mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64278 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			546 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			546 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform manipulations on basic blocks, and
 | |
| // instructions contained within basic blocks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// DeleteDeadBlock - Delete the specified block, which must have no
 | |
| /// predecessors.
 | |
| void llvm::DeleteDeadBlock(BasicBlock *BB) {
 | |
|   assert((pred_begin(BB) == pred_end(BB) ||
 | |
|          // Can delete self loop.
 | |
|          BB->getSinglePredecessor() == BB) && "Block is not dead!");
 | |
|   TerminatorInst *BBTerm = BB->getTerminator();
 | |
|   Value *DbgRegionEndContext = NULL;
 | |
|   // Loop through all of our successors and make sure they know that one
 | |
|   // of their predecessors is going away.
 | |
|   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
 | |
|     BBTerm->getSuccessor(i)->removePredecessor(BB);
 | |
|   
 | |
|   // Zap all the instructions in the block.
 | |
|   while (!BB->empty()) {
 | |
|     Instruction &I = BB->back();
 | |
|     // It is possible to have multiple llvm.dbg.region.end in a block.
 | |
|     if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(&I))
 | |
|       DbgRegionEndContext = DREI->getContext();
 | |
| 
 | |
|     // If this instruction is used, replace uses with an arbitrary value.
 | |
|     // Because control flow can't get here, we don't care what we replace the
 | |
|     // value with.  Note that since this block is unreachable, and all values
 | |
|     // contained within it must dominate their uses, that all uses will
 | |
|     // eventually be removed (they are themselves dead).
 | |
|     if (!I.use_empty())
 | |
|       I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|     BB->getInstList().pop_back();
 | |
|   }
 | |
| 
 | |
|   if (DbgRegionEndContext) {
 | |
|     // Delete corresponding llvm.dbg.func.start from entry block.
 | |
|     BasicBlock &Entry = BB->getParent()->getEntryBlock();
 | |
|     DbgFuncStartInst *DbgFuncStart = NULL;
 | |
|     for (BasicBlock::iterator BI = Entry.begin(), BE = Entry.end();
 | |
|            BI != BE; ++BI) {
 | |
|       if (DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(BI)) {
 | |
|         DbgFuncStart = DFSI;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (DbgFuncStart && DbgFuncStart->getSubprogram() == DbgRegionEndContext)
 | |
|       DbgFuncStart->eraseFromParent();
 | |
|   }
 | |
|     
 | |
|   // Zap the block!
 | |
|   BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
 | |
| /// any single-entry PHI nodes in it, fold them away.  This handles the case
 | |
| /// when all entries to the PHI nodes in a block are guaranteed equal, such as
 | |
| /// when the block has exactly one predecessor.
 | |
| void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
 | |
|   if (!isa<PHINode>(BB->begin()))
 | |
|     return;
 | |
|   
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     if (PN->getIncomingValue(0) != PN)
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     else
 | |
|       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
 | |
| /// if possible.  The return value indicates success or failure.
 | |
| bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) {
 | |
|   pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
 | |
|   // Can't merge the entry block.
 | |
|   if (pred_begin(BB) == pred_end(BB)) return false;
 | |
|   
 | |
|   BasicBlock *PredBB = *PI++;
 | |
|   for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
 | |
|     if (*PI != PredBB) {
 | |
|       PredBB = 0;       // There are multiple different predecessors...
 | |
|       break;
 | |
|     }
 | |
|   
 | |
|   // Can't merge if there are multiple predecessors.
 | |
|   if (!PredBB) return false;
 | |
|   // Don't break self-loops.
 | |
|   if (PredBB == BB) return false;
 | |
|   // Don't break invokes.
 | |
|   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
 | |
|   
 | |
|   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
 | |
|   BasicBlock* OnlySucc = BB;
 | |
|   for (; SI != SE; ++SI)
 | |
|     if (*SI != OnlySucc) {
 | |
|       OnlySucc = 0;     // There are multiple distinct successors!
 | |
|       break;
 | |
|     }
 | |
|   
 | |
|   // Can't merge if there are multiple successors.
 | |
|   if (!OnlySucc) return false;
 | |
| 
 | |
|   // Can't merge if there is PHI loop.
 | |
|   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingValue(i) == PN)
 | |
|           return false;
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Begin by getting rid of unneeded PHIs.
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | |
|     PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|     BB->getInstList().pop_front();  // Delete the phi node...
 | |
|   }
 | |
|   
 | |
|   // Delete the unconditional branch from the predecessor...
 | |
|   PredBB->getInstList().pop_back();
 | |
|   
 | |
|   // Move all definitions in the successor to the predecessor...
 | |
|   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
 | |
|   
 | |
|   // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|   // source...
 | |
|   BB->replaceAllUsesWith(PredBB);
 | |
|   
 | |
|   // Inherit predecessors name if it exists.
 | |
|   if (!PredBB->hasName())
 | |
|     PredBB->takeName(BB);
 | |
|   
 | |
|   // Finally, erase the old block and update dominator info.
 | |
|   if (P) {
 | |
|     if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) {
 | |
|       DomTreeNode* DTN = DT->getNode(BB);
 | |
|       DomTreeNode* PredDTN = DT->getNode(PredBB);
 | |
|   
 | |
|       if (DTN) {
 | |
|         SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
 | |
|         for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(),
 | |
|              DE = Children.end(); DI != DE; ++DI)
 | |
|           DT->changeImmediateDominator(*DI, PredDTN);
 | |
| 
 | |
|         DT->eraseNode(BB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   BB->eraseFromParent();
 | |
|   
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
 | |
| /// with a value, then remove and delete the original instruction.
 | |
| ///
 | |
| void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
 | |
|                                 BasicBlock::iterator &BI, Value *V) {
 | |
|   Instruction &I = *BI;
 | |
|   // Replaces all of the uses of the instruction with uses of the value
 | |
|   I.replaceAllUsesWith(V);
 | |
| 
 | |
|   // Make sure to propagate a name if there is one already.
 | |
|   if (I.hasName() && !V->hasName())
 | |
|     V->takeName(&I);
 | |
| 
 | |
|   // Delete the unnecessary instruction now...
 | |
|   BI = BIL.erase(BI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ReplaceInstWithInst - Replace the instruction specified by BI with the
 | |
| /// instruction specified by I.  The original instruction is deleted and BI is
 | |
| /// updated to point to the new instruction.
 | |
| ///
 | |
| void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
 | |
|                                BasicBlock::iterator &BI, Instruction *I) {
 | |
|   assert(I->getParent() == 0 &&
 | |
|          "ReplaceInstWithInst: Instruction already inserted into basic block!");
 | |
| 
 | |
|   // Insert the new instruction into the basic block...
 | |
|   BasicBlock::iterator New = BIL.insert(BI, I);
 | |
| 
 | |
|   // Replace all uses of the old instruction, and delete it.
 | |
|   ReplaceInstWithValue(BIL, BI, I);
 | |
| 
 | |
|   // Move BI back to point to the newly inserted instruction
 | |
|   BI = New;
 | |
| }
 | |
| 
 | |
| /// ReplaceInstWithInst - Replace the instruction specified by From with the
 | |
| /// instruction specified by To.
 | |
| ///
 | |
| void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
 | |
|   BasicBlock::iterator BI(From);
 | |
|   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
 | |
| }
 | |
| 
 | |
| /// RemoveSuccessor - Change the specified terminator instruction such that its
 | |
| /// successor SuccNum no longer exists.  Because this reduces the outgoing
 | |
| /// degree of the current basic block, the actual terminator instruction itself
 | |
| /// may have to be changed.  In the case where the last successor of the block 
 | |
| /// is deleted, a return instruction is inserted in its place which can cause a
 | |
| /// surprising change in program behavior if it is not expected.
 | |
| ///
 | |
| void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
 | |
|   assert(SuccNum < TI->getNumSuccessors() &&
 | |
|          "Trying to remove a nonexistant successor!");
 | |
| 
 | |
|   // If our old successor block contains any PHI nodes, remove the entry in the
 | |
|   // PHI nodes that comes from this branch...
 | |
|   //
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   TI->getSuccessor(SuccNum)->removePredecessor(BB);
 | |
| 
 | |
|   TerminatorInst *NewTI = 0;
 | |
|   switch (TI->getOpcode()) {
 | |
|   case Instruction::Br:
 | |
|     // If this is a conditional branch... convert to unconditional branch.
 | |
|     if (TI->getNumSuccessors() == 2) {
 | |
|       cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum));
 | |
|     } else {                    // Otherwise convert to a return instruction...
 | |
|       Value *RetVal = 0;
 | |
| 
 | |
|       // Create a value to return... if the function doesn't return null...
 | |
|       if (BB->getParent()->getReturnType() != Type::VoidTy)
 | |
|         RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
 | |
| 
 | |
|       // Create the return...
 | |
|       NewTI = ReturnInst::Create(RetVal);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Invoke:    // Should convert to call
 | |
|   case Instruction::Switch:    // Should remove entry
 | |
|   default:
 | |
|   case Instruction::Ret:       // Cannot happen, has no successors!
 | |
|     assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   if (NewTI)   // If it's a different instruction, replace.
 | |
|     ReplaceInstWithInst(TI, NewTI);
 | |
| }
 | |
| 
 | |
| /// SplitEdge -  Split the edge connecting specified block. Pass P must 
 | |
| /// not be NULL. 
 | |
| BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
 | |
|   TerminatorInst *LatchTerm = BB->getTerminator();
 | |
|   unsigned SuccNum = 0;
 | |
| #ifndef NDEBUG
 | |
|   unsigned e = LatchTerm->getNumSuccessors();
 | |
| #endif
 | |
|   for (unsigned i = 0; ; ++i) {
 | |
|     assert(i != e && "Didn't find edge?");
 | |
|     if (LatchTerm->getSuccessor(i) == Succ) {
 | |
|       SuccNum = i;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this is a critical edge, let SplitCriticalEdge do it.
 | |
|   if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P))
 | |
|     return LatchTerm->getSuccessor(SuccNum);
 | |
| 
 | |
|   // If the edge isn't critical, then BB has a single successor or Succ has a
 | |
|   // single pred.  Split the block.
 | |
|   BasicBlock::iterator SplitPoint;
 | |
|   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
 | |
|     // If the successor only has a single pred, split the top of the successor
 | |
|     // block.
 | |
|     assert(SP == BB && "CFG broken");
 | |
|     SP = NULL;
 | |
|     return SplitBlock(Succ, Succ->begin(), P);
 | |
|   } else {
 | |
|     // Otherwise, if BB has a single successor, split it at the bottom of the
 | |
|     // block.
 | |
|     assert(BB->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Should have a single succ!"); 
 | |
|     return SplitBlock(BB, BB->getTerminator(), P);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SplitBlock - Split the specified block at the specified instruction - every
 | |
| /// thing before SplitPt stays in Old and everything starting with SplitPt moves
 | |
| /// to a new block.  The two blocks are joined by an unconditional branch and
 | |
| /// the loop info is updated.
 | |
| ///
 | |
| BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
 | |
|   BasicBlock::iterator SplitIt = SplitPt;
 | |
|   while (isa<PHINode>(SplitIt))
 | |
|     ++SplitIt;
 | |
|   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
 | |
| 
 | |
|   // The new block lives in whichever loop the old one did.
 | |
|   if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
 | |
|     if (Loop *L = LI->getLoopFor(Old))
 | |
|       L->addBasicBlockToLoop(New, LI->getBase());
 | |
| 
 | |
|   if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>())
 | |
|     {
 | |
|       // Old dominates New. New node domiantes all other nodes dominated by Old.
 | |
|       DomTreeNode *OldNode = DT->getNode(Old);
 | |
|       std::vector<DomTreeNode *> Children;
 | |
|       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
 | |
|            I != E; ++I) 
 | |
|         Children.push_back(*I);
 | |
| 
 | |
|       DomTreeNode *NewNode =   DT->addNewBlock(New,Old);
 | |
| 
 | |
|       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
 | |
|              E = Children.end(); I != E; ++I) 
 | |
|         DT->changeImmediateDominator(*I, NewNode);
 | |
|     }
 | |
| 
 | |
|   if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>())
 | |
|     DF->splitBlock(Old);
 | |
|     
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SplitBlockPredecessors - This method transforms BB by introducing a new
 | |
| /// basic block into the function, and moving some of the predecessors of BB to
 | |
| /// be predecessors of the new block.  The new predecessors are indicated by the
 | |
| /// Preds array, which has NumPreds elements in it.  The new block is given a
 | |
| /// suffix of 'Suffix'.
 | |
| ///
 | |
| /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
 | |
| /// DominanceFrontier, but no other analyses.
 | |
| BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 
 | |
|                                          BasicBlock *const *Preds,
 | |
|                                          unsigned NumPreds, const char *Suffix,
 | |
|                                          Pass *P) {
 | |
|   // Create new basic block, insert right before the original block.
 | |
|   BasicBlock *NewBB =
 | |
|     BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
 | |
|   
 | |
|   // The new block unconditionally branches to the old block.
 | |
|   BranchInst *BI = BranchInst::Create(BB, NewBB);
 | |
|   
 | |
|   // Move the edges from Preds to point to NewBB instead of BB.
 | |
|   for (unsigned i = 0; i != NumPreds; ++i)
 | |
|     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
 | |
|   
 | |
|   // Update dominator tree and dominator frontier if available.
 | |
|   DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
 | |
|   if (DT)
 | |
|     DT->splitBlock(NewBB);
 | |
|   if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
 | |
|     DF->splitBlock(NewBB);
 | |
|   AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
 | |
|   
 | |
|   
 | |
|   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
 | |
|   // node becomes an incoming value for BB's phi node.  However, if the Preds
 | |
|   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
 | |
|   // account for the newly created predecessor.
 | |
|   if (NumPreds == 0) {
 | |
|     // Insert dummy values as the incoming value.
 | |
|     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
 | |
|       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
 | |
|     return NewBB;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
 | |
|   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
 | |
|     PHINode *PN = cast<PHINode>(I++);
 | |
|     
 | |
|     // Check to see if all of the values coming in are the same.  If so, we
 | |
|     // don't need to create a new PHI node.
 | |
|     Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
 | |
|     for (unsigned i = 1; i != NumPreds; ++i)
 | |
|       if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
 | |
|         InVal = 0;
 | |
|         break;
 | |
|       }
 | |
|     
 | |
|     if (InVal) {
 | |
|       // If all incoming values for the new PHI would be the same, just don't
 | |
|       // make a new PHI.  Instead, just remove the incoming values from the old
 | |
|       // PHI.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i)
 | |
|         PN->removeIncomingValue(Preds[i], false);
 | |
|     } else {
 | |
|       // If the values coming into the block are not the same, we need a PHI.
 | |
|       // Create the new PHI node, insert it into NewBB at the end of the block
 | |
|       PHINode *NewPHI =
 | |
|         PHINode::Create(PN->getType(), PN->getName()+".ph", BI);
 | |
|       if (AA) AA->copyValue(PN, NewPHI);
 | |
|       
 | |
|       // Move all of the PHI values for 'Preds' to the new PHI.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|         Value *V = PN->removeIncomingValue(Preds[i], false);
 | |
|         NewPHI->addIncoming(V, Preds[i]);
 | |
|       }
 | |
|       InVal = NewPHI;
 | |
|     }
 | |
|     
 | |
|     // Add an incoming value to the PHI node in the loop for the preheader
 | |
|     // edge.
 | |
|     PN->addIncoming(InVal, NewBB);
 | |
|     
 | |
|     // Check to see if we can eliminate this phi node.
 | |
|     if (Value *V = PN->hasConstantValue(DT != 0)) {
 | |
|       Instruction *I = dyn_cast<Instruction>(V);
 | |
|       if (!I || DT == 0 || DT->dominates(I, PN)) {
 | |
|         PN->replaceAllUsesWith(V);
 | |
|         if (AA) AA->deleteValue(PN);
 | |
|         PN->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// AreEquivalentAddressValues - Test if A and B will obviously have the same
 | |
| /// value. This includes recognizing that %t0 and %t1 will have the same
 | |
| /// value in code like this:
 | |
| ///   %t0 = getelementptr @a, 0, 3
 | |
| ///   store i32 0, i32* %t0
 | |
| ///   %t1 = getelementptr @a, 0, 3
 | |
| ///   %t2 = load i32* %t1
 | |
| ///
 | |
| static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
 | |
|   // Test if the values are trivially equivalent.
 | |
|   if (A == B) return true;
 | |
|   
 | |
|   // Test if the values come form identical arithmetic instructions.
 | |
|   if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
 | |
|       isa<PHINode>(A) || isa<GetElementPtrInst>(A))
 | |
|     if (const Instruction *BI = dyn_cast<Instruction>(B))
 | |
|       if (cast<Instruction>(A)->isIdenticalTo(BI))
 | |
|         return true;
 | |
|   
 | |
|   // Otherwise they may not be equivalent.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
 | |
| /// instruction before ScanFrom) checking to see if we have the value at the
 | |
| /// memory address *Ptr locally available within a small number of instructions.
 | |
| /// If the value is available, return it.
 | |
| ///
 | |
| /// If not, return the iterator for the last validated instruction that the 
 | |
| /// value would be live through.  If we scanned the entire block and didn't find
 | |
| /// something that invalidates *Ptr or provides it, ScanFrom would be left at
 | |
| /// begin() and this returns null.  ScanFrom could also be left 
 | |
| ///
 | |
| /// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
 | |
| /// it is set to 0, it will scan the whole block. You can also optionally
 | |
| /// specify an alias analysis implementation, which makes this more precise.
 | |
| Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
 | |
|                                       BasicBlock::iterator &ScanFrom,
 | |
|                                       unsigned MaxInstsToScan,
 | |
|                                       AliasAnalysis *AA) {
 | |
|   if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
 | |
| 
 | |
|   // If we're using alias analysis to disambiguate get the size of *Ptr.
 | |
|   unsigned AccessSize = 0;
 | |
|   if (AA) {
 | |
|     const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
|     AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
 | |
|   }
 | |
|   
 | |
|   while (ScanFrom != ScanBB->begin()) {
 | |
|     // Don't scan huge blocks.
 | |
|     if (MaxInstsToScan-- == 0) return 0;
 | |
|     
 | |
|     Instruction *Inst = --ScanFrom;
 | |
|     
 | |
|     // If this is a load of Ptr, the loaded value is available.
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|       if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
 | |
|         return LI;
 | |
|     
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|       // If this is a store through Ptr, the value is available!
 | |
|       if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
 | |
|         return SI->getOperand(0);
 | |
|       
 | |
|       // If Ptr is an alloca and this is a store to a different alloca, ignore
 | |
|       // the store.  This is a trivial form of alias analysis that is important
 | |
|       // for reg2mem'd code.
 | |
|       if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
 | |
|           (isa<AllocaInst>(SI->getOperand(1)) ||
 | |
|            isa<GlobalVariable>(SI->getOperand(1))))
 | |
|         continue;
 | |
|       
 | |
|       // If we have alias analysis and it says the store won't modify the loaded
 | |
|       // value, ignore the store.
 | |
|       if (AA &&
 | |
|           (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
 | |
|         continue;
 | |
|       
 | |
|       // Otherwise the store that may or may not alias the pointer, bail out.
 | |
|       ++ScanFrom;
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // If this is some other instruction that may clobber Ptr, bail out.
 | |
|     if (Inst->mayWriteToMemory()) {
 | |
|       // If alias analysis claims that it really won't modify the load,
 | |
|       // ignore it.
 | |
|       if (AA &&
 | |
|           (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
 | |
|         continue;
 | |
|       
 | |
|       // May modify the pointer, bail out.
 | |
|       ++ScanFrom;
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Got to the start of the block, we didn't find it, but are done for this
 | |
|   // block.
 | |
|   return 0;
 | |
| }
 |