopCond;
 | |
| }
 | |
| 
 | |
| // OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
 | |
| // when to exit the loop is used only for that purpose, try to rearrange things
 | |
| // so it counts down to a test against zero.
 | |
| void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
 | |
| 
 | |
|   // If the number of times the loop is executed isn't computable, give up.
 | |
|   SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
|   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | |
|     return;
 | |
| 
 | |
|   // Get the terminating condition for the loop if possible (this isn't
 | |
|   // necessarily in the latch, or a block that's a predecessor of the header).
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1) return;
 | |
| 
 | |
|   // Okay, there is one exit block.  Try to find the condition that causes the
 | |
|   // loop to be exited.
 | |
|   BasicBlock *ExitBlock = ExitBlocks[0];
 | |
| 
 | |
|   BasicBlock *ExitingBlock = 0;
 | |
|   for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
 | |
|        PI != E; ++PI)
 | |
|     if (L->contains(*PI)) {
 | |
|       if (ExitingBlock == 0)
 | |
|         ExitingBlock = *PI;
 | |
|       else
 | |
|         return; // More than one block exiting!
 | |
|     }
 | |
|   assert(ExitingBlock && "No exits from loop, something is broken!");
 | |
| 
 | |
|   // Okay, we've computed the exiting block.  See what condition causes us to
 | |
|   // exit.
 | |
|   //
 | |
|   // FIXME: we should be able to handle switch instructions (with a single exit)
 | |
|   BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | |
|   if (TermBr == 0) return;
 | |
|   assert(TermBr->isConditional() && "If unconditional, it can't be in loop!");
 | |
|   if (!isa<ICmpInst>(TermBr->getCondition()))
 | |
|     return;
 | |
|   ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
 | |
| 
 | |
|   // Handle only tests for equality for the moment, and only stride 1.
 | |
|   if (Cond->getPredicate() != CmpInst::ICMP_EQ)
 | |
|     return;
 | |
|   SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
 | |
|   SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
 | |
|   if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One)
 | |
|     return;
 | |
|   // If the RHS of the comparison is defined inside the loop, the rewrite
 | |
|   // cannot be done.
 | |
|   if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1)))
 | |
|     if (L->contains(CR->getParent()))
 | |
|       return;
 | |
| 
 | |
|   // Make sure the IV is only used for counting.  Value may be preinc or
 | |
|   // postinc; 2 uses in either case.
 | |
|   if (!Cond->getOperand(0)->hasNUses(2))
 | |
|     return;
 | |
|   PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0));
 | |
|   Instruction *incr;
 | |
|   if (phi && phi->getParent()==L->getHeader()) {
 | |
|     // value tested is preinc.  Find the increment.
 | |
|     // A CmpInst is not a BinaryOperator; we depend on this.
 | |
|     Instruction::use_iterator UI = phi->use_begin();
 | |
|     incr = dyn_cast<BinaryOperator>(UI);
 | |
|     if (!incr)
 | |
|       incr = dyn_cast<BinaryOperator>(++UI);
 | |
|     // 1 use for postinc value, the phi.  Unnecessarily conservative?
 | |
|     if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add)
 | |
|       return;
 | |
|   } else {
 | |
|     // Value tested is postinc.  Find the phi node.
 | |
|     incr = dyn_cast<BinaryOperator>(Cond->getOperand(0));
 | |
|     if (!incr || incr->getOpcode()!=Instruction::Add)
 | |
|       return;
 | |
| 
 | |
|     Instruction::use_iterator UI = Cond->getOperand(0)->use_begin();
 | |
|     phi = dyn_cast<PHINode>(UI);
 | |
|     if (!phi)
 | |
|       phi = dyn_cast<PHINode>(++UI);
 | |
|     // 1 use for preinc value, the increment.
 | |
|     if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Replace the increment with a decrement.
 | |
|   BinaryOperator *decr = 
 | |
|     BinaryOperator::Create(Instruction::Sub, incr->getOperand(0),
 | |
|                            incr->getOperand(1), "tmp", incr);
 | |
|   incr->replaceAllUsesWith(decr);
 | |
|   incr->eraseFromParent();
 | |
| 
 | |
|   // Substitute endval-startval for the original startval, and 0 for the
 | |
|   // original endval.  Since we're only testing for equality this is OK even 
 | |
|   // if the computation wraps around.
 | |
|   BasicBlock  *Preheader = L->getLoopPreheader();
 | |
|   Instruction *PreInsertPt = Preheader->getTerminator();
 | |
|   int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0;
 | |
|   Value *startVal = phi->getIncomingValue(inBlock);
 | |
|   Value *endVal = Cond->getOperand(1);
 | |
|   // FIXME check for case where both are constant
 | |
|   ConstantInt* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
 | |
|   BinaryOperator *NewStartVal = 
 | |
|     BinaryOperator::Create(Instruction::Sub, endVal, startVal,
 | |
|                            "tmp", PreInsertPt);
 | |
|   phi->setIncomingValue(inBlock, NewStartVal);
 | |
|   Cond->setOperand(1, Zero);
 | |
| 
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
| 
 | |
|   IU = &getAnalysis<IVUsers>();
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   Changed = false;
 | |
| 
 | |
|   if (!IU->IVUsesByStride.empty()) {
 | |
| #ifndef NDEBUG
 | |
|     DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
 | |
|          << "\" ";
 | |
|     DEBUG(L->dump());
 | |
| #endif
 | |
| 
 | |
|     // Sort the StrideOrder so we process larger strides first.
 | |
|     std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
 | |
|                      StrideCompare(SE));
 | |
| 
 | |
|     // Optimize induction variables.  Some indvar uses can be transformed to use
 | |
|     // strides that will be needed for other purposes.  A common example of this
 | |
|     // is the exit test for the loop, which can often be rewritten to use the
 | |
|     // computation of some other indvar to decide when to terminate the loop.
 | |
|     OptimizeIndvars(L);
 | |
| 
 | |
|     // Change loop terminating condition to use the postinc iv when possible
 | |
|     // and optimize loop terminating compare. FIXME: Move this after
 | |
|     // StrengthReduceStridedIVUsers?
 | |
|     OptimizeLoopTermCond(L);
 | |
| 
 | |
|     // FIXME: We can shrink overlarge IV's here.  e.g. if the code has
 | |
|     // computation in i64 values and the target doesn't support i64, demote
 | |
|     // the computation to 32-bit if safe.
 | |
| 
 | |
|     // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
 | |
|     // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
 | |
|     // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
 | |
|     // Need to be careful that IV's are all the same type.  Only works for
 | |
|     // intptr_t indvars.
 | |
| 
 | |
|     // IVsByStride keeps IVs for one particular loop.
 | |
|     assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
 | |
| 
 | |
|     // Note: this processes each stride/type pair individually.  All users
 | |
|     // passed into StrengthReduceStridedIVUsers have the same type AND stride.
 | |
|     // Also, note that we iterate over IVUsesByStride indirectly by using
 | |
|     // StrideOrder. This extra layer of indirection makes the ordering of
 | |
|     // strides deterministic - not dependent on map order.
 | |
|     for (unsigned Stride = 0, e = IU->StrideOrder.size();
 | |
|          Stride != e; ++Stride) {
 | |
|       std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
 | |
|         IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
 | |
|       assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | |
|       // FIXME: Generalize to non-affine IV's.
 | |
|       if (!SI->first->isLoopInvariant(L))
 | |
|         continue;
 | |
|       StrengthReduceStridedIVUsers(SI->first, *SI->second, L);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // After all sharing is done, see if we can adjust the loop to test against
 | |
|   // zero instead of counting up to a maximum.  This is usually faster.
 | |
|   OptimizeLoopCountIV(L);
 | |
| 
 | |
|   // We're done analyzing this loop; release all the state we built up for it.
 | |
|   IVsByStride.clear();
 | |
|   StrideNoReuse.clear();
 | |
| 
 | |
|   // Clean up after ourselves
 | |
|   if (!DeadInsts.empty())
 | |
|     DeleteTriviallyDeadInstructions();
 | |
| 
 | |
|   // At this point, it is worth checking to see if any recurrence PHIs are also
 | |
|   // dead, so that we can remove them as well.
 | |
|   DeleteDeadPHIs(L->getHeader());
 | |
| 
 | |
|   return Changed;
 | |
| }
 |