mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110460 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			434 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			434 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===------------------- SSI.cpp - Creates SSI Representation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass converts a list of variables to the Static Single Information
 | |
| // form. This is a program representation described by Scott Ananian in his
 | |
| // Master Thesis: "The Static Single Information Form (1999)".
 | |
| // We are building an on-demand representation, that is, we do not convert
 | |
| // every single variable in the target function to SSI form. Rather, we receive
 | |
| // a list of target variables that must be converted. We also do not
 | |
| // completely convert a target variable to the SSI format. Instead, we only
 | |
| // change the variable in the points where new information can be attached
 | |
| // to its live range, that is, at branch points.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ssi"
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/SSI.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static const std::string SSI_PHI = "SSI_phi";
 | |
| static const std::string SSI_SIG = "SSI_sigma";
 | |
| 
 | |
| STATISTIC(NumSigmaInserted, "Number of sigma functions inserted");
 | |
| STATISTIC(NumPhiInserted, "Number of phi functions inserted");
 | |
| 
 | |
| void SSI::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequiredTransitive<DominanceFrontier>();
 | |
|   AU.addRequiredTransitive<DominatorTree>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| bool SSI::runOnFunction(Function &F) {
 | |
|   DT_ = &getAnalysis<DominatorTree>();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// This methods creates the SSI representation for the list of values
 | |
| /// received. It will only create SSI representation if a value is used
 | |
| /// to decide a branch. Repeated values are created only once.
 | |
| ///
 | |
| void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
 | |
|   init(value);
 | |
| 
 | |
|   SmallPtrSet<Instruction*, 4> needConstruction;
 | |
|   for (SmallVectorImpl<Instruction*>::iterator I = value.begin(),
 | |
|        E = value.end(); I != E; ++I)
 | |
|     if (created.insert(*I))
 | |
|       needConstruction.insert(*I);
 | |
| 
 | |
|   insertSigmaFunctions(needConstruction);
 | |
| 
 | |
|   // Test if there is a need to transform to SSI
 | |
|   if (!needConstruction.empty()) {
 | |
|     insertPhiFunctions(needConstruction);
 | |
|     renameInit(needConstruction);
 | |
|     rename(DT_->getRoot());
 | |
|     fixPhis();
 | |
|   }
 | |
| 
 | |
|   clean();
 | |
| }
 | |
| 
 | |
| /// Insert sigma functions (a sigma function is a phi function with one
 | |
| /// operator)
 | |
| ///
 | |
| void SSI::insertSigmaFunctions(SmallPtrSet<Instruction*, 4> &value) {
 | |
|   for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
 | |
|        E = value.end(); I != E; ++I) {
 | |
|     for (Value::use_iterator begin = (*I)->use_begin(),
 | |
|          end = (*I)->use_end(); begin != end; ++begin) {
 | |
|       // Test if the Use of the Value is in a comparator
 | |
|       if (CmpInst *CI = dyn_cast<CmpInst>(*begin)) {
 | |
|         // Iterates through all uses of CmpInst
 | |
|         for (Value::use_iterator begin_ci = CI->use_begin(),
 | |
|              end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) {
 | |
|           // Test if any use of CmpInst is in a Terminator
 | |
|           if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*begin_ci)) {
 | |
|             insertSigma(TI, *I);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Inserts Sigma Functions in every BasicBlock successor to Terminator
 | |
| /// Instruction TI. All inserted Sigma Function are related to Instruction I.
 | |
| ///
 | |
| void SSI::insertSigma(TerminatorInst *TI, Instruction *I) {
 | |
|   // Basic Block of the Terminator Instruction
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
 | |
|     // Next Basic Block
 | |
|     BasicBlock *BB_next = TI->getSuccessor(i);
 | |
|     if (BB_next != BB &&
 | |
|         BB_next->getSinglePredecessor() != NULL &&
 | |
|         dominateAny(BB_next, I)) {
 | |
|       PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin());
 | |
|       PN->addIncoming(I, BB);
 | |
|       sigmas[PN] = I;
 | |
|       created.insert(PN);
 | |
|       defsites[I].push_back(BB_next);
 | |
|       ++NumSigmaInserted;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Insert phi functions when necessary
 | |
| ///
 | |
| void SSI::insertPhiFunctions(SmallPtrSet<Instruction*, 4> &value) {
 | |
|   DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
 | |
|   for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
 | |
|        E = value.end(); I != E; ++I) {
 | |
|     // Test if there were any sigmas for this variable
 | |
|     SmallPtrSet<BasicBlock *, 16> BB_visited;
 | |
| 
 | |
|     // Insert phi functions if there is any sigma function
 | |
|     while (!defsites[*I].empty()) {
 | |
| 
 | |
|       BasicBlock *BB = defsites[*I].back();
 | |
| 
 | |
|       defsites[*I].pop_back();
 | |
|       DominanceFrontier::iterator DF_BB = DF->find(BB);
 | |
| 
 | |
|       // The BB is unreachable. Skip it.
 | |
|       if (DF_BB == DF->end())
 | |
|         continue; 
 | |
| 
 | |
|       // Iterates through all the dominance frontier of BB
 | |
|       for (std::set<BasicBlock *>::iterator DF_BB_begin =
 | |
|            DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
 | |
|            DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
 | |
|         BasicBlock *BB_dominated = *DF_BB_begin;
 | |
| 
 | |
|         // Test if has not yet visited this node and if the
 | |
|         // original definition dominates this node
 | |
|         if (BB_visited.insert(BB_dominated) &&
 | |
|             DT_->properlyDominates(value_original[*I], BB_dominated) &&
 | |
|             dominateAny(BB_dominated, *I)) {
 | |
|           PHINode *PN = PHINode::Create(
 | |
|               (*I)->getType(), SSI_PHI, BB_dominated->begin());
 | |
|           phis.insert(std::make_pair(PN, *I));
 | |
|           created.insert(PN);
 | |
| 
 | |
|           defsites[*I].push_back(BB_dominated);
 | |
|           ++NumPhiInserted;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     BB_visited.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Some initialization for the rename part
 | |
| ///
 | |
| void SSI::renameInit(SmallPtrSet<Instruction*, 4> &value) {
 | |
|   for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
 | |
|        E = value.end(); I != E; ++I)
 | |
|     value_stack[*I].push_back(*I);
 | |
| }
 | |
| 
 | |
| /// Renames all variables in the specified BasicBlock.
 | |
| /// Only variables that need to be rename will be.
 | |
| ///
 | |
| void SSI::rename(BasicBlock *BB) {
 | |
|   SmallPtrSet<Instruction*, 8> defined;
 | |
| 
 | |
|   // Iterate through instructions and make appropriate renaming.
 | |
|   // For SSI_PHI (b = PHI()), store b at value_stack as a new
 | |
|   // definition of the variable it represents.
 | |
|   // For SSI_SIG (b = PHI(a)), substitute a with the current
 | |
|   // value of a, present in the value_stack.
 | |
|   // Then store bin the value_stack as the new definition of a.
 | |
|   // For all other instructions (b = OP(a, c, d, ...)), we need to substitute
 | |
|   // all operands with its current value, present in value_stack.
 | |
|   for (BasicBlock::iterator begin = BB->begin(), end = BB->end();
 | |
|        begin != end; ++begin) {
 | |
|     Instruction *I = begin;
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions
 | |
|       Instruction* position;
 | |
| 
 | |
|       // Treat SSI_PHI
 | |
|       if ((position = getPositionPhi(PN))) {
 | |
|         value_stack[position].push_back(PN);
 | |
|         defined.insert(position);
 | |
|       // Treat SSI_SIG
 | |
|       } else if ((position = getPositionSigma(PN))) {
 | |
|         substituteUse(I);
 | |
|         value_stack[position].push_back(PN);
 | |
|         defined.insert(position);
 | |
|       }
 | |
| 
 | |
|       // Treat all other PHI functions
 | |
|       else {
 | |
|         substituteUse(I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Treat all other functions
 | |
|     else {
 | |
|       substituteUse(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This loop iterates in all BasicBlocks that are successors of the current
 | |
|   // BasicBlock. For each SSI_PHI instruction found, insert an operand.
 | |
|   // This operand is the current operand in value_stack for the variable
 | |
|   // in "position". And the BasicBlock this operand represents is the current
 | |
|   // BasicBlock.
 | |
|   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
 | |
|     BasicBlock *BB_succ = *SI;
 | |
| 
 | |
|     for (BasicBlock::iterator begin = BB_succ->begin(),
 | |
|          notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) {
 | |
|       Instruction *I = begin;
 | |
|       PHINode *PN = dyn_cast<PHINode>(I);
 | |
|       Instruction* position;
 | |
|       if (PN && ((position = getPositionPhi(PN)))) {
 | |
|         PN->addIncoming(value_stack[position].back(), BB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This loop calls rename on all children from this block. This time children
 | |
|   // refers to a successor block in the dominance tree.
 | |
|   DomTreeNode *DTN = DT_->getNode(BB);
 | |
|   for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end();
 | |
|        begin != end; ++begin) {
 | |
|     DomTreeNodeBase<BasicBlock> *DTN_children = *begin;
 | |
|     BasicBlock *BB_children = DTN_children->getBlock();
 | |
|     rename(BB_children);
 | |
|   }
 | |
| 
 | |
|   // Now we remove all inserted definitions of a variable from the top of
 | |
|   // the stack leaving the previous one as the top.
 | |
|   for (SmallPtrSet<Instruction*, 8>::iterator DI = defined.begin(),
 | |
|        DE = defined.end(); DI != DE; ++DI)
 | |
|     value_stack[*DI].pop_back();
 | |
| }
 | |
| 
 | |
| /// Substitute any use in this instruction for the last definition of
 | |
| /// the variable
 | |
| ///
 | |
| void SSI::substituteUse(Instruction *I) {
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
 | |
|     Value *operand = I->getOperand(i);
 | |
|     for (DenseMap<Instruction*, SmallVector<Instruction*, 1> >::iterator
 | |
|          VI = value_stack.begin(), VE = value_stack.end(); VI != VE; ++VI) {
 | |
|       if (operand == VI->second.front() &&
 | |
|           I != VI->second.back()) {
 | |
|         PHINode *PN_I = dyn_cast<PHINode>(I);
 | |
|         PHINode *PN_vs = dyn_cast<PHINode>(VI->second.back());
 | |
| 
 | |
|         // If a phi created in a BasicBlock is used as an operand of another
 | |
|         // created in the same BasicBlock, this step marks this second phi,
 | |
|         // to fix this issue later. It cannot be fixed now, because the
 | |
|         // operands of the first phi are not final yet.
 | |
|         if (PN_I && PN_vs &&
 | |
|             VI->second.back()->getParent() == I->getParent()) {
 | |
| 
 | |
|           phisToFix.insert(PN_I);
 | |
|         }
 | |
| 
 | |
|         I->setOperand(i, VI->second.back());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Test if the BasicBlock BB dominates any use or definition of value.
 | |
| /// If it dominates a phi instruction that is on the same BasicBlock,
 | |
| /// that does not count.
 | |
| ///
 | |
| bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
 | |
|   for (Value::use_iterator begin = value->use_begin(),
 | |
|        end = value->use_end(); begin != end; ++begin) {
 | |
|     Instruction *I = cast<Instruction>(*begin);
 | |
|     BasicBlock *BB_father = I->getParent();
 | |
|     if (BB == BB_father && isa<PHINode>(I))
 | |
|       continue;
 | |
|     if (DT_->dominates(BB, BB_father)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// When there is a phi node that is created in a BasicBlock and it is used
 | |
| /// as an operand of another phi function used in the same BasicBlock,
 | |
| /// LLVM looks this as an error. So on the second phi, the first phi is called
 | |
| /// P and the BasicBlock it incomes is B. This P will be replaced by the value
 | |
| /// it has for BasicBlock B. It also includes undef values for predecessors
 | |
| /// that were not included in the phi.
 | |
| ///
 | |
| void SSI::fixPhis() {
 | |
|   for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(),
 | |
|        end = phisToFix.end(); begin != end; ++begin) {
 | |
|     PHINode *PN = *begin;
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
 | |
|       PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i));
 | |
|       if (PN_father && PN->getParent() == PN_father->getParent() &&
 | |
|           !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) {
 | |
|         BasicBlock *BB = PN->getIncomingBlock(i);
 | |
|         int pos = PN_father->getBasicBlockIndex(BB);
 | |
|         PN->setIncomingValue(i, PN_father->getIncomingValue(pos));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (DenseMapIterator<PHINode *, Instruction*> begin = phis.begin(),
 | |
|        end = phis.end(); begin != end; ++begin) {
 | |
|     PHINode *PN = begin->first;
 | |
|     BasicBlock *BB = PN->getParent();
 | |
|     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
|     SmallVector<BasicBlock*, 8> Preds(PI, PE);
 | |
|     for (unsigned size = Preds.size();
 | |
|          PI != PE && PN->getNumIncomingValues() != size; ++PI) {
 | |
|       bool found = false;
 | |
|       for (unsigned i = 0, pn_end = PN->getNumIncomingValues();
 | |
|            i < pn_end; ++i) {
 | |
|         if (PN->getIncomingBlock(i) == *PI) {
 | |
|           found = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!found) {
 | |
|         PN->addIncoming(UndefValue::get(PN->getType()), *PI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return which variable (position on the vector of variables) this phi
 | |
| /// represents on the phis list.
 | |
| ///
 | |
| Instruction* SSI::getPositionPhi(PHINode *PN) {
 | |
|   DenseMap<PHINode *, Instruction*>::iterator val = phis.find(PN);
 | |
|   if (val == phis.end())
 | |
|     return 0;
 | |
|   else
 | |
|     return val->second;
 | |
| }
 | |
| 
 | |
| /// Return which variable (position on the vector of variables) this phi
 | |
| /// represents on the sigmas list.
 | |
| ///
 | |
| Instruction* SSI::getPositionSigma(PHINode *PN) {
 | |
|   DenseMap<PHINode *, Instruction*>::iterator val = sigmas.find(PN);
 | |
|   if (val == sigmas.end())
 | |
|     return 0;
 | |
|   else
 | |
|     return val->second;
 | |
| }
 | |
| 
 | |
| /// Initializes
 | |
| ///
 | |
| void SSI::init(SmallVectorImpl<Instruction *> &value) {
 | |
|   for (SmallVectorImpl<Instruction *>::iterator I = value.begin(),
 | |
|        E = value.end(); I != E; ++I) {
 | |
|     value_original[*I] = (*I)->getParent();
 | |
|     defsites[*I].push_back((*I)->getParent());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Clean all used resources in this creation of SSI
 | |
| ///
 | |
| void SSI::clean() {
 | |
|   phis.clear();
 | |
|   sigmas.clear();
 | |
|   phisToFix.clear();
 | |
| 
 | |
|   defsites.clear();
 | |
|   value_stack.clear();
 | |
|   value_original.clear();
 | |
| }
 | |
| 
 | |
| /// createSSIPass - The public interface to this file...
 | |
| ///
 | |
| FunctionPass *llvm::createSSIPass() { return new SSI(); }
 | |
| 
 | |
| char SSI::ID = 0;
 | |
| INITIALIZE_PASS(SSI, "ssi",
 | |
|                 "Static Single Information Construction", false, false);
 | |
| 
 | |
| /// SSIEverything - A pass that runs createSSI on every non-void variable,
 | |
| /// intended for debugging.
 | |
| namespace {
 | |
|   struct SSIEverything : public FunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     SSIEverything() : FunctionPass(ID) {}
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<SSI>();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool SSIEverything::runOnFunction(Function &F) {
 | |
|   SmallVector<Instruction *, 16> Insts;
 | |
|   SSI &ssi = getAnalysis<SSI>();
 | |
| 
 | |
|   if (F.isDeclaration() || F.isIntrinsic()) return false;
 | |
| 
 | |
|   for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
 | |
|     for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
 | |
|       if (!I->getType()->isVoidTy())
 | |
|         Insts.push_back(I);
 | |
| 
 | |
|   ssi.createSSI(Insts);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// createSSIEverythingPass - The public interface to this file...
 | |
| ///
 | |
| FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); }
 | |
| 
 | |
| char SSIEverything::ID = 0;
 | |
| INITIALIZE_PASS(SSIEverything, "ssi-everything",
 | |
|                 "Static Single Information Construction", false, false);
 |