mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60501 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			370 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements some loop unrolling utilities. It does not define any
 | |
| // actual pass or policy, but provides a single function to perform loop
 | |
| // unrolling.
 | |
| //
 | |
| // It works best when loops have been canonicalized by the -indvars pass,
 | |
| // allowing it to determine the trip counts of loops easily.
 | |
| //
 | |
| // The process of unrolling can produce extraneous basic blocks linked with
 | |
| // unconditional branches.  This will be corrected in the future.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <cstdio>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // TODO: Should these be here or in LoopUnroll?
 | |
| STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
 | |
| STATISTIC(NumUnrolled,    "Number of loops unrolled (completely or otherwise)");
 | |
| 
 | |
| /// RemapInstruction - Convert the instruction operands from referencing the
 | |
| /// current values into those specified by ValueMap.
 | |
| static inline void RemapInstruction(Instruction *I,
 | |
|                                     DenseMap<const Value *, Value*> &ValueMap) {
 | |
|   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | |
|     Value *Op = I->getOperand(op);
 | |
|     DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
 | |
|     if (It != ValueMap.end()) Op = It->second;
 | |
|     I->setOperand(op, Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
 | |
| /// only has one predecessor, and that predecessor only has one successor.
 | |
| /// The LoopInfo Analysis that is passed will be kept consistent.
 | |
| /// Returns the new combined block.
 | |
| static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
 | |
|   // Merge basic blocks into their predecessor if there is only one distinct
 | |
|   // pred, and if there is only one distinct successor of the predecessor, and
 | |
|   // if there are no PHI nodes.
 | |
|   BasicBlock *OnlyPred = BB->getSinglePredecessor();
 | |
|   if (!OnlyPred) return 0;
 | |
| 
 | |
|   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
 | |
|     return 0;
 | |
| 
 | |
|   DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
 | |
| 
 | |
|   // Resolve any PHI nodes at the start of the block.  They are all
 | |
|   // guaranteed to have exactly one entry if they exist, unless there are
 | |
|   // multiple duplicate (but guaranteed to be equal) entries for the
 | |
|   // incoming edges.  This occurs when there are multiple edges from
 | |
|   // OnlyPred to OnlySucc.
 | |
|   FoldSingleEntryPHINodes(BB);
 | |
| 
 | |
|   // Delete the unconditional branch from the predecessor...
 | |
|   OnlyPred->getInstList().pop_back();
 | |
| 
 | |
|   // Move all definitions in the successor to the predecessor...
 | |
|   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | |
| 
 | |
|   // Make all PHI nodes that referred to BB now refer to Pred as their
 | |
|   // source...
 | |
|   BB->replaceAllUsesWith(OnlyPred);
 | |
| 
 | |
|   std::string OldName = BB->getName();
 | |
| 
 | |
|   // Erase basic block from the function...
 | |
|   LI->removeBlock(BB);
 | |
|   BB->eraseFromParent();
 | |
| 
 | |
|   // Inherit predecessor's name if it exists...
 | |
|   if (!OldName.empty() && !OnlyPred->hasName())
 | |
|     OnlyPred->setName(OldName);
 | |
| 
 | |
|   return OnlyPred;
 | |
| }
 | |
| 
 | |
| /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
 | |
| /// if unrolling was succesful, or false if the loop was unmodified. Unrolling
 | |
| /// can only fail when the loop's latch block is not terminated by a conditional
 | |
| /// branch instruction. However, if the trip count (and multiple) are not known,
 | |
| /// loop unrolling will mostly produce more code that is no faster.
 | |
| ///
 | |
| /// The LoopInfo Analysis that is passed will be kept consistent.
 | |
| ///
 | |
| /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
 | |
| /// removed from the LoopPassManager as well. LPM can also be NULL.
 | |
| bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
 | |
|   assert(L->isLCSSAForm());
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | |
|   
 | |
|   if (!BI || BI->isUnconditional()) {
 | |
|     // The loop-rotate pass can be helpful to avoid this in many cases.
 | |
|     DOUT << "  Can't unroll; loop not terminated by a conditional branch.\n";
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Find trip count
 | |
|   unsigned TripCount = L->getSmallConstantTripCount();
 | |
|   // Find trip multiple if count is not available
 | |
|   unsigned TripMultiple = 1;
 | |
|   if (TripCount == 0)
 | |
|     TripMultiple = L->getSmallConstantTripMultiple();
 | |
| 
 | |
|   if (TripCount != 0)
 | |
|     DOUT << "  Trip Count = " << TripCount << "\n";
 | |
|   if (TripMultiple != 1)
 | |
|     DOUT << "  Trip Multiple = " << TripMultiple << "\n";
 | |
| 
 | |
|   // Effectively "DCE" unrolled iterations that are beyond the tripcount
 | |
|   // and will never be executed.
 | |
|   if (TripCount != 0 && Count > TripCount)
 | |
|     Count = TripCount;
 | |
| 
 | |
|   assert(Count > 0);
 | |
|   assert(TripMultiple > 0);
 | |
|   assert(TripCount == 0 || TripCount % TripMultiple == 0);
 | |
| 
 | |
|   // Are we eliminating the loop control altogether?
 | |
|   bool CompletelyUnroll = Count == TripCount;
 | |
| 
 | |
|   // If we know the trip count, we know the multiple...
 | |
|   unsigned BreakoutTrip = 0;
 | |
|   if (TripCount != 0) {
 | |
|     BreakoutTrip = TripCount % Count;
 | |
|     TripMultiple = 0;
 | |
|   } else {
 | |
|     // Figure out what multiple to use.
 | |
|     BreakoutTrip = TripMultiple =
 | |
|       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
 | |
|   }
 | |
| 
 | |
|   if (CompletelyUnroll) {
 | |
|     DOUT << "COMPLETELY UNROLLING loop %" << Header->getName()
 | |
|          << " with trip count " << TripCount << "!\n";
 | |
|   } else {
 | |
|     DOUT << "UNROLLING loop %" << Header->getName()
 | |
|          << " by " << Count;
 | |
|     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
 | |
|       DOUT << " with a breakout at trip " << BreakoutTrip;
 | |
|     } else if (TripMultiple != 1) {
 | |
|       DOUT << " with " << TripMultiple << " trips per branch";
 | |
|     }
 | |
|     DOUT << "!\n";
 | |
|   }
 | |
| 
 | |
|   std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
 | |
| 
 | |
|   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
 | |
|   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
 | |
| 
 | |
|   // For the first iteration of the loop, we should use the precloned values for
 | |
|   // PHI nodes.  Insert associations now.
 | |
|   typedef DenseMap<const Value*, Value*> ValueMapTy;
 | |
|   ValueMapTy LastValueMap;
 | |
|   std::vector<PHINode*> OrigPHINode;
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     OrigPHINode.push_back(PN);
 | |
|     if (Instruction *I = 
 | |
|                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
 | |
|       if (L->contains(I->getParent()))
 | |
|         LastValueMap[I] = I;
 | |
|   }
 | |
| 
 | |
|   std::vector<BasicBlock*> Headers;
 | |
|   std::vector<BasicBlock*> Latches;
 | |
|   Headers.push_back(Header);
 | |
|   Latches.push_back(LatchBlock);
 | |
| 
 | |
|   for (unsigned It = 1; It != Count; ++It) {
 | |
|     char SuffixBuffer[100];
 | |
|     sprintf(SuffixBuffer, ".%d", It);
 | |
|     
 | |
|     std::vector<BasicBlock*> NewBlocks;
 | |
|     
 | |
|     for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
 | |
|          E = LoopBlocks.end(); BB != E; ++BB) {
 | |
|       ValueMapTy ValueMap;
 | |
|       BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
 | |
|       Header->getParent()->getBasicBlockList().push_back(New);
 | |
| 
 | |
|       // Loop over all of the PHI nodes in the block, changing them to use the
 | |
|       // incoming values from the previous block.
 | |
|       if (*BB == Header)
 | |
|         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | |
|           PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
 | |
|           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
 | |
|           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
 | |
|             if (It > 1 && L->contains(InValI->getParent()))
 | |
|               InVal = LastValueMap[InValI];
 | |
|           ValueMap[OrigPHINode[i]] = InVal;
 | |
|           New->getInstList().erase(NewPHI);
 | |
|         }
 | |
| 
 | |
|       // Update our running map of newest clones
 | |
|       LastValueMap[*BB] = New;
 | |
|       for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
 | |
|            VI != VE; ++VI)
 | |
|         LastValueMap[VI->first] = VI->second;
 | |
| 
 | |
|       L->addBasicBlockToLoop(New, LI->getBase());
 | |
| 
 | |
|       // Add phi entries for newly created values to all exit blocks except
 | |
|       // the successor of the latch block.  The successor of the exit block will
 | |
|       // be updated specially after unrolling all the way.
 | |
|       if (*BB != LatchBlock)
 | |
|         for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
 | |
|              UI != UE;) {
 | |
|           Instruction *UseInst = cast<Instruction>(*UI);
 | |
|           ++UI;
 | |
|           if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
 | |
|             PHINode *phi = cast<PHINode>(UseInst);
 | |
|             Value *Incoming = phi->getIncomingValueForBlock(*BB);
 | |
|             phi->addIncoming(Incoming, New);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       // Keep track of new headers and latches as we create them, so that
 | |
|       // we can insert the proper branches later.
 | |
|       if (*BB == Header)
 | |
|         Headers.push_back(New);
 | |
|       if (*BB == LatchBlock) {
 | |
|         Latches.push_back(New);
 | |
| 
 | |
|         // Also, clear out the new latch's back edge so that it doesn't look
 | |
|         // like a new loop, so that it's amenable to being merged with adjacent
 | |
|         // blocks later on.
 | |
|         TerminatorInst *Term = New->getTerminator();
 | |
|         assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
 | |
|         assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
 | |
|         Term->setSuccessor(!ContinueOnTrue, NULL);
 | |
|       }
 | |
| 
 | |
|       NewBlocks.push_back(New);
 | |
|     }
 | |
|     
 | |
|     // Remap all instructions in the most recent iteration
 | |
|     for (unsigned i = 0; i < NewBlocks.size(); ++i)
 | |
|       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | |
|            E = NewBlocks[i]->end(); I != E; ++I)
 | |
|         RemapInstruction(I, LastValueMap);
 | |
|   }
 | |
|   
 | |
|   // The latch block exits the loop.  If there are any PHI nodes in the
 | |
|   // successor blocks, update them to use the appropriate values computed as the
 | |
|   // last iteration of the loop.
 | |
|   if (Count != 1) {
 | |
|     SmallPtrSet<PHINode*, 8> Users;
 | |
|     for (Value::use_iterator UI = LatchBlock->use_begin(),
 | |
|          UE = LatchBlock->use_end(); UI != UE; ++UI)
 | |
|       if (PHINode *phi = dyn_cast<PHINode>(*UI))
 | |
|         Users.insert(phi);
 | |
|     
 | |
|     BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
 | |
|     for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
 | |
|          SI != SE; ++SI) {
 | |
|       PHINode *PN = *SI;
 | |
|       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
 | |
|       // If this value was defined in the loop, take the value defined by the
 | |
|       // last iteration of the loop.
 | |
|       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
 | |
|         if (L->contains(InValI->getParent()))
 | |
|           InVal = LastValueMap[InVal];
 | |
|       }
 | |
|       PN->addIncoming(InVal, LastIterationBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now, if we're doing complete unrolling, loop over the PHI nodes in the
 | |
|   // original block, setting them to their incoming values.
 | |
|   if (CompletelyUnroll) {
 | |
|     BasicBlock *Preheader = L->getLoopPreheader();
 | |
|     for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | |
|       PHINode *PN = OrigPHINode[i];
 | |
|       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
 | |
|       Header->getInstList().erase(PN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that all the basic blocks for the unrolled iterations are in place,
 | |
|   // set up the branches to connect them.
 | |
|   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | |
|     // The original branch was replicated in each unrolled iteration.
 | |
|     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | |
| 
 | |
|     // The branch destination.
 | |
|     unsigned j = (i + 1) % e;
 | |
|     BasicBlock *Dest = Headers[j];
 | |
|     bool NeedConditional = true;
 | |
| 
 | |
|     // For a complete unroll, make the last iteration end with a branch
 | |
|     // to the exit block.
 | |
|     if (CompletelyUnroll && j == 0) {
 | |
|       Dest = LoopExit;
 | |
|       NeedConditional = false;
 | |
|     }
 | |
| 
 | |
|     // If we know the trip count or a multiple of it, we can safely use an
 | |
|     // unconditional branch for some iterations.
 | |
|     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
 | |
|       NeedConditional = false;
 | |
|     }
 | |
| 
 | |
|     if (NeedConditional) {
 | |
|       // Update the conditional branch's successor for the following
 | |
|       // iteration.
 | |
|       Term->setSuccessor(!ContinueOnTrue, Dest);
 | |
|     } else {
 | |
|       Term->setUnconditionalDest(Dest);
 | |
|       // Merge adjacent basic blocks, if possible.
 | |
|       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
 | |
|         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
 | |
|         std::replace(Headers.begin(), Headers.end(), Dest, Fold);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // At this point, the code is well formed.  We now do a quick sweep over the
 | |
|   // inserted code, doing constant propagation and dead code elimination as we
 | |
|   // go.
 | |
|   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
 | |
|   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
 | |
|        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
 | |
|     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
 | |
|       Instruction *Inst = I++;
 | |
| 
 | |
|       if (isInstructionTriviallyDead(Inst))
 | |
|         (*BB)->getInstList().erase(Inst);
 | |
|       else if (Constant *C = ConstantFoldInstruction(Inst)) {
 | |
|         Inst->replaceAllUsesWith(C);
 | |
|         (*BB)->getInstList().erase(Inst);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   NumCompletelyUnrolled += CompletelyUnroll;
 | |
|   ++NumUnrolled;
 | |
|   // Remove the loop from the LoopPassManager if it's completely removed.
 | |
|   if (CompletelyUnroll && LPM != NULL)
 | |
|     LPM->deleteLoopFromQueue(L);
 | |
| 
 | |
|   // If we didn't completely unroll the loop, it should still be in LCSSA form.
 | |
|   if (!CompletelyUnroll)
 | |
|     assert(L->isLCSSAForm());
 | |
| 
 | |
|   return true;
 | |
| }
 |