mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	There were some that might even matter in X86FastISel. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64437 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1642 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1642 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a DAG pattern matching instruction selector for X86,
 | |
| // converting from a legalized dag to a X86 dag.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-isel"
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Streams.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Pattern Matcher Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
 | |
|   /// SDValue's instead of register numbers for the leaves of the matched
 | |
|   /// tree.
 | |
|   struct X86ISelAddressMode {
 | |
|     enum {
 | |
|       RegBase,
 | |
|       FrameIndexBase
 | |
|     } BaseType;
 | |
| 
 | |
|     struct {            // This is really a union, discriminated by BaseType!
 | |
|       SDValue Reg;
 | |
|       int FrameIndex;
 | |
|     } Base;
 | |
| 
 | |
|     bool isRIPRel;     // RIP as base?
 | |
|     unsigned Scale;
 | |
|     SDValue IndexReg; 
 | |
|     int32_t Disp;
 | |
|     GlobalValue *GV;
 | |
|     Constant *CP;
 | |
|     const char *ES;
 | |
|     int JT;
 | |
|     unsigned Align;    // CP alignment.
 | |
| 
 | |
|     X86ISelAddressMode()
 | |
|       : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
 | |
|         GV(0), CP(0), ES(0), JT(-1), Align(0) {
 | |
|     }
 | |
| 
 | |
|     bool hasSymbolicDisplacement() const {
 | |
|       return GV != 0 || CP != 0 || ES != 0 || JT != -1;
 | |
|     }
 | |
| 
 | |
|     void dump() {
 | |
|       cerr << "X86ISelAddressMode " << this << "\n";
 | |
|       cerr << "Base.Reg ";
 | |
|               if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump(); 
 | |
|               else cerr << "nul";
 | |
|       cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
 | |
|       cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
 | |
|       cerr << "IndexReg ";
 | |
|               if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
 | |
|               else cerr << "nul"; 
 | |
|       cerr << " Disp " << Disp << "\n";
 | |
|       cerr << "GV "; if (GV) GV->dump(); 
 | |
|                      else cerr << "nul";
 | |
|       cerr << " CP "; if (CP) CP->dump(); 
 | |
|                      else cerr << "nul";
 | |
|       cerr << "\n";
 | |
|       cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
 | |
|       cerr  << " JT" << JT << " Align" << Align << "\n";
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISel - X86 specific code to select X86 machine instructions for
 | |
|   /// SelectionDAG operations.
 | |
|   ///
 | |
|   class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
 | |
|     /// TM - Keep a reference to X86TargetMachine.
 | |
|     ///
 | |
|     X86TargetMachine &TM;
 | |
| 
 | |
|     /// X86Lowering - This object fully describes how to lower LLVM code to an
 | |
|     /// X86-specific SelectionDAG.
 | |
|     X86TargetLowering &X86Lowering;
 | |
| 
 | |
|     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | |
|     /// make the right decision when generating code for different targets.
 | |
|     const X86Subtarget *Subtarget;
 | |
| 
 | |
|     /// CurBB - Current BB being isel'd.
 | |
|     ///
 | |
|     MachineBasicBlock *CurBB;
 | |
| 
 | |
|     /// OptForSize - If true, selector should try to optimize for code size
 | |
|     /// instead of performance.
 | |
|     bool OptForSize;
 | |
| 
 | |
|   public:
 | |
|     X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
 | |
|       : SelectionDAGISel(tm, fast),
 | |
|         TM(tm), X86Lowering(*TM.getTargetLowering()),
 | |
|         Subtarget(&TM.getSubtarget<X86Subtarget>()),
 | |
|         OptForSize(false) {}
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 DAG->DAG Instruction Selection";
 | |
|     }
 | |
| 
 | |
|     /// InstructionSelect - This callback is invoked by
 | |
|     /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|     virtual void InstructionSelect();
 | |
| 
 | |
|     virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
 | |
| 
 | |
|     virtual
 | |
|       bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "X86GenDAGISel.inc"
 | |
| 
 | |
|   private:
 | |
|     SDNode *Select(SDValue N);
 | |
|     SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
 | |
| 
 | |
|     bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
 | |
|                       bool isRoot = true, unsigned Depth = 0);
 | |
|     bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
 | |
|                           bool isRoot, unsigned Depth);
 | |
|     bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                     SDValue &Scale, SDValue &Index, SDValue &Disp);
 | |
|     bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                        SDValue &Scale, SDValue &Index, SDValue &Disp);
 | |
|     bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
 | |
|                              SDValue N, SDValue &Base, SDValue &Scale,
 | |
|                              SDValue &Index, SDValue &Disp,
 | |
|                              SDValue &InChain, SDValue &OutChain);
 | |
|     bool TryFoldLoad(SDValue P, SDValue N,
 | |
|                      SDValue &Base, SDValue &Scale,
 | |
|                      SDValue &Index, SDValue &Disp);
 | |
|     void PreprocessForRMW();
 | |
|     void PreprocessForFPConvert();
 | |
| 
 | |
|     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|     /// inline asm expressions.
 | |
|     virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                                               char ConstraintCode,
 | |
|                                               std::vector<SDValue> &OutOps);
 | |
|     
 | |
|     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
 | |
| 
 | |
|     inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 
 | |
|                                    SDValue &Scale, SDValue &Index,
 | |
|                                    SDValue &Disp) {
 | |
|       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
 | |
|         CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
 | |
|         AM.Base.Reg;
 | |
|       Scale = getI8Imm(AM.Scale);
 | |
|       Index = AM.IndexReg;
 | |
|       // These are 32-bit even in 64-bit mode since RIP relative offset
 | |
|       // is 32-bit.
 | |
|       if (AM.GV)
 | |
|         Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
 | |
|       else if (AM.CP)
 | |
|         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
 | |
|                                              AM.Align, AM.Disp);
 | |
|       else if (AM.ES)
 | |
|         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
 | |
|       else if (AM.JT != -1)
 | |
|         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
 | |
|       else
 | |
|         Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getI8Imm - Return a target constant with the specified value, of type
 | |
|     /// i8.
 | |
|     inline SDValue getI8Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i8);
 | |
|     }
 | |
| 
 | |
|     /// getI16Imm - Return a target constant with the specified value, of type
 | |
|     /// i16.
 | |
|     inline SDValue getI16Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i16);
 | |
|     }
 | |
| 
 | |
|     /// getI32Imm - Return a target constant with the specified value, of type
 | |
|     /// i32.
 | |
|     inline SDValue getI32Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getGlobalBaseReg - Return an SDNode that returns the value of
 | |
|     /// the global base register. Output instructions required to
 | |
|     /// initialize the global base register, if necessary.
 | |
|     ///
 | |
|     SDNode *getGlobalBaseReg();
 | |
| 
 | |
|     /// getTruncateTo8Bit - return an SDNode that implements a subreg based
 | |
|     /// truncate of the specified operand to i8. This can be done with tablegen,
 | |
|     /// except that this code uses MVT::Flag in a tricky way that happens to
 | |
|     /// improve scheduling in some cases.
 | |
|     SDNode *getTruncateTo8Bit(SDValue N0);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     unsigned Indent;
 | |
| #endif
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// findFlagUse - Return use of MVT::Flag value produced by the specified
 | |
| /// SDNode.
 | |
| ///
 | |
| static SDNode *findFlagUse(SDNode *N) {
 | |
|   unsigned FlagResNo = N->getNumValues()-1;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDUse &Use = I.getUse();
 | |
|     if (Use.getResNo() == FlagResNo)
 | |
|       return Use.getUser();
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
 | |
| /// This function recursively traverses up the operand chain, ignoring
 | |
| /// certain nodes.
 | |
| static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
 | |
|                           SDNode *Root,
 | |
|                           SmallPtrSet<SDNode*, 16> &Visited) {
 | |
|   if (Use->getNodeId() < Def->getNodeId() ||
 | |
|       !Visited.insert(Use))
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
 | |
|     SDNode *N = Use->getOperand(i).getNode();
 | |
|     if (N == Def) {
 | |
|       if (Use == ImmedUse || Use == Root)
 | |
|         continue;  // We are not looking for immediate use.
 | |
|       assert(N != Root);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Traverse up the operand chain.
 | |
|     if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isNonImmUse - Start searching from Root up the DAG to check is Def can
 | |
| /// be reached. Return true if that's the case. However, ignore direct uses
 | |
| /// by ImmedUse (which would be U in the example illustrated in
 | |
| /// IsLegalAndProfitableToFold) and by Root (which can happen in the store
 | |
| /// case).
 | |
| /// FIXME: to be really generic, we should allow direct use by any node
 | |
| /// that is being folded. But realisticly since we only fold loads which
 | |
| /// have one non-chain use, we only need to watch out for load/op/store
 | |
| /// and load/op/cmp case where the root (store / cmp) may reach the load via
 | |
| /// its chain operand.
 | |
| static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
 | |
|   SmallPtrSet<SDNode*, 16> Visited;
 | |
|   return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
 | |
|                                                  SDNode *Root) const {
 | |
|   if (Fast) return false;
 | |
| 
 | |
|   if (U == Root)
 | |
|     switch (U->getOpcode()) {
 | |
|     default: break;
 | |
|     case ISD::ADD:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::AND:
 | |
|     case ISD::OR:
 | |
|     case ISD::XOR: {
 | |
|       // If the other operand is a 8-bit immediate we should fold the immediate
 | |
|       // instead. This reduces code size.
 | |
|       // e.g.
 | |
|       // movl 4(%esp), %eax
 | |
|       // addl $4, %eax
 | |
|       // vs.
 | |
|       // movl $4, %eax
 | |
|       // addl 4(%esp), %eax
 | |
|       // The former is 2 bytes shorter. In case where the increment is 1, then
 | |
|       // the saving can be 4 bytes (by using incl %eax).
 | |
|       ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(U->getOperand(1));
 | |
|       if (Imm) {
 | |
|         if (U->getValueType(0) == MVT::i64) {
 | |
|           if ((int32_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
 | |
|             return false;
 | |
|         } else {
 | |
|           if ((int8_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     }
 | |
| 
 | |
|   // If Root use can somehow reach N through a path that that doesn't contain
 | |
|   // U then folding N would create a cycle. e.g. In the following
 | |
|   // diagram, Root can reach N through X. If N is folded into into Root, then
 | |
|   // X is both a predecessor and a successor of U.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^     ^          //
 | |
|   //         \   /           //
 | |
|   //          \ /            //
 | |
|   //         [Root*]         //
 | |
|   //
 | |
|   // * indicates nodes to be folded together.
 | |
|   //
 | |
|   // If Root produces a flag, then it gets (even more) interesting. Since it
 | |
|   // will be "glued" together with its flag use in the scheduler, we need to
 | |
|   // check if it might reach N.
 | |
|   //
 | |
|   //          [N*]           //
 | |
|   //         ^   ^           //
 | |
|   //        /     \          //
 | |
|   //      [U*]    [X]?       //
 | |
|   //        ^       ^        //
 | |
|   //         \       \       //
 | |
|   //          \      |       //
 | |
|   //         [Root*] |       //
 | |
|   //          ^      |       //
 | |
|   //          f      |       //
 | |
|   //          |      /       //
 | |
|   //         [Y]    /        //
 | |
|   //           ^   /         //
 | |
|   //           f  /          //
 | |
|   //           | /           //
 | |
|   //          [FU]           //
 | |
|   //
 | |
|   // If FU (flag use) indirectly reaches N (the load), and Root folds N
 | |
|   // (call it Fold), then X is a predecessor of FU and a successor of
 | |
|   // Fold. But since Fold and FU are flagged together, this will create
 | |
|   // a cycle in the scheduling graph.
 | |
| 
 | |
|   MVT VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   while (VT == MVT::Flag) {
 | |
|     SDNode *FU = findFlagUse(Root);
 | |
|     if (FU == NULL)
 | |
|       break;
 | |
|     Root = FU;
 | |
|     VT = Root->getValueType(Root->getNumValues()-1);
 | |
|   }
 | |
| 
 | |
|   return !isNonImmUse(Root, N, U);
 | |
| }
 | |
| 
 | |
| /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
 | |
| /// and move load below the TokenFactor. Replace store's chain operand with
 | |
| /// load's chain result.
 | |
| static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
 | |
|                                  SDValue Store, SDValue TF) {
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
 | |
|     if (Load.getNode() == TF.getOperand(i).getNode())
 | |
|       Ops.push_back(Load.getOperand(0));
 | |
|     else
 | |
|       Ops.push_back(TF.getOperand(i));
 | |
|   CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
 | |
|   CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
 | |
|   CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
 | |
|                              Store.getOperand(2), Store.getOperand(3));
 | |
| }
 | |
| 
 | |
| /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
 | |
| /// 
 | |
| static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
 | |
|                       SDValue &Load) {
 | |
|   if (N.getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N.getOperand(0);
 | |
| 
 | |
|   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
 | |
|   if (!LD || LD->isVolatile())
 | |
|     return false;
 | |
|   if (LD->getAddressingMode() != ISD::UNINDEXED)
 | |
|     return false;
 | |
| 
 | |
|   ISD::LoadExtType ExtType = LD->getExtensionType();
 | |
|   if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
 | |
|     return false;
 | |
| 
 | |
|   if (N.hasOneUse() &&
 | |
|       N.getOperand(1) == Address &&
 | |
|       N.getNode()->isOperandOf(Chain.getNode())) {
 | |
|     Load = N;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
 | |
| /// operand and move load below the call's chain operand.
 | |
| static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
 | |
|                                   SDValue Call, SDValue CallSeqStart) {
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   SDValue Chain = CallSeqStart.getOperand(0);
 | |
|   if (Chain.getNode() == Load.getNode())
 | |
|     Ops.push_back(Load.getOperand(0));
 | |
|   else {
 | |
|     assert(Chain.getOpcode() == ISD::TokenFactor &&
 | |
|            "Unexpected CallSeqStart chain operand");
 | |
|     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
 | |
|       if (Chain.getOperand(i).getNode() == Load.getNode())
 | |
|         Ops.push_back(Load.getOperand(0));
 | |
|       else
 | |
|         Ops.push_back(Chain.getOperand(i));
 | |
|     SDValue NewChain =
 | |
|       CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
 | |
|                       MVT::Other, &Ops[0], Ops.size());
 | |
|     Ops.clear();
 | |
|     Ops.push_back(NewChain);
 | |
|   }
 | |
|   for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
 | |
|     Ops.push_back(CallSeqStart.getOperand(i));
 | |
|   CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
 | |
|   CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
 | |
|                              Load.getOperand(1), Load.getOperand(2));
 | |
|   Ops.clear();
 | |
|   Ops.push_back(SDValue(Load.getNode(), 1));
 | |
|   for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
 | |
|     Ops.push_back(Call.getOperand(i));
 | |
|   CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| /// isCalleeLoad - Return true if call address is a load and it can be
 | |
| /// moved below CALLSEQ_START and the chains leading up to the call.
 | |
| /// Return the CALLSEQ_START by reference as a second output.
 | |
| static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
 | |
|   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
 | |
|     return false;
 | |
|   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
 | |
|   if (!LD ||
 | |
|       LD->isVolatile() ||
 | |
|       LD->getAddressingMode() != ISD::UNINDEXED ||
 | |
|       LD->getExtensionType() != ISD::NON_EXTLOAD)
 | |
|     return false;
 | |
| 
 | |
|   // Now let's find the callseq_start.
 | |
|   while (Chain.getOpcode() != ISD::CALLSEQ_START) {
 | |
|     if (!Chain.hasOneUse())
 | |
|       return false;
 | |
|     Chain = Chain.getOperand(0);
 | |
|   }
 | |
|   
 | |
|   if (Chain.getOperand(0).getNode() == Callee.getNode())
 | |
|     return true;
 | |
|   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
 | |
|       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
 | |
| /// This is only run if not in -fast mode (aka -O0).
 | |
| /// This allows the instruction selector to pick more read-modify-write
 | |
| /// instructions. This is a common case:
 | |
| ///
 | |
| ///     [Load chain]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///       [Load]
 | |
| ///       ^    ^
 | |
| ///       |    |
 | |
| ///      /      \-
 | |
| ///     /         |
 | |
| /// [TokenFactor] [Op]
 | |
| ///     ^          ^
 | |
| ///     |          |
 | |
| ///      \        /
 | |
| ///       \      /
 | |
| ///       [Store]
 | |
| ///
 | |
| /// The fact the store's chain operand != load's chain will prevent the
 | |
| /// (store (op (load))) instruction from being selected. We can transform it to:
 | |
| ///
 | |
| ///     [Load chain]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///    [TokenFactor]
 | |
| ///         ^
 | |
| ///         |
 | |
| ///       [Load]
 | |
| ///       ^    ^
 | |
| ///       |    |
 | |
| ///       |     \- 
 | |
| ///       |       | 
 | |
| ///       |     [Op]
 | |
| ///       |       ^
 | |
| ///       |       |
 | |
| ///       \      /
 | |
| ///        \    /
 | |
| ///       [Store]
 | |
| void X86DAGToDAGISel::PreprocessForRMW() {
 | |
|   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | |
|          E = CurDAG->allnodes_end(); I != E; ++I) {
 | |
|     if (I->getOpcode() == X86ISD::CALL) {
 | |
|       /// Also try moving call address load from outside callseq_start to just
 | |
|       /// before the call to allow it to be folded.
 | |
|       ///
 | |
|       ///     [Load chain]
 | |
|       ///         ^
 | |
|       ///         |
 | |
|       ///       [Load]
 | |
|       ///       ^    ^
 | |
|       ///       |    |
 | |
|       ///      /      \--
 | |
|       ///     /          |
 | |
|       ///[CALLSEQ_START] |
 | |
|       ///     ^          |
 | |
|       ///     |          |
 | |
|       /// [LOAD/C2Reg]   |
 | |
|       ///     |          |
 | |
|       ///      \        /
 | |
|       ///       \      /
 | |
|       ///       [CALL]
 | |
|       SDValue Chain = I->getOperand(0);
 | |
|       SDValue Load  = I->getOperand(1);
 | |
|       if (!isCalleeLoad(Load, Chain))
 | |
|         continue;
 | |
|       MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
 | |
|       ++NumLoadMoved;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!ISD::isNON_TRUNCStore(I))
 | |
|       continue;
 | |
|     SDValue Chain = I->getOperand(0);
 | |
| 
 | |
|     if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
 | |
|       continue;
 | |
| 
 | |
|     SDValue N1 = I->getOperand(1);
 | |
|     SDValue N2 = I->getOperand(2);
 | |
|     if ((N1.getValueType().isFloatingPoint() &&
 | |
|          !N1.getValueType().isVector()) ||
 | |
|         !N1.hasOneUse())
 | |
|       continue;
 | |
| 
 | |
|     bool RModW = false;
 | |
|     SDValue Load;
 | |
|     unsigned Opcode = N1.getNode()->getOpcode();
 | |
|     switch (Opcode) {
 | |
|     case ISD::ADD:
 | |
|     case ISD::MUL:
 | |
|     case ISD::AND:
 | |
|     case ISD::OR:
 | |
|     case ISD::XOR:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::VECTOR_SHUFFLE: {
 | |
|       SDValue N10 = N1.getOperand(0);
 | |
|       SDValue N11 = N1.getOperand(1);
 | |
|       RModW = isRMWLoad(N10, Chain, N2, Load);
 | |
|       if (!RModW)
 | |
|         RModW = isRMWLoad(N11, Chain, N2, Load);
 | |
|       break;
 | |
|     }
 | |
|     case ISD::SUB:
 | |
|     case ISD::SHL:
 | |
|     case ISD::SRA:
 | |
|     case ISD::SRL:
 | |
|     case ISD::ROTL:
 | |
|     case ISD::ROTR:
 | |
|     case ISD::SUBC:
 | |
|     case ISD::SUBE:
 | |
|     case X86ISD::SHLD:
 | |
|     case X86ISD::SHRD: {
 | |
|       SDValue N10 = N1.getOperand(0);
 | |
|       RModW = isRMWLoad(N10, Chain, N2, Load);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     if (RModW) {
 | |
|       MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
 | |
|       ++NumLoadMoved;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
 | |
| /// nodes that target the FP stack to be store and load to the stack.  This is a
 | |
| /// gross hack.  We would like to simply mark these as being illegal, but when
 | |
| /// we do that, legalize produces these when it expands calls, then expands
 | |
| /// these in the same legalize pass.  We would like dag combine to be able to
 | |
| /// hack on these between the call expansion and the node legalization.  As such
 | |
| /// this pass basically does "really late" legalization of these inline with the
 | |
| /// X86 isel pass.
 | |
| void X86DAGToDAGISel::PreprocessForFPConvert() {
 | |
|   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | |
|        E = CurDAG->allnodes_end(); I != E; ) {
 | |
|     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
 | |
|     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
 | |
|       continue;
 | |
|     
 | |
|     // If the source and destination are SSE registers, then this is a legal
 | |
|     // conversion that should not be lowered.
 | |
|     MVT SrcVT = N->getOperand(0).getValueType();
 | |
|     MVT DstVT = N->getValueType(0);
 | |
|     bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
 | |
|     bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
 | |
|     if (SrcIsSSE && DstIsSSE)
 | |
|       continue;
 | |
| 
 | |
|     if (!SrcIsSSE && !DstIsSSE) {
 | |
|       // If this is an FPStack extension, it is a noop.
 | |
|       if (N->getOpcode() == ISD::FP_EXTEND)
 | |
|         continue;
 | |
|       // If this is a value-preserving FPStack truncation, it is a noop.
 | |
|       if (N->getConstantOperandVal(1))
 | |
|         continue;
 | |
|     }
 | |
|    
 | |
|     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
 | |
|     // FPStack has extload and truncstore.  SSE can fold direct loads into other
 | |
|     // operations.  Based on this, decide what we want to do.
 | |
|     MVT MemVT;
 | |
|     if (N->getOpcode() == ISD::FP_ROUND)
 | |
|       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
 | |
|     else
 | |
|       MemVT = SrcIsSSE ? SrcVT : DstVT;
 | |
|     
 | |
|     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
 | |
|     DebugLoc dl = N->getDebugLoc();
 | |
|     
 | |
|     // FIXME: optimize the case where the src/dest is a load or store?
 | |
|     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
 | |
|                                           N->getOperand(0),
 | |
|                                           MemTmp, NULL, 0, MemVT);
 | |
|     SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
 | |
|                                         NULL, 0, MemVT);
 | |
| 
 | |
|     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
 | |
|     // extload we created.  This will cause general havok on the dag because
 | |
|     // anything below the conversion could be folded into other existing nodes.
 | |
|     // To avoid invalidating 'I', back it up to the convert node.
 | |
|     --I;
 | |
|     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
 | |
|     
 | |
|     // Now that we did that, the node is dead.  Increment the iterator to the
 | |
|     // next node to process, then delete N.
 | |
|     ++I;
 | |
|     CurDAG->DeleteNode(N);
 | |
|   }  
 | |
| }
 | |
| 
 | |
| /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
 | |
| /// when it has created a SelectionDAG for us to codegen.
 | |
| void X86DAGToDAGISel::InstructionSelect() {
 | |
|   CurBB = BB;  // BB can change as result of isel.
 | |
|   const Function *F = CurDAG->getMachineFunction().getFunction();
 | |
|   OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
 | |
| 
 | |
|   DEBUG(BB->dump());
 | |
|   if (!Fast)
 | |
|     PreprocessForRMW();
 | |
| 
 | |
|   // FIXME: This should only happen when not -fast.
 | |
|   PreprocessForFPConvert();
 | |
| 
 | |
|   // Codegen the basic block.
 | |
| #ifndef NDEBUG
 | |
|   DOUT << "===== Instruction selection begins:\n";
 | |
|   Indent = 0;
 | |
| #endif
 | |
|   SelectRoot(*CurDAG);
 | |
| #ifndef NDEBUG
 | |
|   DOUT << "===== Instruction selection ends:\n";
 | |
| #endif
 | |
| 
 | |
|   CurDAG->RemoveDeadNodes();
 | |
| }
 | |
| 
 | |
| /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
 | |
| /// the main function.
 | |
| void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
 | |
|                                              MachineFrameInfo *MFI) {
 | |
|   const TargetInstrInfo *TII = TM.getInstrInfo();
 | |
|   if (Subtarget->isTargetCygMing())
 | |
|     BuildMI(BB, DebugLoc::getUnknownLoc(),
 | |
|             TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
 | |
| }
 | |
| 
 | |
| void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
 | |
|   // If this is main, emit special code for main.
 | |
|   MachineBasicBlock *BB = MF.begin();
 | |
|   if (Fn.hasExternalLinkage() && Fn.getName() == "main")
 | |
|     EmitSpecialCodeForMain(BB, MF.getFrameInfo());
 | |
| }
 | |
| 
 | |
| /// MatchAddress - Add the specified node to the specified addressing mode,
 | |
| /// returning true if it cannot be done.  This just pattern matches for the
 | |
| /// addressing mode.
 | |
| bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
 | |
|                                    bool isRoot, unsigned Depth) {
 | |
|   bool is64Bit = Subtarget->is64Bit();
 | |
|   DebugLoc dl = N.getDebugLoc();
 | |
|   DOUT << "MatchAddress: "; DEBUG(AM.dump());
 | |
|   // Limit recursion.
 | |
|   if (Depth > 5)
 | |
|     return MatchAddressBase(N, AM, isRoot, Depth);
 | |
|   
 | |
|   // RIP relative addressing: %rip + 32-bit displacement!
 | |
|   if (AM.isRIPRel) {
 | |
|     if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
 | |
|       uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
 | |
|       if (!is64Bit || isInt32(AM.Disp + Val)) {
 | |
|         AM.Disp += Val;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   switch (N.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::Constant: {
 | |
|     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
 | |
|     if (!is64Bit || isInt32(AM.Disp + Val)) {
 | |
|       AM.Disp += Val;
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86ISD::Wrapper: {
 | |
|     DOUT << "Wrapper: 64bit " << is64Bit;
 | |
|     DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
 | |
|     // Under X86-64 non-small code model, GV (and friends) are 64-bits.
 | |
|     // Also, base and index reg must be 0 in order to use rip as base.
 | |
|     if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
 | |
|                     AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
 | |
|       break;
 | |
|     if (AM.hasSymbolicDisplacement())
 | |
|       break;
 | |
|     // If value is available in a register both base and index components have
 | |
|     // been picked, we can't fit the result available in the register in the
 | |
|     // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
 | |
|     {
 | |
|       SDValue N0 = N.getOperand(0);
 | |
|       if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
 | |
|         uint64_t Offset = G->getOffset();
 | |
|         if (!is64Bit || isInt32(AM.Disp + Offset)) {
 | |
|           GlobalValue *GV = G->getGlobal();
 | |
|           AM.GV = GV;
 | |
|           AM.Disp += Offset;
 | |
|           AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
 | |
|           return false;
 | |
|         }
 | |
|       } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
 | |
|         uint64_t Offset = CP->getOffset();
 | |
|         if (!is64Bit || isInt32(AM.Disp + Offset)) {
 | |
|           AM.CP = CP->getConstVal();
 | |
|           AM.Align = CP->getAlignment();
 | |
|           AM.Disp += Offset;
 | |
|           AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
 | |
|           return false;
 | |
|         }
 | |
|       } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
 | |
|         AM.ES = S->getSymbol();
 | |
|         AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
 | |
|         return false;
 | |
|       } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
 | |
|         AM.JT = J->getIndex();
 | |
|         AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::FrameIndex:
 | |
|     if (AM.BaseType == X86ISelAddressMode::RegBase
 | |
|         && AM.Base.Reg.getNode() == 0) {
 | |
|       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
 | |
|       break;
 | |
|       
 | |
|     if (ConstantSDNode
 | |
|           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
 | |
|       unsigned Val = CN->getZExtValue();
 | |
|       if (Val == 1 || Val == 2 || Val == 3) {
 | |
|         AM.Scale = 1 << Val;
 | |
|         SDValue ShVal = N.getNode()->getOperand(0);
 | |
| 
 | |
|         // Okay, we know that we have a scale by now.  However, if the scaled
 | |
|         // value is an add of something and a constant, we can fold the
 | |
|         // constant into the disp field here.
 | |
|         if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
 | |
|             isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
 | |
|           AM.IndexReg = ShVal.getNode()->getOperand(0);
 | |
|           ConstantSDNode *AddVal =
 | |
|             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
 | |
|           uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
 | |
|           if (!is64Bit || isInt32(Disp))
 | |
|             AM.Disp = Disp;
 | |
|           else
 | |
|             AM.IndexReg = ShVal;
 | |
|         } else {
 | |
|           AM.IndexReg = ShVal;
 | |
|         }
 | |
|         return false;
 | |
|       }
 | |
|     break;
 | |
|     }
 | |
| 
 | |
|   case ISD::SMUL_LOHI:
 | |
|   case ISD::UMUL_LOHI:
 | |
|     // A mul_lohi where we need the low part can be folded as a plain multiply.
 | |
|     if (N.getResNo() != 0) break;
 | |
|     // FALL THROUGH
 | |
|   case ISD::MUL:
 | |
|     // X*[3,5,9] -> X+X*[2,4,8]
 | |
|     if (AM.BaseType == X86ISelAddressMode::RegBase &&
 | |
|         AM.Base.Reg.getNode() == 0 &&
 | |
|         AM.IndexReg.getNode() == 0 &&
 | |
|         !AM.isRIPRel) {
 | |
|       if (ConstantSDNode
 | |
|             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
 | |
|         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
 | |
|             CN->getZExtValue() == 9) {
 | |
|           AM.Scale = unsigned(CN->getZExtValue())-1;
 | |
| 
 | |
|           SDValue MulVal = N.getNode()->getOperand(0);
 | |
|           SDValue Reg;
 | |
| 
 | |
|           // Okay, we know that we have a scale by now.  However, if the scaled
 | |
|           // value is an add of something and a constant, we can fold the
 | |
|           // constant into the disp field here.
 | |
|           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
 | |
|               isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
 | |
|             Reg = MulVal.getNode()->getOperand(0);
 | |
|             ConstantSDNode *AddVal =
 | |
|               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
 | |
|             uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
 | |
|                                       CN->getZExtValue();
 | |
|             if (!is64Bit || isInt32(Disp))
 | |
|               AM.Disp = Disp;
 | |
|             else
 | |
|               Reg = N.getNode()->getOperand(0);
 | |
|           } else {
 | |
|             Reg = N.getNode()->getOperand(0);
 | |
|           }
 | |
| 
 | |
|           AM.IndexReg = AM.Base.Reg = Reg;
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::ADD: {
 | |
|     X86ISelAddressMode Backup = AM;
 | |
|     if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) &&
 | |
|         !MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1))
 | |
|       return false;
 | |
|     AM = Backup;
 | |
|     if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) &&
 | |
|         !MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1))
 | |
|       return false;
 | |
|     AM = Backup;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::OR:
 | |
|     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       X86ISelAddressMode Backup = AM;
 | |
|       uint64_t Offset = CN->getSExtValue();
 | |
|       // Start with the LHS as an addr mode.
 | |
|       if (!MatchAddress(N.getOperand(0), AM, false) &&
 | |
|           // Address could not have picked a GV address for the displacement.
 | |
|           AM.GV == NULL &&
 | |
|           // On x86-64, the resultant disp must fit in 32-bits.
 | |
|           (!is64Bit || isInt32(AM.Disp + Offset)) &&
 | |
|           // Check to see if the LHS & C is zero.
 | |
|           CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
 | |
|         AM.Disp += Offset;
 | |
|         return false;
 | |
|       }
 | |
|       AM = Backup;
 | |
|     }
 | |
|     break;
 | |
|       
 | |
|   case ISD::AND: {
 | |
|     // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
 | |
|     // allows us to fold the shift into this addressing mode.
 | |
|     SDValue Shift = N.getOperand(0);
 | |
|     if (Shift.getOpcode() != ISD::SHL) break;
 | |
| 
 | |
|     // Scale must not be used already.
 | |
|     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
 | |
| 
 | |
|     // Not when RIP is used as the base.
 | |
|     if (AM.isRIPRel) break;
 | |
|       
 | |
|     ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|     ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
 | |
|     if (!C1 || !C2) break;
 | |
| 
 | |
|     // Not likely to be profitable if either the AND or SHIFT node has more
 | |
|     // than one use (unless all uses are for address computation). Besides,
 | |
|     // isel mechanism requires their node ids to be reused.
 | |
|     if (!N.hasOneUse() || !Shift.hasOneUse())
 | |
|       break;
 | |
|     
 | |
|     // Verify that the shift amount is something we can fold.
 | |
|     unsigned ShiftCst = C1->getZExtValue();
 | |
|     if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
 | |
|       break;
 | |
|     
 | |
|     // Get the new AND mask, this folds to a constant.
 | |
|     SDValue X = Shift.getOperand(0);
 | |
|     SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
 | |
|                                          SDValue(C2, 0), SDValue(C1, 0));
 | |
|     SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, 
 | |
|                                      NewANDMask);
 | |
|     SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
 | |
|                                        NewAND, SDValue(C1, 0));
 | |
| 
 | |
|     // Insert the new nodes into the topological ordering.
 | |
|     if (C1->getNodeId() > X.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(X.getNode(), C1);
 | |
|       C1->setNodeId(X.getNode()->getNodeId());
 | |
|     }
 | |
|     if (NewANDMask.getNode()->getNodeId() == -1 ||
 | |
|         NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
 | |
|       NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
 | |
|     }
 | |
|     if (NewAND.getNode()->getNodeId() == -1 ||
 | |
|         NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
 | |
|       NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
 | |
|     }
 | |
|     if (NewSHIFT.getNode()->getNodeId() == -1 ||
 | |
|         NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
 | |
|       CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
 | |
|       NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
 | |
|     }
 | |
| 
 | |
|     CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
 | |
|     
 | |
|     AM.Scale = 1 << ShiftCst;
 | |
|     AM.IndexReg = NewAND;
 | |
|     return false;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return MatchAddressBase(N, AM, isRoot, Depth);
 | |
| }
 | |
| 
 | |
| /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
 | |
| /// specified addressing mode without any further recursion.
 | |
| bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
 | |
|                                        bool isRoot, unsigned Depth) {
 | |
|   // Is the base register already occupied?
 | |
|   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
 | |
|     // If so, check to see if the scale index register is set.
 | |
|     if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
 | |
|       AM.IndexReg = N;
 | |
|       AM.Scale = 1;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we cannot select it.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Default, generate it as a register.
 | |
|   AM.BaseType = X86ISelAddressMode::RegBase;
 | |
|   AM.Base.Reg = N;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectAddr - returns true if it is able pattern match an addressing mode.
 | |
| /// It returns the operands which make up the maximal addressing mode it can
 | |
| /// match by reference.
 | |
| bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
 | |
|                                  SDValue &Scale, SDValue &Index,
 | |
|                                  SDValue &Disp) {
 | |
|   X86ISelAddressMode AM;
 | |
|   if (MatchAddress(N, AM))
 | |
|     return false;
 | |
| 
 | |
|   MVT VT = N.getValueType();
 | |
|   if (AM.BaseType == X86ISelAddressMode::RegBase) {
 | |
|     if (!AM.Base.Reg.getNode())
 | |
|       AM.Base.Reg = CurDAG->getRegister(0, VT);
 | |
|   }
 | |
| 
 | |
|   if (!AM.IndexReg.getNode())
 | |
|     AM.IndexReg = CurDAG->getRegister(0, VT);
 | |
| 
 | |
|   getAddressOperands(AM, Base, Scale, Index, Disp);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
 | |
| /// match a load whose top elements are either undef or zeros.  The load flavor
 | |
| /// is derived from the type of N, which is either v4f32 or v2f64.
 | |
| bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
 | |
|                                           SDValue N, SDValue &Base,
 | |
|                                           SDValue &Scale, SDValue &Index,
 | |
|                                           SDValue &Disp, SDValue &InChain,
 | |
|                                           SDValue &OutChain) {
 | |
|   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|     InChain = N.getOperand(0).getValue(1);
 | |
|     if (ISD::isNON_EXTLoad(InChain.getNode()) &&
 | |
|         InChain.getValue(0).hasOneUse() &&
 | |
|         N.hasOneUse() &&
 | |
|         IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(InChain);
 | |
|       if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
 | |
|         return false;
 | |
|       OutChain = LD->getChain();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Also handle the case where we explicitly require zeros in the top
 | |
|   // elements.  This is a vector shuffle from the zero vector.
 | |
|   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
 | |
|       // Check to see if the top elements are all zeros (or bitcast of zeros).
 | |
|       N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 
 | |
|       N.getOperand(0).getNode()->hasOneUse() &&
 | |
|       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
 | |
|       N.getOperand(0).getOperand(0).hasOneUse()) {
 | |
|     // Okay, this is a zero extending load.  Fold it.
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
 | |
|     if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
 | |
|       return false;
 | |
|     OutChain = LD->getChain();
 | |
|     InChain = SDValue(LD, 1);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
 | |
| /// mode it matches can be cost effectively emitted as an LEA instruction.
 | |
| bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
 | |
|                                     SDValue &Base, SDValue &Scale,
 | |
|                                     SDValue &Index, SDValue &Disp) {
 | |
|   X86ISelAddressMode AM;
 | |
|   if (MatchAddress(N, AM))
 | |
|     return false;
 | |
| 
 | |
|   MVT VT = N.getValueType();
 | |
|   unsigned Complexity = 0;
 | |
|   if (AM.BaseType == X86ISelAddressMode::RegBase)
 | |
|     if (AM.Base.Reg.getNode())
 | |
|       Complexity = 1;
 | |
|     else
 | |
|       AM.Base.Reg = CurDAG->getRegister(0, VT);
 | |
|   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | |
|     Complexity = 4;
 | |
| 
 | |
|   if (AM.IndexReg.getNode())
 | |
|     Complexity++;
 | |
|   else
 | |
|     AM.IndexReg = CurDAG->getRegister(0, VT);
 | |
| 
 | |
|   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
 | |
|   // a simple shift.
 | |
|   if (AM.Scale > 1)
 | |
|     Complexity++;
 | |
| 
 | |
|   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
 | |
|   // to a LEA. This is determined with some expermentation but is by no means
 | |
|   // optimal (especially for code size consideration). LEA is nice because of
 | |
|   // its three-address nature. Tweak the cost function again when we can run
 | |
|   // convertToThreeAddress() at register allocation time.
 | |
|   if (AM.hasSymbolicDisplacement()) {
 | |
|     // For X86-64, we should always use lea to materialize RIP relative
 | |
|     // addresses.
 | |
|     if (Subtarget->is64Bit())
 | |
|       Complexity = 4;
 | |
|     else
 | |
|       Complexity += 2;
 | |
|   }
 | |
| 
 | |
|   if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
 | |
|     Complexity++;
 | |
| 
 | |
|   if (Complexity > 2) {
 | |
|     getAddressOperands(AM, Base, Scale, Index, Disp);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
 | |
|                                   SDValue &Base, SDValue &Scale,
 | |
|                                   SDValue &Index, SDValue &Disp) {
 | |
|   if (ISD::isNON_EXTLoad(N.getNode()) &&
 | |
|       N.hasOneUse() &&
 | |
|       IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
 | |
|     return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Return an SDNode that returns the value of
 | |
| /// the global base register. Output instructions required to
 | |
| /// initialize the global base register, if necessary.
 | |
| ///
 | |
| SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
 | |
|   MachineFunction *MF = CurBB->getParent();
 | |
|   unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
 | |
|   return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
 | |
| }
 | |
| 
 | |
| static SDNode *FindCallStartFromCall(SDNode *Node) {
 | |
|   if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
 | |
|     assert(Node->getOperand(0).getValueType() == MVT::Other &&
 | |
|          "Node doesn't have a token chain argument!");
 | |
|   return FindCallStartFromCall(Node->getOperand(0).getNode());
 | |
| }
 | |
| 
 | |
| /// getTruncateTo8Bit - return an SDNode that implements a subreg based
 | |
| /// truncate of the specified operand to i8. This can be done with tablegen,
 | |
| /// except that this code uses MVT::Flag in a tricky way that happens to
 | |
| /// improve scheduling in some cases.
 | |
| SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
 | |
|   assert(!Subtarget->is64Bit() &&
 | |
|          "getTruncateTo8Bit is only needed on x86-32!");
 | |
|   SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
 | |
|   DebugLoc dl = N0.getDebugLoc();
 | |
| 
 | |
|   // Ensure that the source register has an 8-bit subreg on 32-bit targets
 | |
|   unsigned Opc;
 | |
|   MVT N0VT = N0.getValueType();
 | |
|   switch (N0VT.getSimpleVT()) {
 | |
|   default: assert(0 && "Unknown truncate!");
 | |
|   case MVT::i16:
 | |
|     Opc = X86::MOV16to16_;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     Opc = X86::MOV32to32_;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // The use of MVT::Flag here is not strictly accurate, but it helps
 | |
|   // scheduling in some cases.
 | |
|   N0 = SDValue(CurDAG->getTargetNode(Opc, dl, N0VT, MVT::Flag, N0), 0);
 | |
|   return CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
 | |
|                                MVT::i8, N0, SRIdx, N0.getValue(1));
 | |
| }
 | |
| 
 | |
| SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
 | |
|   SDValue Chain = Node->getOperand(0);
 | |
|   SDValue In1 = Node->getOperand(1);
 | |
|   SDValue In2L = Node->getOperand(2);
 | |
|   SDValue In2H = Node->getOperand(3);
 | |
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3;
 | |
|   if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3))
 | |
|     return NULL;
 | |
|   SDValue LSI = Node->getOperand(4);    // MemOperand
 | |
|   const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, In2L, In2H, LSI, Chain };
 | |
|   return CurDAG->getTargetNode(Opc, Node->getDebugLoc(), 
 | |
|                                MVT::i32, MVT::i32, MVT::Other, Ops, 8);
 | |
| }
 | |
| 
 | |
| SDNode *X86DAGToDAGISel::Select(SDValue N) {
 | |
|   SDNode *Node = N.getNode();
 | |
|   MVT NVT = Node->getValueType(0);
 | |
|   unsigned Opc, MOpc;
 | |
|   unsigned Opcode = Node->getOpcode();
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   DOUT << std::string(Indent, ' ') << "Selecting: ";
 | |
|   DEBUG(Node->dump(CurDAG));
 | |
|   DOUT << "\n";
 | |
|   Indent += 2;
 | |
| #endif
 | |
| 
 | |
|   if (Node->isMachineOpcode()) {
 | |
| #ifndef NDEBUG
 | |
|     DOUT << std::string(Indent-2, ' ') << "== ";
 | |
|     DEBUG(Node->dump(CurDAG));
 | |
|     DOUT << "\n";
 | |
|     Indent -= 2;
 | |
| #endif
 | |
|     return NULL;   // Already selected.
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     default: break;
 | |
|     case X86ISD::GlobalBaseReg: 
 | |
|       return getGlobalBaseReg();
 | |
| 
 | |
|     case X86ISD::ATOMOR64_DAG:
 | |
|       return SelectAtomic64(Node, X86::ATOMOR6432);
 | |
|     case X86ISD::ATOMXOR64_DAG:
 | |
|       return SelectAtomic64(Node, X86::ATOMXOR6432);
 | |
|     case X86ISD::ATOMADD64_DAG:
 | |
|       return SelectAtomic64(Node, X86::ATOMADD6432);
 | |
|     case X86ISD::ATOMSUB64_DAG:
 | |
|       return SelectAtomic64(Node, X86::ATOMSUB6432);
 | |
|     case X86ISD::ATOMNAND64_DAG:
 | |
|       return SelectAtomic64(Node, X86::ATOMNAND6432);
 | |
|     case X86ISD::ATOMAND64_DAG:
 | |
|       return SelectAtomic64(Node, X86::ATOMAND6432);
 | |
|     case X86ISD::ATOMSWAP64_DAG:
 | |
|       return SelectAtomic64(Node, X86::ATOMSWAP6432);
 | |
| 
 | |
|     case ISD::SMUL_LOHI:
 | |
|     case ISD::UMUL_LOHI: {
 | |
|       SDValue N0 = Node->getOperand(0);
 | |
|       SDValue N1 = Node->getOperand(1);
 | |
| 
 | |
|       bool isSigned = Opcode == ISD::SMUL_LOHI;
 | |
|       if (!isSigned)
 | |
|         switch (NVT.getSimpleVT()) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
 | |
|         case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
 | |
|         case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
 | |
|         case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
 | |
|         }
 | |
|       else
 | |
|         switch (NVT.getSimpleVT()) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
 | |
|         case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
 | |
|         case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
 | |
|         case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
 | |
|         }
 | |
| 
 | |
|       unsigned LoReg, HiReg;
 | |
|       switch (NVT.getSimpleVT()) {
 | |
|       default: assert(0 && "Unsupported VT!");
 | |
|       case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
 | |
|       case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
 | |
|       case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
 | |
|       case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
 | |
|       }
 | |
| 
 | |
|       SDValue Tmp0, Tmp1, Tmp2, Tmp3;
 | |
|       bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
 | |
|       // multiplty is commmutative
 | |
|       if (!foldedLoad) {
 | |
|         foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
 | |
|         if (foldedLoad)
 | |
|           std::swap(N0, N1);
 | |
|       }
 | |
| 
 | |
|       SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
 | |
|                                               N0, SDValue()).getValue(1);
 | |
| 
 | |
|       if (foldedLoad) {
 | |
|         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
 | |
|         SDNode *CNode =
 | |
|           CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, 6);
 | |
|         InFlag = SDValue(CNode, 1);
 | |
|         // Update the chain.
 | |
|         ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
 | |
|       } else {
 | |
|         InFlag =
 | |
|           SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
 | |
|       }
 | |
| 
 | |
|       // Copy the low half of the result, if it is needed.
 | |
|       if (!N.getValue(0).use_empty()) {
 | |
|         SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                                   LoReg, NVT, InFlag);
 | |
|         InFlag = Result.getValue(2);
 | |
|         ReplaceUses(N.getValue(0), Result);
 | |
| #ifndef NDEBUG
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(Result.getNode()->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
| #endif
 | |
|       }
 | |
|       // Copy the high half of the result, if it is needed.
 | |
|       if (!N.getValue(1).use_empty()) {
 | |
|         SDValue Result;
 | |
|         if (HiReg == X86::AH && Subtarget->is64Bit()) {
 | |
|           // Prevent use of AH in a REX instruction by referencing AX instead.
 | |
|           // Shift it down 8 bits.
 | |
|           Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                           X86::AX, MVT::i16, InFlag);
 | |
|           InFlag = Result.getValue(2);
 | |
|           Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
 | |
|                                                  Result,
 | |
|                                      CurDAG->getTargetConstant(8, MVT::i8)), 0);
 | |
|           // Then truncate it down to i8.
 | |
|           SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
 | |
|           Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
 | |
|                                                    MVT::i8, Result, SRIdx), 0);
 | |
|         } else {
 | |
|           Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                           HiReg, NVT, InFlag);
 | |
|           InFlag = Result.getValue(2);
 | |
|         }
 | |
|         ReplaceUses(N.getValue(1), Result);
 | |
| #ifndef NDEBUG
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(Result.getNode()->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
| #endif
 | |
|       }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|       return NULL;
 | |
|     }
 | |
|       
 | |
|     case ISD::SDIVREM:
 | |
|     case ISD::UDIVREM: {
 | |
|       SDValue N0 = Node->getOperand(0);
 | |
|       SDValue N1 = Node->getOperand(1);
 | |
| 
 | |
|       bool isSigned = Opcode == ISD::SDIVREM;
 | |
|       if (!isSigned)
 | |
|         switch (NVT.getSimpleVT()) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
 | |
|         case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
 | |
|         case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
 | |
|         case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
 | |
|         }
 | |
|       else
 | |
|         switch (NVT.getSimpleVT()) {
 | |
|         default: assert(0 && "Unsupported VT!");
 | |
|         case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
 | |
|         case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
 | |
|         case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
 | |
|         case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
 | |
|         }
 | |
| 
 | |
|       unsigned LoReg, HiReg;
 | |
|       unsigned ClrOpcode, SExtOpcode;
 | |
|       switch (NVT.getSimpleVT()) {
 | |
|       default: assert(0 && "Unsupported VT!");
 | |
|       case MVT::i8:
 | |
|         LoReg = X86::AL;  HiReg = X86::AH;
 | |
|         ClrOpcode  = 0;
 | |
|         SExtOpcode = X86::CBW;
 | |
|         break;
 | |
|       case MVT::i16:
 | |
|         LoReg = X86::AX;  HiReg = X86::DX;
 | |
|         ClrOpcode  = X86::MOV16r0;
 | |
|         SExtOpcode = X86::CWD;
 | |
|         break;
 | |
|       case MVT::i32:
 | |
|         LoReg = X86::EAX; HiReg = X86::EDX;
 | |
|         ClrOpcode  = X86::MOV32r0;
 | |
|         SExtOpcode = X86::CDQ;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|         LoReg = X86::RAX; HiReg = X86::RDX;
 | |
|         ClrOpcode  = X86::MOV64r0;
 | |
|         SExtOpcode = X86::CQO;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       SDValue Tmp0, Tmp1, Tmp2, Tmp3;
 | |
|       bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
 | |
|       bool signBitIsZero = CurDAG->SignBitIsZero(N0);
 | |
| 
 | |
|       SDValue InFlag;
 | |
|       if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
 | |
|         // Special case for div8, just use a move with zero extension to AX to
 | |
|         // clear the upper 8 bits (AH).
 | |
|         SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
 | |
|         if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
 | |
|           SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
 | |
|           Move =
 | |
|             SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16, 
 | |
|                                            MVT::Other, Ops, 5), 0);
 | |
|           Chain = Move.getValue(1);
 | |
|           ReplaceUses(N0.getValue(1), Chain);
 | |
|         } else {
 | |
|           Move =
 | |
|             SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
 | |
|           Chain = CurDAG->getEntryNode();
 | |
|         }
 | |
|         Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
 | |
|         InFlag = Chain.getValue(1);
 | |
|       } else {
 | |
|         InFlag =
 | |
|           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
 | |
|                                LoReg, N0, SDValue()).getValue(1);
 | |
|         if (isSigned && !signBitIsZero) {
 | |
|           // Sign extend the low part into the high part.
 | |
|           InFlag =
 | |
|             SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
 | |
|         } else {
 | |
|           // Zero out the high part, effectively zero extending the input.
 | |
|           SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT), 
 | |
|                                     0);
 | |
|           InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
 | |
|                                         ClrNode, InFlag).getValue(1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (foldedLoad) {
 | |
|         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
 | |
|         SDNode *CNode =
 | |
|           CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, 6);
 | |
|         InFlag = SDValue(CNode, 1);
 | |
|         // Update the chain.
 | |
|         ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
 | |
|       } else {
 | |
|         InFlag =
 | |
|           SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
 | |
|       }
 | |
| 
 | |
|       // Copy the division (low) result, if it is needed.
 | |
|       if (!N.getValue(0).use_empty()) {
 | |
|         SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                                   LoReg, NVT, InFlag);
 | |
|         InFlag = Result.getValue(2);
 | |
|         ReplaceUses(N.getValue(0), Result);
 | |
| #ifndef NDEBUG
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(Result.getNode()->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
| #endif
 | |
|       }
 | |
|       // Copy the remainder (high) result, if it is needed.
 | |
|       if (!N.getValue(1).use_empty()) {
 | |
|         SDValue Result;
 | |
|         if (HiReg == X86::AH && Subtarget->is64Bit()) {
 | |
|           // Prevent use of AH in a REX instruction by referencing AX instead.
 | |
|           // Shift it down 8 bits.
 | |
|           Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                           X86::AX, MVT::i16, InFlag);
 | |
|           InFlag = Result.getValue(2);
 | |
|           Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
 | |
|                                         Result,
 | |
|                                         CurDAG->getTargetConstant(8, MVT::i8)), 
 | |
|                            0);
 | |
|           // Then truncate it down to i8.
 | |
|           SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
 | |
|           Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
 | |
|                                                    MVT::i8, Result, SRIdx), 0);
 | |
|         } else {
 | |
|           Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | |
|                                           HiReg, NVT, InFlag);
 | |
|           InFlag = Result.getValue(2);
 | |
|         }
 | |
|         ReplaceUses(N.getValue(1), Result);
 | |
| #ifndef NDEBUG
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(Result.getNode()->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
| #endif
 | |
|       }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|       return NULL;
 | |
|     }
 | |
| 
 | |
|     case ISD::SIGN_EXTEND_INREG: {
 | |
|       MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | |
|       if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
 | |
|         SDValue N0 = Node->getOperand(0);
 | |
|       
 | |
|         SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
 | |
|         unsigned Opc = 0;
 | |
|         switch (NVT.getSimpleVT()) {
 | |
|         default: assert(0 && "Unknown sign_extend_inreg!");
 | |
|         case MVT::i16:
 | |
|           Opc = X86::MOVSX16rr8;
 | |
|           break;
 | |
|         case MVT::i32:
 | |
|           Opc = X86::MOVSX32rr8; 
 | |
|           break;
 | |
|         }
 | |
|       
 | |
|         SDNode *ResNode = CurDAG->getTargetNode(Opc, dl, NVT, TruncOp);
 | |
|       
 | |
| #ifndef NDEBUG
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(TruncOp.getNode()->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(ResNode->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
|         Indent -= 2;
 | |
| #endif
 | |
|         return ResNode;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     case ISD::TRUNCATE: {
 | |
|       if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
 | |
|         SDValue Input = Node->getOperand(0);
 | |
|         SDNode *ResNode = getTruncateTo8Bit(Input);
 | |
|       
 | |
| #ifndef NDEBUG
 | |
|         DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|         DEBUG(ResNode->dump(CurDAG));
 | |
|         DOUT << "\n";
 | |
|         Indent -= 2;
 | |
| #endif
 | |
|         return ResNode;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case ISD::DECLARE: {
 | |
|       // Handle DECLARE nodes here because the second operand may have been
 | |
|       // wrapped in X86ISD::Wrapper.
 | |
|       SDValue Chain = Node->getOperand(0);
 | |
|       SDValue N1 = Node->getOperand(1);
 | |
|       SDValue N2 = Node->getOperand(2);
 | |
|       FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
 | |
|       
 | |
|       // FIXME: We need to handle this for VLAs.
 | |
|       if (!FINode) {
 | |
|         ReplaceUses(N.getValue(0), Chain);
 | |
|         return NULL;
 | |
|       }
 | |
|       
 | |
|       if (N2.getOpcode() == ISD::ADD &&
 | |
|           N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
 | |
|         N2 = N2.getOperand(1);
 | |
|       
 | |
|       // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
 | |
|       // somehow, just ignore it.
 | |
|       if (N2.getOpcode() != X86ISD::Wrapper) {
 | |
|         ReplaceUses(N.getValue(0), Chain);
 | |
|         return NULL;
 | |
|       }
 | |
|       GlobalAddressSDNode *GVNode =
 | |
|         dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
 | |
|       if (GVNode == 0) {
 | |
|         ReplaceUses(N.getValue(0), Chain);
 | |
|         return NULL;
 | |
|       }
 | |
|       SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
 | |
|                                                  TLI.getPointerTy());
 | |
|       SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
 | |
|                                                     TLI.getPointerTy());
 | |
|       SDValue Ops[] = { Tmp1, Tmp2, Chain };
 | |
|       return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
 | |
|                                    MVT::Other, Ops, 3);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDNode *ResNode = SelectCode(N);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DOUT << std::string(Indent-2, ' ') << "=> ";
 | |
|   if (ResNode == NULL || ResNode == N.getNode())
 | |
|     DEBUG(N.getNode()->dump(CurDAG));
 | |
|   else
 | |
|     DEBUG(ResNode->dump(CurDAG));
 | |
|   DOUT << "\n";
 | |
|   Indent -= 2;
 | |
| #endif
 | |
| 
 | |
|   return ResNode;
 | |
| }
 | |
| 
 | |
| bool X86DAGToDAGISel::
 | |
| SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
 | |
|                              std::vector<SDValue> &OutOps) {
 | |
|   SDValue Op0, Op1, Op2, Op3;
 | |
|   switch (ConstraintCode) {
 | |
|   case 'o':   // offsetable        ??
 | |
|   case 'v':   // not offsetable    ??
 | |
|   default: return true;
 | |
|   case 'm':   // memory
 | |
|     if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   OutOps.push_back(Op0);
 | |
|   OutOps.push_back(Op1);
 | |
|   OutOps.push_back(Op2);
 | |
|   OutOps.push_back(Op3);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// createX86ISelDag - This pass converts a legalized DAG into a 
 | |
| /// X86-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
 | |
|   return new X86DAGToDAGISel(TM, Fast);
 | |
| }
 |