mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	that already hold the lock can call an entry point that doesn't re-acquire the lock. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63965 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			647 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			647 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tool implements a just-in-time compiler for LLVM, allowing direct
 | |
| // execution of LLVM bitcode in an efficient manner.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "JIT.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/System/DynamicLibrary.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetJITInfo.h"
 | |
| 
 | |
| #include "llvm/Config/config.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifdef __APPLE__ 
 | |
| // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
 | |
| // of atexit). It passes the address of linker generated symbol __dso_handle
 | |
| // to the function.
 | |
| // This configuration change happened at version 5330.
 | |
| # include <AvailabilityMacros.h>
 | |
| # if defined(MAC_OS_X_VERSION_10_4) && \
 | |
|      ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
 | |
|       (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
 | |
|        __APPLE_CC__ >= 5330))
 | |
| #  ifndef HAVE___DSO_HANDLE
 | |
| #   define HAVE___DSO_HANDLE 1
 | |
| #  endif
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #if HAVE___DSO_HANDLE
 | |
| extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static struct RegisterJIT {
 | |
|   RegisterJIT() { JIT::Register(); }
 | |
| } JITRegistrator;
 | |
| 
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   void LinkInJIT() {
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(__GNUC__) && !defined(__ARM__EABI__)
 | |
|  
 | |
| // libgcc defines the __register_frame function to dynamically register new
 | |
| // dwarf frames for exception handling. This functionality is not portable
 | |
| // across compilers and is only provided by GCC. We use the __register_frame
 | |
| // function here so that code generated by the JIT cooperates with the unwinding
 | |
| // runtime of libgcc. When JITting with exception handling enable, LLVM
 | |
| // generates dwarf frames and registers it to libgcc with __register_frame.
 | |
| //
 | |
| // The __register_frame function works with Linux.
 | |
| //
 | |
| // Unfortunately, this functionality seems to be in libgcc after the unwinding
 | |
| // library of libgcc for darwin was written. The code for darwin overwrites the
 | |
| // value updated by __register_frame with a value fetched with "keymgr".
 | |
| // "keymgr" is an obsolete functionality, which should be rewritten some day.
 | |
| // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
 | |
| // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
 | |
| // values of an opaque key, used by libgcc to find dwarf tables.
 | |
| 
 | |
| extern "C" void __register_frame(void*);
 | |
| 
 | |
| #if defined(__APPLE__)
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // LibgccObject - This is the structure defined in libgcc. There is no #include
 | |
| // provided for this structure, so we also define it here. libgcc calls it
 | |
| // "struct object". The structure is undocumented in libgcc.
 | |
| struct LibgccObject {
 | |
|   void *unused1;
 | |
|   void *unused2;
 | |
|   void *unused3;
 | |
|   
 | |
|   /// frame - Pointer to the exception table.
 | |
|   void *frame;
 | |
|   
 | |
|   /// encoding -  The encoding of the object?
 | |
|   union {
 | |
|     struct {
 | |
|       unsigned long sorted : 1;
 | |
|       unsigned long from_array : 1;
 | |
|       unsigned long mixed_encoding : 1;
 | |
|       unsigned long encoding : 8;
 | |
|       unsigned long count : 21; 
 | |
|     } b;
 | |
|     size_t i;
 | |
|   } encoding;
 | |
|   
 | |
|   /// fde_end - libgcc defines this field only if some macro is defined. We
 | |
|   /// include this field even if it may not there, to make libgcc happy.
 | |
|   char *fde_end;
 | |
|   
 | |
|   /// next - At least we know it's a chained list!
 | |
|   struct LibgccObject *next;
 | |
| };
 | |
| 
 | |
| // "kemgr" stuff. Apparently, all frame tables are stored there.
 | |
| extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
 | |
| extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
 | |
| #define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
 | |
| 
 | |
| /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
 | |
| /// probably contains all dwarf tables that are loaded.
 | |
| struct LibgccObjectInfo {
 | |
| 
 | |
|   /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
 | |
|   ///
 | |
|   struct LibgccObject* seenObjects;
 | |
| 
 | |
|   /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
 | |
|   ///
 | |
|   struct LibgccObject* unseenObjects;
 | |
|   
 | |
|   unsigned unused[2];
 | |
| };
 | |
| 
 | |
| // for DW_EH_PE_omit
 | |
| #include "llvm/Support/Dwarf.h"
 | |
| 
 | |
| /// darwin_register_frame - Since __register_frame does not work with darwin's
 | |
| /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
 | |
| /// "Dwarf2 object list" key.
 | |
| void DarwinRegisterFrame(void* FrameBegin) {
 | |
|   // Get the key.
 | |
|   struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
 | |
|     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
 | |
|   
 | |
|   // Allocate a new LibgccObject to represent this frame. Deallocation of this
 | |
|   // object may be impossible: since darwin code in libgcc was written after
 | |
|   // the ability to dynamically register frames, things may crash if we
 | |
|   // deallocate it.
 | |
|   struct LibgccObject* ob = (struct LibgccObject*)
 | |
|     malloc(sizeof(struct LibgccObject));
 | |
|   
 | |
|   // Do like libgcc for the values of the field.
 | |
|   ob->unused1 = (void *)-1;
 | |
|   ob->unused2 = 0;
 | |
|   ob->unused3 = 0;
 | |
|   ob->frame = FrameBegin;
 | |
|   ob->encoding.i = 0; 
 | |
|   ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
 | |
|   
 | |
|   // Put the info on both places, as libgcc uses the first or the the second
 | |
|   // field. Note that we rely on having two pointers here. If fde_end was a
 | |
|   // char, things would get complicated.
 | |
|   ob->fde_end = (char*)LOI->unseenObjects;
 | |
|   ob->next = LOI->unseenObjects;
 | |
|   
 | |
|   // Update the key's unseenObjects list.
 | |
|   LOI->unseenObjects = ob;
 | |
|   
 | |
|   // Finally update the "key". Apparently, libgcc requires it. 
 | |
|   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
 | |
|                                          LOI);
 | |
| 
 | |
| }
 | |
| 
 | |
| }
 | |
| #endif // __APPLE__
 | |
| #endif // __GNUC__
 | |
| 
 | |
| /// createJIT - This is the factory method for creating a JIT for the current
 | |
| /// machine, it does not fall back to the interpreter.  This takes ownership
 | |
| /// of the module provider.
 | |
| ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
 | |
|                                             std::string *ErrorStr,
 | |
|                                             JITMemoryManager *JMM,
 | |
|                                             bool Fast) {
 | |
|   ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM, Fast);
 | |
|   if (!EE) return 0;
 | |
|   
 | |
|   // Make sure we can resolve symbols in the program as well. The zero arg
 | |
|   // to the function tells DynamicLibrary to load the program, not a library.
 | |
|   sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr);
 | |
|   return EE;
 | |
| }
 | |
| 
 | |
| JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
 | |
|          JITMemoryManager *JMM, bool Fast)
 | |
|   : ExecutionEngine(MP), TM(tm), TJI(tji) {
 | |
|   setTargetData(TM.getTargetData());
 | |
| 
 | |
|   jitstate = new JITState(MP);
 | |
| 
 | |
|   // Initialize MCE
 | |
|   MCE = createEmitter(*this, JMM);
 | |
| 
 | |
|   // Add target data
 | |
|   MutexGuard locked(lock);
 | |
|   FunctionPassManager &PM = jitstate->getPM(locked);
 | |
|   PM.add(new TargetData(*TM.getTargetData()));
 | |
| 
 | |
|   // Turn the machine code intermediate representation into bytes in memory that
 | |
|   // may be executed.
 | |
|   if (TM.addPassesToEmitMachineCode(PM, *MCE, Fast)) {
 | |
|     cerr << "Target does not support machine code emission!\n";
 | |
|     abort();
 | |
|   }
 | |
|   
 | |
|   // Register routine for informing unwinding runtime about new EH frames
 | |
| #if defined(__GNUC__) && !defined(__ARM_EABI__)
 | |
| #if defined(__APPLE__)
 | |
|   struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
 | |
|     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
 | |
|   
 | |
|   // The key is created on demand, and libgcc creates it the first time an
 | |
|   // exception occurs. Since we need the key to register frames, we create
 | |
|   // it now.
 | |
|   if (!LOI) {
 | |
|     LOI = (LibgccObjectInfo*)malloc(sizeof(struct LibgccObjectInfo)); 
 | |
|     _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
 | |
|                                            LOI);
 | |
|   }
 | |
|   InstallExceptionTableRegister(DarwinRegisterFrame);
 | |
| #else
 | |
|   InstallExceptionTableRegister(__register_frame);
 | |
| #endif // __APPLE__
 | |
| #endif // __GNUC__
 | |
|   
 | |
|   // Initialize passes.
 | |
|   PM.doInitialization();
 | |
| }
 | |
| 
 | |
| JIT::~JIT() {
 | |
|   delete jitstate;
 | |
|   delete MCE;
 | |
|   delete &TM;
 | |
| }
 | |
| 
 | |
| /// addModuleProvider - Add a new ModuleProvider to the JIT.  If we previously
 | |
| /// removed the last ModuleProvider, we need re-initialize jitstate with a valid
 | |
| /// ModuleProvider.
 | |
| void JIT::addModuleProvider(ModuleProvider *MP) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   if (Modules.empty()) {
 | |
|     assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
 | |
| 
 | |
|     jitstate = new JITState(MP);
 | |
| 
 | |
|     FunctionPassManager &PM = jitstate->getPM(locked);
 | |
|     PM.add(new TargetData(*TM.getTargetData()));
 | |
| 
 | |
|     // Turn the machine code intermediate representation into bytes in memory
 | |
|     // that may be executed.
 | |
|     if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
 | |
|       cerr << "Target does not support machine code emission!\n";
 | |
|       abort();
 | |
|     }
 | |
|     
 | |
|     // Initialize passes.
 | |
|     PM.doInitialization();
 | |
|   }
 | |
|   
 | |
|   ExecutionEngine::addModuleProvider(MP);
 | |
| }
 | |
| 
 | |
| /// removeModuleProvider - If we are removing the last ModuleProvider, 
 | |
| /// invalidate the jitstate since the PassManager it contains references a
 | |
| /// released ModuleProvider.
 | |
| Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
 | |
|   Module *result = ExecutionEngine::removeModuleProvider(MP, E);
 | |
|   
 | |
|   MutexGuard locked(lock);
 | |
|   if (Modules.empty()) {
 | |
|     delete jitstate;
 | |
|     jitstate = 0;
 | |
|   }
 | |
|   
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
 | |
| /// and deletes the ModuleProvider and owned Module.  Avoids materializing 
 | |
| /// the underlying module.
 | |
| void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) {
 | |
|   ExecutionEngine::deleteModuleProvider(MP, E);
 | |
|   
 | |
|   MutexGuard locked(lock);
 | |
|   if (Modules.empty()) {
 | |
|     delete jitstate;
 | |
|     jitstate = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// run - Start execution with the specified function and arguments.
 | |
| ///
 | |
| GenericValue JIT::runFunction(Function *F,
 | |
|                               const std::vector<GenericValue> &ArgValues) {
 | |
|   assert(F && "Function *F was null at entry to run()");
 | |
| 
 | |
|   void *FPtr = getPointerToFunction(F);
 | |
|   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
|   const Type *RetTy = FTy->getReturnType();
 | |
| 
 | |
|   assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
 | |
|          "Too many arguments passed into function!");
 | |
|   assert(FTy->getNumParams() == ArgValues.size() &&
 | |
|          "This doesn't support passing arguments through varargs (yet)!");
 | |
| 
 | |
|   // Handle some common cases first.  These cases correspond to common `main'
 | |
|   // prototypes.
 | |
|   if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
 | |
|     switch (ArgValues.size()) {
 | |
|     case 3:
 | |
|       if (FTy->getParamType(0) == Type::Int32Ty &&
 | |
|           isa<PointerType>(FTy->getParamType(1)) &&
 | |
|           isa<PointerType>(FTy->getParamType(2))) {
 | |
|         int (*PF)(int, char **, const char **) =
 | |
|           (int(*)(int, char **, const char **))(intptr_t)FPtr;
 | |
| 
 | |
|         // Call the function.
 | |
|         GenericValue rv;
 | |
|         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 
 | |
|                                  (char **)GVTOP(ArgValues[1]),
 | |
|                                  (const char **)GVTOP(ArgValues[2])));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     case 2:
 | |
|       if (FTy->getParamType(0) == Type::Int32Ty &&
 | |
|           isa<PointerType>(FTy->getParamType(1))) {
 | |
|         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
 | |
| 
 | |
|         // Call the function.
 | |
|         GenericValue rv;
 | |
|         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), 
 | |
|                                  (char **)GVTOP(ArgValues[1])));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     case 1:
 | |
|       if (FTy->getNumParams() == 1 &&
 | |
|           FTy->getParamType(0) == Type::Int32Ty) {
 | |
|         GenericValue rv;
 | |
|         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
 | |
|         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle cases where no arguments are passed first.
 | |
|   if (ArgValues.empty()) {
 | |
|     GenericValue rv;
 | |
|     switch (RetTy->getTypeID()) {
 | |
|     default: assert(0 && "Unknown return type for function call!");
 | |
|     case Type::IntegerTyID: {
 | |
|       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
 | |
|       if (BitWidth == 1)
 | |
|         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 8)
 | |
|         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 16)
 | |
|         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 32)
 | |
|         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
 | |
|       else if (BitWidth <= 64)
 | |
|         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
 | |
|       else 
 | |
|         assert(0 && "Integer types > 64 bits not supported");
 | |
|       return rv;
 | |
|     }
 | |
|     case Type::VoidTyID:
 | |
|       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
 | |
|       return rv;
 | |
|     case Type::FloatTyID:
 | |
|       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
 | |
|       return rv;
 | |
|     case Type::DoubleTyID:
 | |
|       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
 | |
|       return rv;
 | |
|     case Type::X86_FP80TyID:
 | |
|     case Type::FP128TyID:
 | |
|     case Type::PPC_FP128TyID:
 | |
|       assert(0 && "long double not supported yet");
 | |
|       return rv;
 | |
|     case Type::PointerTyID:
 | |
|       return PTOGV(((void*(*)())(intptr_t)FPtr)());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, this is not one of our quick and easy cases.  Because we don't have a
 | |
|   // full FFI, we have to codegen a nullary stub function that just calls the
 | |
|   // function we are interested in, passing in constants for all of the
 | |
|   // arguments.  Make this function and return.
 | |
| 
 | |
|   // First, create the function.
 | |
|   FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
 | |
|   Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
 | |
|                                     F->getParent());
 | |
| 
 | |
|   // Insert a basic block.
 | |
|   BasicBlock *StubBB = BasicBlock::Create("", Stub);
 | |
| 
 | |
|   // Convert all of the GenericValue arguments over to constants.  Note that we
 | |
|   // currently don't support varargs.
 | |
|   SmallVector<Value*, 8> Args;
 | |
|   for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
 | |
|     Constant *C = 0;
 | |
|     const Type *ArgTy = FTy->getParamType(i);
 | |
|     const GenericValue &AV = ArgValues[i];
 | |
|     switch (ArgTy->getTypeID()) {
 | |
|     default: assert(0 && "Unknown argument type for function call!");
 | |
|     case Type::IntegerTyID:
 | |
|         C = ConstantInt::get(AV.IntVal);
 | |
|         break;
 | |
|     case Type::FloatTyID:
 | |
|         C = ConstantFP::get(APFloat(AV.FloatVal));
 | |
|         break;
 | |
|     case Type::DoubleTyID:
 | |
|         C = ConstantFP::get(APFloat(AV.DoubleVal));
 | |
|         break;
 | |
|     case Type::PPC_FP128TyID:
 | |
|     case Type::X86_FP80TyID:
 | |
|     case Type::FP128TyID:
 | |
|         C = ConstantFP::get(APFloat(AV.IntVal));
 | |
|         break;
 | |
|     case Type::PointerTyID:
 | |
|       void *ArgPtr = GVTOP(AV);
 | |
|       if (sizeof(void*) == 4)
 | |
|         C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
 | |
|       else
 | |
|         C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
 | |
|       C = ConstantExpr::getIntToPtr(C, ArgTy);  // Cast the integer to pointer
 | |
|       break;
 | |
|     }
 | |
|     Args.push_back(C);
 | |
|   }
 | |
| 
 | |
|   CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
 | |
|                                        "", StubBB);
 | |
|   TheCall->setCallingConv(F->getCallingConv());
 | |
|   TheCall->setTailCall();
 | |
|   if (TheCall->getType() != Type::VoidTy)
 | |
|     ReturnInst::Create(TheCall, StubBB);    // Return result of the call.
 | |
|   else
 | |
|     ReturnInst::Create(StubBB);             // Just return void.
 | |
| 
 | |
|   // Finally, return the value returned by our nullary stub function.
 | |
|   return runFunction(Stub, std::vector<GenericValue>());
 | |
| }
 | |
| 
 | |
| /// runJITOnFunction - Run the FunctionPassManager full of
 | |
| /// just-in-time compilation passes on F, hopefully filling in
 | |
| /// GlobalAddress[F] with the address of F's machine code.
 | |
| ///
 | |
| void JIT::runJITOnFunction(Function *F) {
 | |
|   MutexGuard locked(lock);
 | |
|   runJITOnFunctionUnlocked(F, locked);
 | |
| }
 | |
| 
 | |
| void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
 | |
|   static bool isAlreadyCodeGenerating = false;
 | |
|   assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
 | |
| 
 | |
|   // JIT the function
 | |
|   isAlreadyCodeGenerating = true;
 | |
|   jitstate->getPM(locked).run(*F);
 | |
|   isAlreadyCodeGenerating = false;
 | |
| 
 | |
|   // If the function referred to a global variable that had not yet been
 | |
|   // emitted, it allocates memory for the global, but doesn't emit it yet.  Emit
 | |
|   // all of these globals now.
 | |
|   while (!jitstate->getPendingGlobals(locked).empty()) {
 | |
|     const GlobalVariable *GV = jitstate->getPendingGlobals(locked).back();
 | |
|     jitstate->getPendingGlobals(locked).pop_back();
 | |
|     EmitGlobalVariable(GV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getPointerToFunction - This method is used to get the address of the
 | |
| /// specified function, compiling it if neccesary.
 | |
| ///
 | |
| void *JIT::getPointerToFunction(Function *F) {
 | |
| 
 | |
|   if (void *Addr = getPointerToGlobalIfAvailable(F))
 | |
|     return Addr;   // Check if function already code gen'd
 | |
| 
 | |
|   // Make sure we read in the function if it exists in this Module.
 | |
|   if (F->hasNotBeenReadFromBitcode()) {
 | |
|     // Determine the module provider this function is provided by.
 | |
|     Module *M = F->getParent();
 | |
|     ModuleProvider *MP = 0;
 | |
|     for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
 | |
|       if (Modules[i]->getModule() == M) {
 | |
|         MP = Modules[i];
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(MP && "Function isn't in a module we know about!");
 | |
|     
 | |
|     std::string ErrorMsg;
 | |
|     if (MP->materializeFunction(F, &ErrorMsg)) {
 | |
|       cerr << "Error reading function '" << F->getName()
 | |
|            << "' from bitcode file: " << ErrorMsg << "\n";
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     // Now retry to get the address.
 | |
|     if (void *Addr = getPointerToGlobalIfAvailable(F))
 | |
|       return Addr;
 | |
|   }
 | |
| 
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   if (F->isDeclaration()) {
 | |
|     bool AbortOnFailure = F->getLinkage() != GlobalValue::ExternalWeakLinkage;
 | |
|     void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
 | |
|     addGlobalMapping(F, Addr);
 | |
|     return Addr;
 | |
|   }
 | |
| 
 | |
|   runJITOnFunctionUnlocked(F, locked);
 | |
| 
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /// getOrEmitGlobalVariable - Return the address of the specified global
 | |
| /// variable, possibly emitting it to memory if needed.  This is used by the
 | |
| /// Emitter.
 | |
| void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   void *Ptr = getPointerToGlobalIfAvailable(GV);
 | |
|   if (Ptr) return Ptr;
 | |
| 
 | |
|   // If the global is external, just remember the address.
 | |
|   if (GV->isDeclaration()) {
 | |
| #if HAVE___DSO_HANDLE
 | |
|     if (GV->getName() == "__dso_handle")
 | |
|       return (void*)&__dso_handle;
 | |
| #endif
 | |
|     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
 | |
|     if (Ptr == 0) {
 | |
|       cerr << "Could not resolve external global address: "
 | |
|            << GV->getName() << "\n";
 | |
|       abort();
 | |
|     addGlobalMapping(GV, Ptr);
 | |
|     }
 | |
|   } else {
 | |
|     // GlobalVariable's which are not "constant" will cause trouble in a server
 | |
|     // situation. It's returned in the same block of memory as code which may
 | |
|     // not be writable.
 | |
|     if (isGVCompilationDisabled() && !GV->isConstant()) {
 | |
|       cerr << "Compilation of non-internal GlobalValue is disabled!\n";
 | |
|       abort();
 | |
|     }
 | |
|     // If the global hasn't been emitted to memory yet, allocate space and
 | |
|     // emit it into memory.  It goes in the same array as the generated
 | |
|     // code, jump tables, etc.
 | |
|     const Type *GlobalType = GV->getType()->getElementType();
 | |
|     size_t S = getTargetData()->getTypePaddedSize(GlobalType);
 | |
|     size_t A = getTargetData()->getPreferredAlignment(GV);
 | |
|     if (GV->isThreadLocal()) {
 | |
|       MutexGuard locked(lock);
 | |
|       Ptr = TJI.allocateThreadLocalMemory(S);
 | |
|     } else if (TJI.allocateSeparateGVMemory()) {
 | |
|       if (A <= 8) {
 | |
|         Ptr = malloc(S);
 | |
|       } else {
 | |
|         // Allocate S+A bytes of memory, then use an aligned pointer within that
 | |
|         // space.
 | |
|         Ptr = malloc(S+A);
 | |
|         unsigned MisAligned = ((intptr_t)Ptr & (A-1));
 | |
|         Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
 | |
|       }
 | |
|     } else {
 | |
|       Ptr = MCE->allocateSpace(S, A);
 | |
|     }
 | |
|     addGlobalMapping(GV, Ptr);
 | |
|     EmitGlobalVariable(GV);
 | |
|   }
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| /// recompileAndRelinkFunction - This method is used to force a function
 | |
| /// which has already been compiled, to be compiled again, possibly
 | |
| /// after it has been modified. Then the entry to the old copy is overwritten
 | |
| /// with a branch to the new copy. If there was no old copy, this acts
 | |
| /// just like JIT::getPointerToFunction().
 | |
| ///
 | |
| void *JIT::recompileAndRelinkFunction(Function *F) {
 | |
|   void *OldAddr = getPointerToGlobalIfAvailable(F);
 | |
| 
 | |
|   // If it's not already compiled there is no reason to patch it up.
 | |
|   if (OldAddr == 0) { return getPointerToFunction(F); }
 | |
| 
 | |
|   // Delete the old function mapping.
 | |
|   addGlobalMapping(F, 0);
 | |
| 
 | |
|   // Recodegen the function
 | |
|   runJITOnFunction(F);
 | |
| 
 | |
|   // Update state, forward the old function to the new function.
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | |
|   TJI.replaceMachineCodeForFunction(OldAddr, Addr);
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /// getMemoryForGV - This method abstracts memory allocation of global
 | |
| /// variable so that the JIT can allocate thread local variables depending
 | |
| /// on the target.
 | |
| ///
 | |
| char* JIT::getMemoryForGV(const GlobalVariable* GV) {
 | |
|   const Type *ElTy = GV->getType()->getElementType();
 | |
|   size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
 | |
|   if (GV->isThreadLocal()) {
 | |
|     MutexGuard locked(lock);
 | |
|     return TJI.allocateThreadLocalMemory(GVSize);
 | |
|   } else {
 | |
|     return new char[GVSize];
 | |
|   }
 | |
| }
 |