mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it. Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237169 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2252 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2252 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
/// This file defines ObjC ARC optimizations. ARC stands for Automatic
 | 
						|
/// Reference Counting and is a system for managing reference counts for objects
 | 
						|
/// in Objective C.
 | 
						|
///
 | 
						|
/// The optimizations performed include elimination of redundant, partially
 | 
						|
/// redundant, and inconsequential reference count operations, elimination of
 | 
						|
/// redundant weak pointer operations, and numerous minor simplifications.
 | 
						|
///
 | 
						|
/// WARNING: This file knows about certain library functions. It recognizes them
 | 
						|
/// by name, and hardwires knowledge of their semantics.
 | 
						|
///
 | 
						|
/// WARNING: This file knows about how certain Objective-C library functions are
 | 
						|
/// used. Naive LLVM IR transformations which would otherwise be
 | 
						|
/// behavior-preserving may break these assumptions.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ObjCARC.h"
 | 
						|
#include "ARCRuntimeEntryPoints.h"
 | 
						|
#include "BlotMapVector.h"
 | 
						|
#include "DependencyAnalysis.h"
 | 
						|
#include "ObjCARCAliasAnalysis.h"
 | 
						|
#include "ProvenanceAnalysis.h"
 | 
						|
#include "PtrState.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::objcarc;
 | 
						|
 | 
						|
#define DEBUG_TYPE "objc-arc-opts"
 | 
						|
 | 
						|
/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
 | 
						|
/// @{
 | 
						|
 | 
						|
/// \brief This is similar to GetRCIdentityRoot but it stops as soon
 | 
						|
/// as it finds a value with multiple uses.
 | 
						|
static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
 | 
						|
  if (Arg->hasOneUse()) {
 | 
						|
    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
 | 
						|
      return FindSingleUseIdentifiedObject(BC->getOperand(0));
 | 
						|
    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
 | 
						|
      if (GEP->hasAllZeroIndices())
 | 
						|
        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
 | 
						|
    if (IsForwarding(GetBasicARCInstKind(Arg)))
 | 
						|
      return FindSingleUseIdentifiedObject(
 | 
						|
               cast<CallInst>(Arg)->getArgOperand(0));
 | 
						|
    if (!IsObjCIdentifiedObject(Arg))
 | 
						|
      return nullptr;
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found an identifiable object but it has multiple uses, but they are
 | 
						|
  // trivial uses, we can still consider this to be a single-use value.
 | 
						|
  if (IsObjCIdentifiedObject(Arg)) {
 | 
						|
    for (const User *U : Arg->users())
 | 
						|
      if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
 | 
						|
         return nullptr;
 | 
						|
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// This is a wrapper around getUnderlyingObjCPtr along the lines of
 | 
						|
/// GetUnderlyingObjects except that it returns early when it sees the first
 | 
						|
/// alloca.
 | 
						|
static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V,
 | 
						|
                                                   const DataLayout &DL) {
 | 
						|
  SmallPtrSet<const Value *, 4> Visited;
 | 
						|
  SmallVector<const Value *, 4> Worklist;
 | 
						|
  Worklist.push_back(V);
 | 
						|
  do {
 | 
						|
    const Value *P = Worklist.pop_back_val();
 | 
						|
    P = GetUnderlyingObjCPtr(P, DL);
 | 
						|
 | 
						|
    if (isa<AllocaInst>(P))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!Visited.insert(P).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
 | 
						|
      Worklist.push_back(SI->getTrueValue());
 | 
						|
      Worklist.push_back(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
 | 
						|
      for (Value *IncValue : PN->incoming_values())
 | 
						|
        Worklist.push_back(IncValue);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// @}
 | 
						|
///
 | 
						|
/// \defgroup ARCOpt ARC Optimization.
 | 
						|
/// @{
 | 
						|
 | 
						|
// TODO: On code like this:
 | 
						|
//
 | 
						|
// objc_retain(%x)
 | 
						|
// stuff_that_cannot_release()
 | 
						|
// objc_autorelease(%x)
 | 
						|
// stuff_that_cannot_release()
 | 
						|
// objc_retain(%x)
 | 
						|
// stuff_that_cannot_release()
 | 
						|
// objc_autorelease(%x)
 | 
						|
//
 | 
						|
// The second retain and autorelease can be deleted.
 | 
						|
 | 
						|
// TODO: It should be possible to delete
 | 
						|
// objc_autoreleasePoolPush and objc_autoreleasePoolPop
 | 
						|
// pairs if nothing is actually autoreleased between them. Also, autorelease
 | 
						|
// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
 | 
						|
// after inlining) can be turned into plain release calls.
 | 
						|
 | 
						|
// TODO: Critical-edge splitting. If the optimial insertion point is
 | 
						|
// a critical edge, the current algorithm has to fail, because it doesn't
 | 
						|
// know how to split edges. It should be possible to make the optimizer
 | 
						|
// think in terms of edges, rather than blocks, and then split critical
 | 
						|
// edges on demand.
 | 
						|
 | 
						|
// TODO: OptimizeSequences could generalized to be Interprocedural.
 | 
						|
 | 
						|
// TODO: Recognize that a bunch of other objc runtime calls have
 | 
						|
// non-escaping arguments and non-releasing arguments, and may be
 | 
						|
// non-autoreleasing.
 | 
						|
 | 
						|
// TODO: Sink autorelease calls as far as possible. Unfortunately we
 | 
						|
// usually can't sink them past other calls, which would be the main
 | 
						|
// case where it would be useful.
 | 
						|
 | 
						|
// TODO: The pointer returned from objc_loadWeakRetained is retained.
 | 
						|
 | 
						|
// TODO: Delete release+retain pairs (rare).
 | 
						|
 | 
						|
STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
 | 
						|
STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
 | 
						|
STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
 | 
						|
STATISTIC(NumRets,        "Number of return value forwarding "
 | 
						|
                          "retain+autoreleases eliminated");
 | 
						|
STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
 | 
						|
STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
 | 
						|
#ifndef NDEBUG
 | 
						|
STATISTIC(NumRetainsBeforeOpt,
 | 
						|
          "Number of retains before optimization");
 | 
						|
STATISTIC(NumReleasesBeforeOpt,
 | 
						|
          "Number of releases before optimization");
 | 
						|
STATISTIC(NumRetainsAfterOpt,
 | 
						|
          "Number of retains after optimization");
 | 
						|
STATISTIC(NumReleasesAfterOpt,
 | 
						|
          "Number of releases after optimization");
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief Per-BasicBlock state.
 | 
						|
  class BBState {
 | 
						|
    /// The number of unique control paths from the entry which can reach this
 | 
						|
    /// block.
 | 
						|
    unsigned TopDownPathCount;
 | 
						|
 | 
						|
    /// The number of unique control paths to exits from this block.
 | 
						|
    unsigned BottomUpPathCount;
 | 
						|
 | 
						|
    /// The top-down traversal uses this to record information known about a
 | 
						|
    /// pointer at the bottom of each block.
 | 
						|
    BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
 | 
						|
 | 
						|
    /// The bottom-up traversal uses this to record information known about a
 | 
						|
    /// pointer at the top of each block.
 | 
						|
    BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
 | 
						|
 | 
						|
    /// Effective predecessors of the current block ignoring ignorable edges and
 | 
						|
    /// ignored backedges.
 | 
						|
    SmallVector<BasicBlock *, 2> Preds;
 | 
						|
 | 
						|
    /// Effective successors of the current block ignoring ignorable edges and
 | 
						|
    /// ignored backedges.
 | 
						|
    SmallVector<BasicBlock *, 2> Succs;
 | 
						|
 | 
						|
  public:
 | 
						|
    static const unsigned OverflowOccurredValue;
 | 
						|
 | 
						|
    BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
 | 
						|
 | 
						|
    typedef decltype(PerPtrTopDown)::iterator top_down_ptr_iterator;
 | 
						|
    typedef decltype(PerPtrTopDown)::const_iterator const_top_down_ptr_iterator;
 | 
						|
 | 
						|
    top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
 | 
						|
    top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
 | 
						|
    const_top_down_ptr_iterator top_down_ptr_begin() const {
 | 
						|
      return PerPtrTopDown.begin();
 | 
						|
    }
 | 
						|
    const_top_down_ptr_iterator top_down_ptr_end() const {
 | 
						|
      return PerPtrTopDown.end();
 | 
						|
    }
 | 
						|
    bool hasTopDownPtrs() const {
 | 
						|
      return !PerPtrTopDown.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    typedef decltype(PerPtrBottomUp)::iterator bottom_up_ptr_iterator;
 | 
						|
    typedef decltype(
 | 
						|
        PerPtrBottomUp)::const_iterator const_bottom_up_ptr_iterator;
 | 
						|
 | 
						|
    bottom_up_ptr_iterator bottom_up_ptr_begin() {
 | 
						|
      return PerPtrBottomUp.begin();
 | 
						|
    }
 | 
						|
    bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
 | 
						|
    const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
 | 
						|
      return PerPtrBottomUp.begin();
 | 
						|
    }
 | 
						|
    const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
 | 
						|
      return PerPtrBottomUp.end();
 | 
						|
    }
 | 
						|
    bool hasBottomUpPtrs() const {
 | 
						|
      return !PerPtrBottomUp.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Mark this block as being an entry block, which has one path from the
 | 
						|
    /// entry by definition.
 | 
						|
    void SetAsEntry() { TopDownPathCount = 1; }
 | 
						|
 | 
						|
    /// Mark this block as being an exit block, which has one path to an exit by
 | 
						|
    /// definition.
 | 
						|
    void SetAsExit()  { BottomUpPathCount = 1; }
 | 
						|
 | 
						|
    /// Attempt to find the PtrState object describing the top down state for
 | 
						|
    /// pointer Arg. Return a new initialized PtrState describing the top down
 | 
						|
    /// state for Arg if we do not find one.
 | 
						|
    TopDownPtrState &getPtrTopDownState(const Value *Arg) {
 | 
						|
      return PerPtrTopDown[Arg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// Attempt to find the PtrState object describing the bottom up state for
 | 
						|
    /// pointer Arg. Return a new initialized PtrState describing the bottom up
 | 
						|
    /// state for Arg if we do not find one.
 | 
						|
    BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
 | 
						|
      return PerPtrBottomUp[Arg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// Attempt to find the PtrState object describing the bottom up state for
 | 
						|
    /// pointer Arg.
 | 
						|
    bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
 | 
						|
      return PerPtrBottomUp.find(Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    void clearBottomUpPointers() {
 | 
						|
      PerPtrBottomUp.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void clearTopDownPointers() {
 | 
						|
      PerPtrTopDown.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void InitFromPred(const BBState &Other);
 | 
						|
    void InitFromSucc(const BBState &Other);
 | 
						|
    void MergePred(const BBState &Other);
 | 
						|
    void MergeSucc(const BBState &Other);
 | 
						|
 | 
						|
    /// Compute the number of possible unique paths from an entry to an exit
 | 
						|
    /// which pass through this block. This is only valid after both the
 | 
						|
    /// top-down and bottom-up traversals are complete.
 | 
						|
    ///
 | 
						|
    /// Returns true if overflow occurred. Returns false if overflow did not
 | 
						|
    /// occur.
 | 
						|
    bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
 | 
						|
      if (TopDownPathCount == OverflowOccurredValue ||
 | 
						|
          BottomUpPathCount == OverflowOccurredValue)
 | 
						|
        return true;
 | 
						|
      unsigned long long Product =
 | 
						|
        (unsigned long long)TopDownPathCount*BottomUpPathCount;
 | 
						|
      // Overflow occurred if any of the upper bits of Product are set or if all
 | 
						|
      // the lower bits of Product are all set.
 | 
						|
      return (Product >> 32) ||
 | 
						|
             ((PathCount = Product) == OverflowOccurredValue);
 | 
						|
    }
 | 
						|
 | 
						|
    // Specialized CFG utilities.
 | 
						|
    typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
 | 
						|
    edge_iterator pred_begin() const { return Preds.begin(); }
 | 
						|
    edge_iterator pred_end() const { return Preds.end(); }
 | 
						|
    edge_iterator succ_begin() const { return Succs.begin(); }
 | 
						|
    edge_iterator succ_end() const { return Succs.end(); }
 | 
						|
 | 
						|
    void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
 | 
						|
    void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
 | 
						|
 | 
						|
    bool isExit() const { return Succs.empty(); }
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned BBState::OverflowOccurredValue = 0xffffffff;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
raw_ostream &operator<<(raw_ostream &OS,
 | 
						|
                        BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
 | 
						|
}
 | 
						|
 | 
						|
void BBState::InitFromPred(const BBState &Other) {
 | 
						|
  PerPtrTopDown = Other.PerPtrTopDown;
 | 
						|
  TopDownPathCount = Other.TopDownPathCount;
 | 
						|
}
 | 
						|
 | 
						|
void BBState::InitFromSucc(const BBState &Other) {
 | 
						|
  PerPtrBottomUp = Other.PerPtrBottomUp;
 | 
						|
  BottomUpPathCount = Other.BottomUpPathCount;
 | 
						|
}
 | 
						|
 | 
						|
/// The top-down traversal uses this to merge information about predecessors to
 | 
						|
/// form the initial state for a new block.
 | 
						|
void BBState::MergePred(const BBState &Other) {
 | 
						|
  if (TopDownPathCount == OverflowOccurredValue)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Other.TopDownPathCount can be 0, in which case it is either dead or a
 | 
						|
  // loop backedge. Loop backedges are special.
 | 
						|
  TopDownPathCount += Other.TopDownPathCount;
 | 
						|
 | 
						|
  // In order to be consistent, we clear the top down pointers when by adding
 | 
						|
  // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
 | 
						|
  // has not occurred.
 | 
						|
  if (TopDownPathCount == OverflowOccurredValue) {
 | 
						|
    clearTopDownPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for overflow. If we have overflow, fall back to conservative
 | 
						|
  // behavior.
 | 
						|
  if (TopDownPathCount < Other.TopDownPathCount) {
 | 
						|
    TopDownPathCount = OverflowOccurredValue;
 | 
						|
    clearTopDownPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in the other set, if our set has an entry with the same key,
 | 
						|
  // merge the entries. Otherwise, copy the entry and merge it with an empty
 | 
						|
  // entry.
 | 
						|
  for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
 | 
						|
       MI != ME; ++MI) {
 | 
						|
    auto Pair = PerPtrTopDown.insert(*MI);
 | 
						|
    Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
 | 
						|
                             /*TopDown=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in our set, if the other set doesn't have an entry with the
 | 
						|
  // same key, force it to merge with an empty entry.
 | 
						|
  for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
 | 
						|
    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
 | 
						|
      MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
 | 
						|
}
 | 
						|
 | 
						|
/// The bottom-up traversal uses this to merge information about successors to
 | 
						|
/// form the initial state for a new block.
 | 
						|
void BBState::MergeSucc(const BBState &Other) {
 | 
						|
  if (BottomUpPathCount == OverflowOccurredValue)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
 | 
						|
  // loop backedge. Loop backedges are special.
 | 
						|
  BottomUpPathCount += Other.BottomUpPathCount;
 | 
						|
 | 
						|
  // In order to be consistent, we clear the top down pointers when by adding
 | 
						|
  // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
 | 
						|
  // has not occurred.
 | 
						|
  if (BottomUpPathCount == OverflowOccurredValue) {
 | 
						|
    clearBottomUpPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for overflow. If we have overflow, fall back to conservative
 | 
						|
  // behavior.
 | 
						|
  if (BottomUpPathCount < Other.BottomUpPathCount) {
 | 
						|
    BottomUpPathCount = OverflowOccurredValue;
 | 
						|
    clearBottomUpPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in the other set, if our set has an entry with the
 | 
						|
  // same key, merge the entries. Otherwise, copy the entry and merge
 | 
						|
  // it with an empty entry.
 | 
						|
  for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
 | 
						|
       MI != ME; ++MI) {
 | 
						|
    auto Pair = PerPtrBottomUp.insert(*MI);
 | 
						|
    Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
 | 
						|
                             /*TopDown=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in our set, if the other set doesn't have an entry
 | 
						|
  // with the same key, force it to merge with an empty entry.
 | 
						|
  for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
 | 
						|
       ++MI)
 | 
						|
    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
 | 
						|
      MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
 | 
						|
  // Dump the pointers we are tracking.
 | 
						|
  OS << "    TopDown State:\n";
 | 
						|
  if (!BBInfo.hasTopDownPtrs()) {
 | 
						|
    DEBUG(llvm::dbgs() << "        NONE!\n");
 | 
						|
  } else {
 | 
						|
    for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const PtrState &P = I->second;
 | 
						|
      OS << "        Ptr: " << *I->first
 | 
						|
         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
 | 
						|
         << "\n            ImpreciseRelease: "
 | 
						|
           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
 | 
						|
         << "            HasCFGHazards:    "
 | 
						|
           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
 | 
						|
         << "            KnownPositive:    "
 | 
						|
           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
 | 
						|
         << "            Seq:              "
 | 
						|
         << P.GetSeq() << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "    BottomUp State:\n";
 | 
						|
  if (!BBInfo.hasBottomUpPtrs()) {
 | 
						|
    DEBUG(llvm::dbgs() << "        NONE!\n");
 | 
						|
  } else {
 | 
						|
    for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const PtrState &P = I->second;
 | 
						|
      OS << "        Ptr: " << *I->first
 | 
						|
         << "\n            KnownSafe:        " << (P.IsKnownSafe()?"true":"false")
 | 
						|
         << "\n            ImpreciseRelease: "
 | 
						|
           << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
 | 
						|
         << "            HasCFGHazards:    "
 | 
						|
           << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
 | 
						|
         << "            KnownPositive:    "
 | 
						|
           << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
 | 
						|
         << "            Seq:              "
 | 
						|
         << P.GetSeq() << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  /// \brief The main ARC optimization pass.
 | 
						|
  class ObjCARCOpt : public FunctionPass {
 | 
						|
    bool Changed;
 | 
						|
    ProvenanceAnalysis PA;
 | 
						|
 | 
						|
    /// A cache of references to runtime entry point constants.
 | 
						|
    ARCRuntimeEntryPoints EP;
 | 
						|
 | 
						|
    /// A cache of MDKinds that can be passed into other functions to propagate
 | 
						|
    /// MDKind identifiers.
 | 
						|
    ARCMDKindCache MDKindCache;
 | 
						|
 | 
						|
    // This is used to track if a pointer is stored into an alloca.
 | 
						|
    DenseSet<const Value *> MultiOwnersSet;
 | 
						|
 | 
						|
    /// A flag indicating whether this optimization pass should run.
 | 
						|
    bool Run;
 | 
						|
 | 
						|
    /// Flags which determine whether each of the interesting runtine functions
 | 
						|
    /// is in fact used in the current function.
 | 
						|
    unsigned UsedInThisFunction;
 | 
						|
 | 
						|
    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
 | 
						|
    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
 | 
						|
                                   ARCInstKind &Class);
 | 
						|
    void OptimizeIndividualCalls(Function &F);
 | 
						|
 | 
						|
    void CheckForCFGHazards(const BasicBlock *BB,
 | 
						|
                            DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                            BBState &MyStates) const;
 | 
						|
    bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
 | 
						|
                                  BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
                                  BBState &MyStates);
 | 
						|
    bool VisitBottomUp(BasicBlock *BB,
 | 
						|
                       DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                       BlotMapVector<Value *, RRInfo> &Retains);
 | 
						|
    bool VisitInstructionTopDown(Instruction *Inst,
 | 
						|
                                 DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                                 BBState &MyStates);
 | 
						|
    bool VisitTopDown(BasicBlock *BB,
 | 
						|
                      DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                      DenseMap<Value *, RRInfo> &Releases);
 | 
						|
    bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
               BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
               DenseMap<Value *, RRInfo> &Releases);
 | 
						|
 | 
						|
    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
 | 
						|
                   BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
                   DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                   SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
 | 
						|
 | 
						|
    bool
 | 
						|
    PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                             BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
                             DenseMap<Value *, RRInfo> &Releases, Module *M,
 | 
						|
                             SmallVectorImpl<Instruction *> &NewRetains,
 | 
						|
                             SmallVectorImpl<Instruction *> &NewReleases,
 | 
						|
                             SmallVectorImpl<Instruction *> &DeadInsts,
 | 
						|
                             RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
 | 
						|
                             Value *Arg, bool KnownSafe,
 | 
						|
                             bool &AnyPairsCompletelyEliminated);
 | 
						|
 | 
						|
    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                              BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
                              DenseMap<Value *, RRInfo> &Releases, Module *M);
 | 
						|
 | 
						|
    void OptimizeWeakCalls(Function &F);
 | 
						|
 | 
						|
    bool OptimizeSequences(Function &F);
 | 
						|
 | 
						|
    void OptimizeReturns(Function &F);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    void GatherStatistics(Function &F, bool AfterOptimization = false);
 | 
						|
#endif
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
    bool doInitialization(Module &M) override;
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
    void releaseMemory() override;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    ObjCARCOpt() : FunctionPass(ID) {
 | 
						|
      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char ObjCARCOpt::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(ObjCARCOpt,
 | 
						|
                      "objc-arc", "ObjC ARC optimization", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(ObjCARCOpt,
 | 
						|
                    "objc-arc", "ObjC ARC optimization", false, false)
 | 
						|
 | 
						|
Pass *llvm::createObjCARCOptPass() {
 | 
						|
  return new ObjCARCOpt();
 | 
						|
}
 | 
						|
 | 
						|
void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<ObjCARCAliasAnalysis>();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  // ARC optimization doesn't currently split critical edges.
 | 
						|
  AU.setPreservesCFG();
 | 
						|
}
 | 
						|
 | 
						|
/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
 | 
						|
/// not a return value.  Or, if it can be paired with an
 | 
						|
/// objc_autoreleaseReturnValue, delete the pair and return true.
 | 
						|
bool
 | 
						|
ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
 | 
						|
  // Check for the argument being from an immediately preceding call or invoke.
 | 
						|
  const Value *Arg = GetArgRCIdentityRoot(RetainRV);
 | 
						|
  ImmutableCallSite CS(Arg);
 | 
						|
  if (const Instruction *Call = CS.getInstruction()) {
 | 
						|
    if (Call->getParent() == RetainRV->getParent()) {
 | 
						|
      BasicBlock::const_iterator I = Call;
 | 
						|
      ++I;
 | 
						|
      while (IsNoopInstruction(I)) ++I;
 | 
						|
      if (&*I == RetainRV)
 | 
						|
        return false;
 | 
						|
    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
      BasicBlock *RetainRVParent = RetainRV->getParent();
 | 
						|
      if (II->getNormalDest() == RetainRVParent) {
 | 
						|
        BasicBlock::const_iterator I = RetainRVParent->begin();
 | 
						|
        while (IsNoopInstruction(I)) ++I;
 | 
						|
        if (&*I == RetainRV)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for being preceded by an objc_autoreleaseReturnValue on the same
 | 
						|
  // pointer. In this case, we can delete the pair.
 | 
						|
  BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
 | 
						|
  if (I != Begin) {
 | 
						|
    do --I; while (I != Begin && IsNoopInstruction(I));
 | 
						|
    if (GetBasicARCInstKind(I) == ARCInstKind::AutoreleaseRV &&
 | 
						|
        GetArgRCIdentityRoot(I) == Arg) {
 | 
						|
      Changed = true;
 | 
						|
      ++NumPeeps;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
 | 
						|
                   << "Erasing " << *RetainRV << "\n");
 | 
						|
 | 
						|
      EraseInstruction(I);
 | 
						|
      EraseInstruction(RetainRV);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn it to a plain objc_retain.
 | 
						|
  Changed = true;
 | 
						|
  ++NumPeeps;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
 | 
						|
                  "objc_retain since the operand is not a return value.\n"
 | 
						|
                  "Old = " << *RetainRV << "\n");
 | 
						|
 | 
						|
  Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
 | 
						|
  cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "New = " << *RetainRV << "\n");
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
 | 
						|
/// used as a return value.
 | 
						|
void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
 | 
						|
                                           Instruction *AutoreleaseRV,
 | 
						|
                                           ARCInstKind &Class) {
 | 
						|
  // Check for a return of the pointer value.
 | 
						|
  const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
 | 
						|
  SmallVector<const Value *, 2> Users;
 | 
						|
  Users.push_back(Ptr);
 | 
						|
  do {
 | 
						|
    Ptr = Users.pop_back_val();
 | 
						|
    for (const User *U : Ptr->users()) {
 | 
						|
      if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
 | 
						|
        return;
 | 
						|
      if (isa<BitCastInst>(U))
 | 
						|
        Users.push_back(U);
 | 
						|
    }
 | 
						|
  } while (!Users.empty());
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  ++NumPeeps;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
 | 
						|
                  "objc_autorelease since its operand is not used as a return "
 | 
						|
                  "value.\n"
 | 
						|
                  "Old = " << *AutoreleaseRV << "\n");
 | 
						|
 | 
						|
  CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
 | 
						|
  Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
 | 
						|
  AutoreleaseRVCI->setCalledFunction(NewDecl);
 | 
						|
  AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
 | 
						|
  Class = ARCInstKind::Autorelease;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// Visit each call, one at a time, and make simplifications without doing any
 | 
						|
/// additional analysis.
 | 
						|
void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
 | 
						|
  // Reset all the flags in preparation for recomputing them.
 | 
						|
  UsedInThisFunction = 0;
 | 
						|
 | 
						|
  // Visit all objc_* calls in F.
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
 | 
						|
    ARCInstKind Class = GetBasicARCInstKind(Inst);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
 | 
						|
 | 
						|
    switch (Class) {
 | 
						|
    default: break;
 | 
						|
 | 
						|
    // Delete no-op casts. These function calls have special semantics, but
 | 
						|
    // the semantics are entirely implemented via lowering in the front-end,
 | 
						|
    // so by the time they reach the optimizer, they are just no-op calls
 | 
						|
    // which return their argument.
 | 
						|
    //
 | 
						|
    // There are gray areas here, as the ability to cast reference-counted
 | 
						|
    // pointers to raw void* and back allows code to break ARC assumptions,
 | 
						|
    // however these are currently considered to be unimportant.
 | 
						|
    case ARCInstKind::NoopCast:
 | 
						|
      Changed = true;
 | 
						|
      ++NumNoops;
 | 
						|
      DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
 | 
						|
      EraseInstruction(Inst);
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the pointer-to-weak-pointer is null, it's undefined behavior.
 | 
						|
    case ARCInstKind::StoreWeak:
 | 
						|
    case ARCInstKind::LoadWeak:
 | 
						|
    case ARCInstKind::LoadWeakRetained:
 | 
						|
    case ARCInstKind::InitWeak:
 | 
						|
    case ARCInstKind::DestroyWeak: {
 | 
						|
      CallInst *CI = cast<CallInst>(Inst);
 | 
						|
      if (IsNullOrUndef(CI->getArgOperand(0))) {
 | 
						|
        Changed = true;
 | 
						|
        Type *Ty = CI->getArgOperand(0)->getType();
 | 
						|
        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | 
						|
                      Constant::getNullValue(Ty),
 | 
						|
                      CI);
 | 
						|
        llvm::Value *NewValue = UndefValue::get(CI->getType());
 | 
						|
        DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
 | 
						|
                       "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
 | 
						|
        CI->replaceAllUsesWith(NewValue);
 | 
						|
        CI->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ARCInstKind::CopyWeak:
 | 
						|
    case ARCInstKind::MoveWeak: {
 | 
						|
      CallInst *CI = cast<CallInst>(Inst);
 | 
						|
      if (IsNullOrUndef(CI->getArgOperand(0)) ||
 | 
						|
          IsNullOrUndef(CI->getArgOperand(1))) {
 | 
						|
        Changed = true;
 | 
						|
        Type *Ty = CI->getArgOperand(0)->getType();
 | 
						|
        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | 
						|
                      Constant::getNullValue(Ty),
 | 
						|
                      CI);
 | 
						|
 | 
						|
        llvm::Value *NewValue = UndefValue::get(CI->getType());
 | 
						|
        DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
 | 
						|
                        "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
 | 
						|
 | 
						|
        CI->replaceAllUsesWith(NewValue);
 | 
						|
        CI->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ARCInstKind::RetainRV:
 | 
						|
      if (OptimizeRetainRVCall(F, Inst))
 | 
						|
        continue;
 | 
						|
      break;
 | 
						|
    case ARCInstKind::AutoreleaseRV:
 | 
						|
      OptimizeAutoreleaseRVCall(F, Inst, Class);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
 | 
						|
    if (IsAutorelease(Class) && Inst->use_empty()) {
 | 
						|
      CallInst *Call = cast<CallInst>(Inst);
 | 
						|
      const Value *Arg = Call->getArgOperand(0);
 | 
						|
      Arg = FindSingleUseIdentifiedObject(Arg);
 | 
						|
      if (Arg) {
 | 
						|
        Changed = true;
 | 
						|
        ++NumAutoreleases;
 | 
						|
 | 
						|
        // Create the declaration lazily.
 | 
						|
        LLVMContext &C = Inst->getContext();
 | 
						|
 | 
						|
        Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
 | 
						|
        CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
 | 
						|
                                             Call);
 | 
						|
        NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
 | 
						|
                             MDNode::get(C, None));
 | 
						|
 | 
						|
        DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
 | 
						|
              "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
 | 
						|
              << *NewCall << "\n");
 | 
						|
 | 
						|
        EraseInstruction(Call);
 | 
						|
        Inst = NewCall;
 | 
						|
        Class = ARCInstKind::Release;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // For functions which can never be passed stack arguments, add
 | 
						|
    // a tail keyword.
 | 
						|
    if (IsAlwaysTail(Class)) {
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
 | 
						|
                      "passed stack args: " << *Inst << "\n");
 | 
						|
      cast<CallInst>(Inst)->setTailCall();
 | 
						|
    }
 | 
						|
 | 
						|
    // Ensure that functions that can never have a "tail" keyword due to the
 | 
						|
    // semantics of ARC truly do not do so.
 | 
						|
    if (IsNeverTail(Class)) {
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
 | 
						|
            "\n");
 | 
						|
      cast<CallInst>(Inst)->setTailCall(false);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set nounwind as needed.
 | 
						|
    if (IsNoThrow(Class)) {
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
 | 
						|
                   << "\n");
 | 
						|
      cast<CallInst>(Inst)->setDoesNotThrow();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsNoopOnNull(Class)) {
 | 
						|
      UsedInThisFunction |= 1 << unsigned(Class);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const Value *Arg = GetArgRCIdentityRoot(Inst);
 | 
						|
 | 
						|
    // ARC calls with null are no-ops. Delete them.
 | 
						|
    if (IsNullOrUndef(Arg)) {
 | 
						|
      Changed = true;
 | 
						|
      ++NumNoops;
 | 
						|
      DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
 | 
						|
            << "\n");
 | 
						|
      EraseInstruction(Inst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Keep track of which of retain, release, autorelease, and retain_block
 | 
						|
    // are actually present in this function.
 | 
						|
    UsedInThisFunction |= 1 << unsigned(Class);
 | 
						|
 | 
						|
    // If Arg is a PHI, and one or more incoming values to the
 | 
						|
    // PHI are null, and the call is control-equivalent to the PHI, and there
 | 
						|
    // are no relevant side effects between the PHI and the call, the call
 | 
						|
    // could be pushed up to just those paths with non-null incoming values.
 | 
						|
    // For now, don't bother splitting critical edges for this.
 | 
						|
    SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
 | 
						|
    Worklist.push_back(std::make_pair(Inst, Arg));
 | 
						|
    do {
 | 
						|
      std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
 | 
						|
      Inst = Pair.first;
 | 
						|
      Arg = Pair.second;
 | 
						|
 | 
						|
      const PHINode *PN = dyn_cast<PHINode>(Arg);
 | 
						|
      if (!PN) continue;
 | 
						|
 | 
						|
      // Determine if the PHI has any null operands, or any incoming
 | 
						|
      // critical edges.
 | 
						|
      bool HasNull = false;
 | 
						|
      bool HasCriticalEdges = false;
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        Value *Incoming =
 | 
						|
          GetRCIdentityRoot(PN->getIncomingValue(i));
 | 
						|
        if (IsNullOrUndef(Incoming))
 | 
						|
          HasNull = true;
 | 
						|
        else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
 | 
						|
                   .getNumSuccessors() != 1) {
 | 
						|
          HasCriticalEdges = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we have null operands and no critical edges, optimize.
 | 
						|
      if (!HasCriticalEdges && HasNull) {
 | 
						|
        SmallPtrSet<Instruction *, 4> DependingInstructions;
 | 
						|
        SmallPtrSet<const BasicBlock *, 4> Visited;
 | 
						|
 | 
						|
        // Check that there is nothing that cares about the reference
 | 
						|
        // count between the call and the phi.
 | 
						|
        switch (Class) {
 | 
						|
        case ARCInstKind::Retain:
 | 
						|
        case ARCInstKind::RetainBlock:
 | 
						|
          // These can always be moved up.
 | 
						|
          break;
 | 
						|
        case ARCInstKind::Release:
 | 
						|
          // These can't be moved across things that care about the retain
 | 
						|
          // count.
 | 
						|
          FindDependencies(NeedsPositiveRetainCount, Arg,
 | 
						|
                           Inst->getParent(), Inst,
 | 
						|
                           DependingInstructions, Visited, PA);
 | 
						|
          break;
 | 
						|
        case ARCInstKind::Autorelease:
 | 
						|
          // These can't be moved across autorelease pool scope boundaries.
 | 
						|
          FindDependencies(AutoreleasePoolBoundary, Arg,
 | 
						|
                           Inst->getParent(), Inst,
 | 
						|
                           DependingInstructions, Visited, PA);
 | 
						|
          break;
 | 
						|
        case ARCInstKind::RetainRV:
 | 
						|
        case ARCInstKind::AutoreleaseRV:
 | 
						|
          // Don't move these; the RV optimization depends on the autoreleaseRV
 | 
						|
          // being tail called, and the retainRV being immediately after a call
 | 
						|
          // (which might still happen if we get lucky with codegen layout, but
 | 
						|
          // it's not worth taking the chance).
 | 
						|
          continue;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("Invalid dependence flavor");
 | 
						|
        }
 | 
						|
 | 
						|
        if (DependingInstructions.size() == 1 &&
 | 
						|
            *DependingInstructions.begin() == PN) {
 | 
						|
          Changed = true;
 | 
						|
          ++NumPartialNoops;
 | 
						|
          // Clone the call into each predecessor that has a non-null value.
 | 
						|
          CallInst *CInst = cast<CallInst>(Inst);
 | 
						|
          Type *ParamTy = CInst->getArgOperand(0)->getType();
 | 
						|
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
            Value *Incoming =
 | 
						|
              GetRCIdentityRoot(PN->getIncomingValue(i));
 | 
						|
            if (!IsNullOrUndef(Incoming)) {
 | 
						|
              CallInst *Clone = cast<CallInst>(CInst->clone());
 | 
						|
              Value *Op = PN->getIncomingValue(i);
 | 
						|
              Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
 | 
						|
              if (Op->getType() != ParamTy)
 | 
						|
                Op = new BitCastInst(Op, ParamTy, "", InsertPos);
 | 
						|
              Clone->setArgOperand(0, Op);
 | 
						|
              Clone->insertBefore(InsertPos);
 | 
						|
 | 
						|
              DEBUG(dbgs() << "Cloning "
 | 
						|
                           << *CInst << "\n"
 | 
						|
                           "And inserting clone at " << *InsertPos << "\n");
 | 
						|
              Worklist.push_back(std::make_pair(Clone, Incoming));
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // Erase the original call.
 | 
						|
          DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
 | 
						|
          EraseInstruction(CInst);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } while (!Worklist.empty());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If we have a top down pointer in the S_Use state, make sure that there are
 | 
						|
/// no CFG hazards by checking the states of various bottom up pointers.
 | 
						|
static void CheckForUseCFGHazard(const Sequence SuccSSeq,
 | 
						|
                                 const bool SuccSRRIKnownSafe,
 | 
						|
                                 TopDownPtrState &S,
 | 
						|
                                 bool &SomeSuccHasSame,
 | 
						|
                                 bool &AllSuccsHaveSame,
 | 
						|
                                 bool &NotAllSeqEqualButKnownSafe,
 | 
						|
                                 bool &ShouldContinue) {
 | 
						|
  switch (SuccSSeq) {
 | 
						|
  case S_CanRelease: {
 | 
						|
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    S.SetCFGHazardAfflicted(true);
 | 
						|
    ShouldContinue = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case S_Use:
 | 
						|
    SomeSuccHasSame = true;
 | 
						|
    break;
 | 
						|
  case S_Stop:
 | 
						|
  case S_Release:
 | 
						|
  case S_MovableRelease:
 | 
						|
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
 | 
						|
      AllSuccsHaveSame = false;
 | 
						|
    else
 | 
						|
      NotAllSeqEqualButKnownSafe = true;
 | 
						|
    break;
 | 
						|
  case S_Retain:
 | 
						|
    llvm_unreachable("bottom-up pointer in retain state!");
 | 
						|
  case S_None:
 | 
						|
    llvm_unreachable("This should have been handled earlier.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If we have a Top Down pointer in the S_CanRelease state, make sure that
 | 
						|
/// there are no CFG hazards by checking the states of various bottom up
 | 
						|
/// pointers.
 | 
						|
static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
 | 
						|
                                        const bool SuccSRRIKnownSafe,
 | 
						|
                                        TopDownPtrState &S,
 | 
						|
                                        bool &SomeSuccHasSame,
 | 
						|
                                        bool &AllSuccsHaveSame,
 | 
						|
                                        bool &NotAllSeqEqualButKnownSafe) {
 | 
						|
  switch (SuccSSeq) {
 | 
						|
  case S_CanRelease:
 | 
						|
    SomeSuccHasSame = true;
 | 
						|
    break;
 | 
						|
  case S_Stop:
 | 
						|
  case S_Release:
 | 
						|
  case S_MovableRelease:
 | 
						|
  case S_Use:
 | 
						|
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
 | 
						|
      AllSuccsHaveSame = false;
 | 
						|
    else
 | 
						|
      NotAllSeqEqualButKnownSafe = true;
 | 
						|
    break;
 | 
						|
  case S_Retain:
 | 
						|
    llvm_unreachable("bottom-up pointer in retain state!");
 | 
						|
  case S_None:
 | 
						|
    llvm_unreachable("This should have been handled earlier.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check for critical edges, loop boundaries, irreducible control flow, or
 | 
						|
/// other CFG structures where moving code across the edge would result in it
 | 
						|
/// being executed more.
 | 
						|
void
 | 
						|
ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
 | 
						|
                               DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                               BBState &MyStates) const {
 | 
						|
  // If any top-down local-use or possible-dec has a succ which is earlier in
 | 
						|
  // the sequence, forget it.
 | 
						|
  for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    TopDownPtrState &S = I->second;
 | 
						|
    const Sequence Seq = I->second.GetSeq();
 | 
						|
 | 
						|
    // We only care about S_Retain, S_CanRelease, and S_Use.
 | 
						|
    if (Seq == S_None)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure that if extra top down states are added in the future that this
 | 
						|
    // code is updated to handle it.
 | 
						|
    assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
 | 
						|
           "Unknown top down sequence state.");
 | 
						|
 | 
						|
    const Value *Arg = I->first;
 | 
						|
    const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
 | 
						|
    bool SomeSuccHasSame = false;
 | 
						|
    bool AllSuccsHaveSame = true;
 | 
						|
    bool NotAllSeqEqualButKnownSafe = false;
 | 
						|
 | 
						|
    succ_const_iterator SI(TI), SE(TI, false);
 | 
						|
 | 
						|
    for (; SI != SE; ++SI) {
 | 
						|
      // If VisitBottomUp has pointer information for this successor, take
 | 
						|
      // what we know about it.
 | 
						|
      const DenseMap<const BasicBlock *, BBState>::iterator BBI =
 | 
						|
        BBStates.find(*SI);
 | 
						|
      assert(BBI != BBStates.end());
 | 
						|
      const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
 | 
						|
      const Sequence SuccSSeq = SuccS.GetSeq();
 | 
						|
 | 
						|
      // If bottom up, the pointer is in an S_None state, clear the sequence
 | 
						|
      // progress since the sequence in the bottom up state finished
 | 
						|
      // suggesting a mismatch in between retains/releases. This is true for
 | 
						|
      // all three cases that we are handling here: S_Retain, S_Use, and
 | 
						|
      // S_CanRelease.
 | 
						|
      if (SuccSSeq == S_None) {
 | 
						|
        S.ClearSequenceProgress();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have S_Use or S_CanRelease, perform our check for cfg hazard
 | 
						|
      // checks.
 | 
						|
      const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
 | 
						|
 | 
						|
      // *NOTE* We do not use Seq from above here since we are allowing for
 | 
						|
      // S.GetSeq() to change while we are visiting basic blocks.
 | 
						|
      switch(S.GetSeq()) {
 | 
						|
      case S_Use: {
 | 
						|
        bool ShouldContinue = false;
 | 
						|
        CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
 | 
						|
                             AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
 | 
						|
                             ShouldContinue);
 | 
						|
        if (ShouldContinue)
 | 
						|
          continue;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case S_CanRelease: {
 | 
						|
        CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
 | 
						|
                                    SomeSuccHasSame, AllSuccsHaveSame,
 | 
						|
                                    NotAllSeqEqualButKnownSafe);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case S_Retain:
 | 
						|
      case S_None:
 | 
						|
      case S_Stop:
 | 
						|
      case S_Release:
 | 
						|
      case S_MovableRelease:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the state at the other end of any of the successor edges
 | 
						|
    // matches the current state, require all edges to match. This
 | 
						|
    // guards against loops in the middle of a sequence.
 | 
						|
    if (SomeSuccHasSame && !AllSuccsHaveSame) {
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
    } else if (NotAllSeqEqualButKnownSafe) {
 | 
						|
      // If we would have cleared the state foregoing the fact that we are known
 | 
						|
      // safe, stop code motion. This is because whether or not it is safe to
 | 
						|
      // remove RR pairs via KnownSafe is an orthogonal concept to whether we
 | 
						|
      // are allowed to perform code motion.
 | 
						|
      S.SetCFGHazardAfflicted(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCARCOpt::VisitInstructionBottomUp(
 | 
						|
    Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
    BBState &MyStates) {
 | 
						|
  bool NestingDetected = false;
 | 
						|
  ARCInstKind Class = GetARCInstKind(Inst);
 | 
						|
  const Value *Arg = nullptr;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "        Class: " << Class << "\n");
 | 
						|
 | 
						|
  switch (Class) {
 | 
						|
  case ARCInstKind::Release: {
 | 
						|
    Arg = GetArgRCIdentityRoot(Inst);
 | 
						|
 | 
						|
    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
 | 
						|
    NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARCInstKind::RetainBlock:
 | 
						|
    // In OptimizeIndividualCalls, we have strength reduced all optimizable
 | 
						|
    // objc_retainBlocks to objc_retains. Thus at this point any
 | 
						|
    // objc_retainBlocks that we see are not optimizable.
 | 
						|
    break;
 | 
						|
  case ARCInstKind::Retain:
 | 
						|
  case ARCInstKind::RetainRV: {
 | 
						|
    Arg = GetArgRCIdentityRoot(Inst);
 | 
						|
    BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
 | 
						|
    if (S.MatchWithRetain()) {
 | 
						|
      // Don't do retain+release tracking for ARCInstKind::RetainRV, because
 | 
						|
      // it's better to let it remain as the first instruction after a call.
 | 
						|
      if (Class != ARCInstKind::RetainRV) {
 | 
						|
        DEBUG(llvm::dbgs() << "        Matching with: " << *Inst << "\n");
 | 
						|
        Retains[Inst] = S.GetRRInfo();
 | 
						|
      }
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
    }
 | 
						|
    // A retain moving bottom up can be a use.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARCInstKind::AutoreleasepoolPop:
 | 
						|
    // Conservatively, clear MyStates for all known pointers.
 | 
						|
    MyStates.clearBottomUpPointers();
 | 
						|
    return NestingDetected;
 | 
						|
  case ARCInstKind::AutoreleasepoolPush:
 | 
						|
  case ARCInstKind::None:
 | 
						|
    // These are irrelevant.
 | 
						|
    return NestingDetected;
 | 
						|
  case ARCInstKind::User:
 | 
						|
    // If we have a store into an alloca of a pointer we are tracking, the
 | 
						|
    // pointer has multiple owners implying that we must be more conservative.
 | 
						|
    //
 | 
						|
    // This comes up in the context of a pointer being ``KnownSafe''. In the
 | 
						|
    // presence of a block being initialized, the frontend will emit the
 | 
						|
    // objc_retain on the original pointer and the release on the pointer loaded
 | 
						|
    // from the alloca. The optimizer will through the provenance analysis
 | 
						|
    // realize that the two are related, but since we only require KnownSafe in
 | 
						|
    // one direction, will match the inner retain on the original pointer with
 | 
						|
    // the guard release on the original pointer. This is fixed by ensuring that
 | 
						|
    // in the presence of allocas we only unconditionally remove pointers if
 | 
						|
    // both our retain and our release are KnownSafe.
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      const DataLayout &DL = BB->getModule()->getDataLayout();
 | 
						|
      if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand(), DL)) {
 | 
						|
        auto I = MyStates.findPtrBottomUpState(
 | 
						|
            GetRCIdentityRoot(SI->getValueOperand()));
 | 
						|
        if (I != MyStates.bottom_up_ptr_end())
 | 
						|
          MultiOwnersSet.insert(I->first);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Consider any other possible effects of this instruction on each
 | 
						|
  // pointer being tracked.
 | 
						|
  for (auto MI = MyStates.bottom_up_ptr_begin(),
 | 
						|
            ME = MyStates.bottom_up_ptr_end();
 | 
						|
       MI != ME; ++MI) {
 | 
						|
    const Value *Ptr = MI->first;
 | 
						|
    if (Ptr == Arg)
 | 
						|
      continue; // Handled above.
 | 
						|
    BottomUpPtrState &S = MI->second;
 | 
						|
 | 
						|
    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
 | 
						|
      continue;
 | 
						|
 | 
						|
    S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
 | 
						|
  }
 | 
						|
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
 | 
						|
                               DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                               BlotMapVector<Value *, RRInfo> &Retains) {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
 | 
						|
 | 
						|
  bool NestingDetected = false;
 | 
						|
  BBState &MyStates = BBStates[BB];
 | 
						|
 | 
						|
  // Merge the states from each successor to compute the initial state
 | 
						|
  // for the current block.
 | 
						|
  BBState::edge_iterator SI(MyStates.succ_begin()),
 | 
						|
                         SE(MyStates.succ_end());
 | 
						|
  if (SI != SE) {
 | 
						|
    const BasicBlock *Succ = *SI;
 | 
						|
    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
 | 
						|
    assert(I != BBStates.end());
 | 
						|
    MyStates.InitFromSucc(I->second);
 | 
						|
    ++SI;
 | 
						|
    for (; SI != SE; ++SI) {
 | 
						|
      Succ = *SI;
 | 
						|
      I = BBStates.find(Succ);
 | 
						|
      assert(I != BBStates.end());
 | 
						|
      MyStates.MergeSucc(I->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n"
 | 
						|
                     << "Performing Dataflow:\n");
 | 
						|
 | 
						|
  // Visit all the instructions, bottom-up.
 | 
						|
  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
 | 
						|
    Instruction *Inst = std::prev(I);
 | 
						|
 | 
						|
    // Invoke instructions are visited as part of their successors (below).
 | 
						|
    if (isa<InvokeInst>(Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "    Visiting " << *Inst << "\n");
 | 
						|
 | 
						|
    NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's a predecessor with an invoke, visit the invoke as if it were
 | 
						|
  // part of this block, since we can't insert code after an invoke in its own
 | 
						|
  // block, and we don't want to split critical edges.
 | 
						|
  for (BBState::edge_iterator PI(MyStates.pred_begin()),
 | 
						|
       PE(MyStates.pred_end()); PI != PE; ++PI) {
 | 
						|
    BasicBlock *Pred = *PI;
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
 | 
						|
      NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(llvm::dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
 | 
						|
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
 | 
						|
                                    DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                                    BBState &MyStates) {
 | 
						|
  bool NestingDetected = false;
 | 
						|
  ARCInstKind Class = GetARCInstKind(Inst);
 | 
						|
  const Value *Arg = nullptr;
 | 
						|
 | 
						|
  DEBUG(llvm::dbgs() << "        Class: " << Class << "\n");
 | 
						|
 | 
						|
  switch (Class) {
 | 
						|
  case ARCInstKind::RetainBlock:
 | 
						|
    // In OptimizeIndividualCalls, we have strength reduced all optimizable
 | 
						|
    // objc_retainBlocks to objc_retains. Thus at this point any
 | 
						|
    // objc_retainBlocks that we see are not optimizable. We need to break since
 | 
						|
    // a retain can be a potential use.
 | 
						|
    break;
 | 
						|
  case ARCInstKind::Retain:
 | 
						|
  case ARCInstKind::RetainRV: {
 | 
						|
    Arg = GetArgRCIdentityRoot(Inst);
 | 
						|
    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
 | 
						|
    NestingDetected |= S.InitTopDown(Class, Inst);
 | 
						|
    // A retain can be a potential use; procede to the generic checking
 | 
						|
    // code below.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARCInstKind::Release: {
 | 
						|
    Arg = GetArgRCIdentityRoot(Inst);
 | 
						|
    TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
 | 
						|
    // Try to form a tentative pair in between this release instruction and the
 | 
						|
    // top down pointers that we are tracking.
 | 
						|
    if (S.MatchWithRelease(MDKindCache, Inst)) {
 | 
						|
      // If we succeed, copy S's RRInfo into the Release -> {Retain Set
 | 
						|
      // Map}. Then we clear S.
 | 
						|
      DEBUG(llvm::dbgs() << "        Matching with: " << *Inst << "\n");
 | 
						|
      Releases[Inst] = S.GetRRInfo();
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARCInstKind::AutoreleasepoolPop:
 | 
						|
    // Conservatively, clear MyStates for all known pointers.
 | 
						|
    MyStates.clearTopDownPointers();
 | 
						|
    return false;
 | 
						|
  case ARCInstKind::AutoreleasepoolPush:
 | 
						|
  case ARCInstKind::None:
 | 
						|
    // These can not be uses of
 | 
						|
    return false;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Consider any other possible effects of this instruction on each
 | 
						|
  // pointer being tracked.
 | 
						|
  for (auto MI = MyStates.top_down_ptr_begin(),
 | 
						|
            ME = MyStates.top_down_ptr_end();
 | 
						|
       MI != ME; ++MI) {
 | 
						|
    const Value *Ptr = MI->first;
 | 
						|
    if (Ptr == Arg)
 | 
						|
      continue; // Handled above.
 | 
						|
    TopDownPtrState &S = MI->second;
 | 
						|
    if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
 | 
						|
      continue;
 | 
						|
 | 
						|
    S.HandlePotentialUse(Inst, Ptr, PA, Class);
 | 
						|
  }
 | 
						|
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ObjCARCOpt::VisitTopDown(BasicBlock *BB,
 | 
						|
                         DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                         DenseMap<Value *, RRInfo> &Releases) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
 | 
						|
  bool NestingDetected = false;
 | 
						|
  BBState &MyStates = BBStates[BB];
 | 
						|
 | 
						|
  // Merge the states from each predecessor to compute the initial state
 | 
						|
  // for the current block.
 | 
						|
  BBState::edge_iterator PI(MyStates.pred_begin()),
 | 
						|
                         PE(MyStates.pred_end());
 | 
						|
  if (PI != PE) {
 | 
						|
    const BasicBlock *Pred = *PI;
 | 
						|
    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
 | 
						|
    assert(I != BBStates.end());
 | 
						|
    MyStates.InitFromPred(I->second);
 | 
						|
    ++PI;
 | 
						|
    for (; PI != PE; ++PI) {
 | 
						|
      Pred = *PI;
 | 
						|
      I = BBStates.find(Pred);
 | 
						|
      assert(I != BBStates.end());
 | 
						|
      MyStates.MergePred(I->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB]  << "\n"
 | 
						|
                     << "Performing Dataflow:\n");
 | 
						|
 | 
						|
  // Visit all the instructions, top-down.
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    Instruction *Inst = I;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "    Visiting " << *Inst << "\n");
 | 
						|
 | 
						|
    NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(llvm::dbgs() << "\nState Before Checking for CFG Hazards:\n"
 | 
						|
                     << BBStates[BB] << "\n\n");
 | 
						|
  CheckForCFGHazards(BB, BBStates, MyStates);
 | 
						|
  DEBUG(llvm::dbgs() << "Final State:\n" << BBStates[BB] << "\n");
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ComputePostOrders(Function &F,
 | 
						|
                  SmallVectorImpl<BasicBlock *> &PostOrder,
 | 
						|
                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
 | 
						|
                  unsigned NoObjCARCExceptionsMDKind,
 | 
						|
                  DenseMap<const BasicBlock *, BBState> &BBStates) {
 | 
						|
  /// The visited set, for doing DFS walks.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> Visited;
 | 
						|
 | 
						|
  // Do DFS, computing the PostOrder.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> OnStack;
 | 
						|
  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
 | 
						|
 | 
						|
  // Functions always have exactly one entry block, and we don't have
 | 
						|
  // any other block that we treat like an entry block.
 | 
						|
  BasicBlock *EntryBB = &F.getEntryBlock();
 | 
						|
  BBState &MyStates = BBStates[EntryBB];
 | 
						|
  MyStates.SetAsEntry();
 | 
						|
  TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
 | 
						|
  SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
 | 
						|
  Visited.insert(EntryBB);
 | 
						|
  OnStack.insert(EntryBB);
 | 
						|
  do {
 | 
						|
  dfs_next_succ:
 | 
						|
    BasicBlock *CurrBB = SuccStack.back().first;
 | 
						|
    TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
 | 
						|
    succ_iterator SE(TI, false);
 | 
						|
 | 
						|
    while (SuccStack.back().second != SE) {
 | 
						|
      BasicBlock *SuccBB = *SuccStack.back().second++;
 | 
						|
      if (Visited.insert(SuccBB).second) {
 | 
						|
        TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
 | 
						|
        SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
 | 
						|
        BBStates[CurrBB].addSucc(SuccBB);
 | 
						|
        BBState &SuccStates = BBStates[SuccBB];
 | 
						|
        SuccStates.addPred(CurrBB);
 | 
						|
        OnStack.insert(SuccBB);
 | 
						|
        goto dfs_next_succ;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!OnStack.count(SuccBB)) {
 | 
						|
        BBStates[CurrBB].addSucc(SuccBB);
 | 
						|
        BBStates[SuccBB].addPred(CurrBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OnStack.erase(CurrBB);
 | 
						|
    PostOrder.push_back(CurrBB);
 | 
						|
    SuccStack.pop_back();
 | 
						|
  } while (!SuccStack.empty());
 | 
						|
 | 
						|
  Visited.clear();
 | 
						|
 | 
						|
  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
 | 
						|
  // Functions may have many exits, and there also blocks which we treat
 | 
						|
  // as exits due to ignored edges.
 | 
						|
  SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | 
						|
    BasicBlock *ExitBB = I;
 | 
						|
    BBState &MyStates = BBStates[ExitBB];
 | 
						|
    if (!MyStates.isExit())
 | 
						|
      continue;
 | 
						|
 | 
						|
    MyStates.SetAsExit();
 | 
						|
 | 
						|
    PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
 | 
						|
    Visited.insert(ExitBB);
 | 
						|
    while (!PredStack.empty()) {
 | 
						|
    reverse_dfs_next_succ:
 | 
						|
      BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
 | 
						|
      while (PredStack.back().second != PE) {
 | 
						|
        BasicBlock *BB = *PredStack.back().second++;
 | 
						|
        if (Visited.insert(BB).second) {
 | 
						|
          PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
 | 
						|
          goto reverse_dfs_next_succ;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Visit the function both top-down and bottom-up.
 | 
						|
bool ObjCARCOpt::Visit(Function &F,
 | 
						|
                       DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                       BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
                       DenseMap<Value *, RRInfo> &Releases) {
 | 
						|
 | 
						|
  // Use reverse-postorder traversals, because we magically know that loops
 | 
						|
  // will be well behaved, i.e. they won't repeatedly call retain on a single
 | 
						|
  // pointer without doing a release. We can't use the ReversePostOrderTraversal
 | 
						|
  // class here because we want the reverse-CFG postorder to consider each
 | 
						|
  // function exit point, and we want to ignore selected cycle edges.
 | 
						|
  SmallVector<BasicBlock *, 16> PostOrder;
 | 
						|
  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
 | 
						|
  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
 | 
						|
                    MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
 | 
						|
                    BBStates);
 | 
						|
 | 
						|
  // Use reverse-postorder on the reverse CFG for bottom-up.
 | 
						|
  bool BottomUpNestingDetected = false;
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | 
						|
       ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
 | 
						|
       I != E; ++I)
 | 
						|
    BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
 | 
						|
 | 
						|
  // Use reverse-postorder for top-down.
 | 
						|
  bool TopDownNestingDetected = false;
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | 
						|
       PostOrder.rbegin(), E = PostOrder.rend();
 | 
						|
       I != E; ++I)
 | 
						|
    TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
 | 
						|
 | 
						|
  return TopDownNestingDetected && BottomUpNestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
/// Move the calls in RetainsToMove and ReleasesToMove.
 | 
						|
void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
 | 
						|
                           RRInfo &ReleasesToMove,
 | 
						|
                           BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
                           DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                           SmallVectorImpl<Instruction *> &DeadInsts,
 | 
						|
                           Module *M) {
 | 
						|
  Type *ArgTy = Arg->getType();
 | 
						|
  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
 | 
						|
 | 
						|
  DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
 | 
						|
 | 
						|
  // Insert the new retain and release calls.
 | 
						|
  for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
 | 
						|
    Value *MyArg = ArgTy == ParamTy ? Arg :
 | 
						|
                   new BitCastInst(Arg, ParamTy, "", InsertPt);
 | 
						|
    Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
 | 
						|
    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
 | 
						|
    Call->setDoesNotThrow();
 | 
						|
    Call->setTailCall();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
 | 
						|
                    "At insertion point: " << *InsertPt << "\n");
 | 
						|
  }
 | 
						|
  for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
 | 
						|
    Value *MyArg = ArgTy == ParamTy ? Arg :
 | 
						|
                   new BitCastInst(Arg, ParamTy, "", InsertPt);
 | 
						|
    Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
 | 
						|
    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
 | 
						|
    // Attach a clang.imprecise_release metadata tag, if appropriate.
 | 
						|
    if (MDNode *M = ReleasesToMove.ReleaseMetadata)
 | 
						|
      Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
 | 
						|
    Call->setDoesNotThrow();
 | 
						|
    if (ReleasesToMove.IsTailCallRelease)
 | 
						|
      Call->setTailCall();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
 | 
						|
                    "At insertion point: " << *InsertPt << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the original retain and release calls.
 | 
						|
  for (Instruction *OrigRetain : RetainsToMove.Calls) {
 | 
						|
    Retains.blot(OrigRetain);
 | 
						|
    DeadInsts.push_back(OrigRetain);
 | 
						|
    DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
 | 
						|
  }
 | 
						|
  for (Instruction *OrigRelease : ReleasesToMove.Calls) {
 | 
						|
    Releases.erase(OrigRelease);
 | 
						|
    DeadInsts.push_back(OrigRelease);
 | 
						|
    DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCARCOpt::PairUpRetainsAndReleases(
 | 
						|
    DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
    BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
    DenseMap<Value *, RRInfo> &Releases, Module *M,
 | 
						|
    SmallVectorImpl<Instruction *> &NewRetains,
 | 
						|
    SmallVectorImpl<Instruction *> &NewReleases,
 | 
						|
    SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
 | 
						|
    RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
 | 
						|
    bool &AnyPairsCompletelyEliminated) {
 | 
						|
  // If a pair happens in a region where it is known that the reference count
 | 
						|
  // is already incremented, we can similarly ignore possible decrements unless
 | 
						|
  // we are dealing with a retainable object with multiple provenance sources.
 | 
						|
  bool KnownSafeTD = true, KnownSafeBU = true;
 | 
						|
  bool MultipleOwners = false;
 | 
						|
  bool CFGHazardAfflicted = false;
 | 
						|
 | 
						|
  // Connect the dots between the top-down-collected RetainsToMove and
 | 
						|
  // bottom-up-collected ReleasesToMove to form sets of related calls.
 | 
						|
  // This is an iterative process so that we connect multiple releases
 | 
						|
  // to multiple retains if needed.
 | 
						|
  unsigned OldDelta = 0;
 | 
						|
  unsigned NewDelta = 0;
 | 
						|
  unsigned OldCount = 0;
 | 
						|
  unsigned NewCount = 0;
 | 
						|
  bool FirstRelease = true;
 | 
						|
  for (;;) {
 | 
						|
    for (SmallVectorImpl<Instruction *>::const_iterator
 | 
						|
           NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
 | 
						|
      Instruction *NewRetain = *NI;
 | 
						|
      auto It = Retains.find(NewRetain);
 | 
						|
      assert(It != Retains.end());
 | 
						|
      const RRInfo &NewRetainRRI = It->second;
 | 
						|
      KnownSafeTD &= NewRetainRRI.KnownSafe;
 | 
						|
      MultipleOwners =
 | 
						|
        MultipleOwners || MultiOwnersSet.count(GetArgRCIdentityRoot(NewRetain));
 | 
						|
      for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
 | 
						|
        auto Jt = Releases.find(NewRetainRelease);
 | 
						|
        if (Jt == Releases.end())
 | 
						|
          return false;
 | 
						|
        const RRInfo &NewRetainReleaseRRI = Jt->second;
 | 
						|
 | 
						|
        // If the release does not have a reference to the retain as well,
 | 
						|
        // something happened which is unaccounted for. Do not do anything.
 | 
						|
        //
 | 
						|
        // This can happen if we catch an additive overflow during path count
 | 
						|
        // merging.
 | 
						|
        if (!NewRetainReleaseRRI.Calls.count(NewRetain))
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
 | 
						|
 | 
						|
          // If we overflow when we compute the path count, don't remove/move
 | 
						|
          // anything.
 | 
						|
          const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
 | 
						|
          unsigned PathCount = BBState::OverflowOccurredValue;
 | 
						|
          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
            return false;
 | 
						|
          assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                 "PathCount at this point can not be "
 | 
						|
                 "OverflowOccurredValue.");
 | 
						|
          OldDelta -= PathCount;
 | 
						|
 | 
						|
          // Merge the ReleaseMetadata and IsTailCallRelease values.
 | 
						|
          if (FirstRelease) {
 | 
						|
            ReleasesToMove.ReleaseMetadata =
 | 
						|
              NewRetainReleaseRRI.ReleaseMetadata;
 | 
						|
            ReleasesToMove.IsTailCallRelease =
 | 
						|
              NewRetainReleaseRRI.IsTailCallRelease;
 | 
						|
            FirstRelease = false;
 | 
						|
          } else {
 | 
						|
            if (ReleasesToMove.ReleaseMetadata !=
 | 
						|
                NewRetainReleaseRRI.ReleaseMetadata)
 | 
						|
              ReleasesToMove.ReleaseMetadata = nullptr;
 | 
						|
            if (ReleasesToMove.IsTailCallRelease !=
 | 
						|
                NewRetainReleaseRRI.IsTailCallRelease)
 | 
						|
              ReleasesToMove.IsTailCallRelease = false;
 | 
						|
          }
 | 
						|
 | 
						|
          // Collect the optimal insertion points.
 | 
						|
          if (!KnownSafe)
 | 
						|
            for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
 | 
						|
              if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
 | 
						|
                // If we overflow when we compute the path count, don't
 | 
						|
                // remove/move anything.
 | 
						|
                const BBState &RIPBBState = BBStates[RIP->getParent()];
 | 
						|
                PathCount = BBState::OverflowOccurredValue;
 | 
						|
                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
                  return false;
 | 
						|
                assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                       "PathCount at this point can not be "
 | 
						|
                       "OverflowOccurredValue.");
 | 
						|
                NewDelta -= PathCount;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          NewReleases.push_back(NewRetainRelease);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    NewRetains.clear();
 | 
						|
    if (NewReleases.empty()) break;
 | 
						|
 | 
						|
    // Back the other way.
 | 
						|
    for (SmallVectorImpl<Instruction *>::const_iterator
 | 
						|
           NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
 | 
						|
      Instruction *NewRelease = *NI;
 | 
						|
      auto It = Releases.find(NewRelease);
 | 
						|
      assert(It != Releases.end());
 | 
						|
      const RRInfo &NewReleaseRRI = It->second;
 | 
						|
      KnownSafeBU &= NewReleaseRRI.KnownSafe;
 | 
						|
      CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
 | 
						|
      for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
 | 
						|
        auto Jt = Retains.find(NewReleaseRetain);
 | 
						|
        if (Jt == Retains.end())
 | 
						|
          return false;
 | 
						|
        const RRInfo &NewReleaseRetainRRI = Jt->second;
 | 
						|
 | 
						|
        // If the retain does not have a reference to the release as well,
 | 
						|
        // something happened which is unaccounted for. Do not do anything.
 | 
						|
        //
 | 
						|
        // This can happen if we catch an additive overflow during path count
 | 
						|
        // merging.
 | 
						|
        if (!NewReleaseRetainRRI.Calls.count(NewRelease))
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
 | 
						|
          // If we overflow when we compute the path count, don't remove/move
 | 
						|
          // anything.
 | 
						|
          const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
 | 
						|
          unsigned PathCount = BBState::OverflowOccurredValue;
 | 
						|
          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
            return false;
 | 
						|
          assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                 "PathCount at this point can not be "
 | 
						|
                 "OverflowOccurredValue.");
 | 
						|
          OldDelta += PathCount;
 | 
						|
          OldCount += PathCount;
 | 
						|
 | 
						|
          // Collect the optimal insertion points.
 | 
						|
          if (!KnownSafe)
 | 
						|
            for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
 | 
						|
              if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
 | 
						|
                // If we overflow when we compute the path count, don't
 | 
						|
                // remove/move anything.
 | 
						|
                const BBState &RIPBBState = BBStates[RIP->getParent()];
 | 
						|
 | 
						|
                PathCount = BBState::OverflowOccurredValue;
 | 
						|
                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
                  return false;
 | 
						|
                assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                       "PathCount at this point can not be "
 | 
						|
                       "OverflowOccurredValue.");
 | 
						|
                NewDelta += PathCount;
 | 
						|
                NewCount += PathCount;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          NewRetains.push_back(NewReleaseRetain);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    NewReleases.clear();
 | 
						|
    if (NewRetains.empty()) break;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can only remove pointers if we are known safe in both directions.
 | 
						|
  bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
 | 
						|
  if (UnconditionallySafe) {
 | 
						|
    RetainsToMove.ReverseInsertPts.clear();
 | 
						|
    ReleasesToMove.ReverseInsertPts.clear();
 | 
						|
    NewCount = 0;
 | 
						|
  } else {
 | 
						|
    // Determine whether the new insertion points we computed preserve the
 | 
						|
    // balance of retain and release calls through the program.
 | 
						|
    // TODO: If the fully aggressive solution isn't valid, try to find a
 | 
						|
    // less aggressive solution which is.
 | 
						|
    if (NewDelta != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // At this point, we are not going to remove any RR pairs, but we still are
 | 
						|
    // able to move RR pairs. If one of our pointers is afflicted with
 | 
						|
    // CFGHazards, we cannot perform such code motion so exit early.
 | 
						|
    const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
 | 
						|
      ReleasesToMove.ReverseInsertPts.size();
 | 
						|
    if (CFGHazardAfflicted && WillPerformCodeMotion)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether the original call points are balanced in the retain and
 | 
						|
  // release calls through the program. If not, conservatively don't touch
 | 
						|
  // them.
 | 
						|
  // TODO: It's theoretically possible to do code motion in this case, as
 | 
						|
  // long as the existing imbalances are maintained.
 | 
						|
  if (OldDelta != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  assert(OldCount != 0 && "Unreachable code?");
 | 
						|
  NumRRs += OldCount - NewCount;
 | 
						|
  // Set to true if we completely removed any RR pairs.
 | 
						|
  AnyPairsCompletelyEliminated = NewCount == 0;
 | 
						|
 | 
						|
  // We can move calls!
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Identify pairings between the retains and releases, and delete and/or move
 | 
						|
/// them.
 | 
						|
bool ObjCARCOpt::PerformCodePlacement(
 | 
						|
    DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
    BlotMapVector<Value *, RRInfo> &Retains,
 | 
						|
    DenseMap<Value *, RRInfo> &Releases, Module *M) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
 | 
						|
 | 
						|
  bool AnyPairsCompletelyEliminated = false;
 | 
						|
  RRInfo RetainsToMove;
 | 
						|
  RRInfo ReleasesToMove;
 | 
						|
  SmallVector<Instruction *, 4> NewRetains;
 | 
						|
  SmallVector<Instruction *, 4> NewReleases;
 | 
						|
  SmallVector<Instruction *, 8> DeadInsts;
 | 
						|
 | 
						|
  // Visit each retain.
 | 
						|
  for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
 | 
						|
                                                      E = Retains.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Value *V = I->first;
 | 
						|
    if (!V) continue; // blotted
 | 
						|
 | 
						|
    Instruction *Retain = cast<Instruction>(V);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
 | 
						|
 | 
						|
    Value *Arg = GetArgRCIdentityRoot(Retain);
 | 
						|
 | 
						|
    // If the object being released is in static or stack storage, we know it's
 | 
						|
    // not being managed by ObjC reference counting, so we can delete pairs
 | 
						|
    // regardless of what possible decrements or uses lie between them.
 | 
						|
    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
 | 
						|
 | 
						|
    // A constant pointer can't be pointing to an object on the heap. It may
 | 
						|
    // be reference-counted, but it won't be deleted.
 | 
						|
    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
 | 
						|
      if (const GlobalVariable *GV =
 | 
						|
            dyn_cast<GlobalVariable>(
 | 
						|
              GetRCIdentityRoot(LI->getPointerOperand())))
 | 
						|
        if (GV->isConstant())
 | 
						|
          KnownSafe = true;
 | 
						|
 | 
						|
    // Connect the dots between the top-down-collected RetainsToMove and
 | 
						|
    // bottom-up-collected ReleasesToMove to form sets of related calls.
 | 
						|
    NewRetains.push_back(Retain);
 | 
						|
    bool PerformMoveCalls = PairUpRetainsAndReleases(
 | 
						|
        BBStates, Retains, Releases, M, NewRetains, NewReleases, DeadInsts,
 | 
						|
        RetainsToMove, ReleasesToMove, Arg, KnownSafe,
 | 
						|
        AnyPairsCompletelyEliminated);
 | 
						|
 | 
						|
    if (PerformMoveCalls) {
 | 
						|
      // Ok, everything checks out and we're all set. Let's move/delete some
 | 
						|
      // code!
 | 
						|
      MoveCalls(Arg, RetainsToMove, ReleasesToMove,
 | 
						|
                Retains, Releases, DeadInsts, M);
 | 
						|
    }
 | 
						|
 | 
						|
    // Clean up state for next retain.
 | 
						|
    NewReleases.clear();
 | 
						|
    NewRetains.clear();
 | 
						|
    RetainsToMove.clear();
 | 
						|
    ReleasesToMove.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we're done moving everything, we can delete the newly dead
 | 
						|
  // instructions, as we no longer need them as insert points.
 | 
						|
  while (!DeadInsts.empty())
 | 
						|
    EraseInstruction(DeadInsts.pop_back_val());
 | 
						|
 | 
						|
  return AnyPairsCompletelyEliminated;
 | 
						|
}
 | 
						|
 | 
						|
/// Weak pointer optimizations.
 | 
						|
void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
 | 
						|
 | 
						|
  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
 | 
						|
  // itself because it uses AliasAnalysis and we need to do provenance
 | 
						|
  // queries instead.
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
 | 
						|
 | 
						|
    ARCInstKind Class = GetBasicARCInstKind(Inst);
 | 
						|
    if (Class != ARCInstKind::LoadWeak &&
 | 
						|
        Class != ARCInstKind::LoadWeakRetained)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Delete objc_loadWeak calls with no users.
 | 
						|
    if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: For now, just look for an earlier available version of this value
 | 
						|
    // within the same block. Theoretically, we could do memdep-style non-local
 | 
						|
    // analysis too, but that would want caching. A better approach would be to
 | 
						|
    // use the technique that EarlyCSE uses.
 | 
						|
    inst_iterator Current = std::prev(I);
 | 
						|
    BasicBlock *CurrentBB = Current.getBasicBlockIterator();
 | 
						|
    for (BasicBlock::iterator B = CurrentBB->begin(),
 | 
						|
                              J = Current.getInstructionIterator();
 | 
						|
         J != B; --J) {
 | 
						|
      Instruction *EarlierInst = &*std::prev(J);
 | 
						|
      ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
 | 
						|
      switch (EarlierClass) {
 | 
						|
      case ARCInstKind::LoadWeak:
 | 
						|
      case ARCInstKind::LoadWeakRetained: {
 | 
						|
        // If this is loading from the same pointer, replace this load's value
 | 
						|
        // with that one.
 | 
						|
        CallInst *Call = cast<CallInst>(Inst);
 | 
						|
        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | 
						|
        Value *Arg = Call->getArgOperand(0);
 | 
						|
        Value *EarlierArg = EarlierCall->getArgOperand(0);
 | 
						|
        switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | 
						|
        case AliasAnalysis::MustAlias:
 | 
						|
          Changed = true;
 | 
						|
          // If the load has a builtin retain, insert a plain retain for it.
 | 
						|
          if (Class == ARCInstKind::LoadWeakRetained) {
 | 
						|
            Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
 | 
						|
            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
 | 
						|
            CI->setTailCall();
 | 
						|
          }
 | 
						|
          // Zap the fully redundant load.
 | 
						|
          Call->replaceAllUsesWith(EarlierCall);
 | 
						|
          Call->eraseFromParent();
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::MayAlias:
 | 
						|
        case AliasAnalysis::PartialAlias:
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::NoAlias:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case ARCInstKind::StoreWeak:
 | 
						|
      case ARCInstKind::InitWeak: {
 | 
						|
        // If this is storing to the same pointer and has the same size etc.
 | 
						|
        // replace this load's value with the stored value.
 | 
						|
        CallInst *Call = cast<CallInst>(Inst);
 | 
						|
        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | 
						|
        Value *Arg = Call->getArgOperand(0);
 | 
						|
        Value *EarlierArg = EarlierCall->getArgOperand(0);
 | 
						|
        switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | 
						|
        case AliasAnalysis::MustAlias:
 | 
						|
          Changed = true;
 | 
						|
          // If the load has a builtin retain, insert a plain retain for it.
 | 
						|
          if (Class == ARCInstKind::LoadWeakRetained) {
 | 
						|
            Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
 | 
						|
            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
 | 
						|
            CI->setTailCall();
 | 
						|
          }
 | 
						|
          // Zap the fully redundant load.
 | 
						|
          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
 | 
						|
          Call->eraseFromParent();
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::MayAlias:
 | 
						|
        case AliasAnalysis::PartialAlias:
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::NoAlias:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case ARCInstKind::MoveWeak:
 | 
						|
      case ARCInstKind::CopyWeak:
 | 
						|
        // TOOD: Grab the copied value.
 | 
						|
        goto clobbered;
 | 
						|
      case ARCInstKind::AutoreleasepoolPush:
 | 
						|
      case ARCInstKind::None:
 | 
						|
      case ARCInstKind::IntrinsicUser:
 | 
						|
      case ARCInstKind::User:
 | 
						|
        // Weak pointers are only modified through the weak entry points
 | 
						|
        // (and arbitrary calls, which could call the weak entry points).
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        // Anything else could modify the weak pointer.
 | 
						|
        goto clobbered;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  clobbered:;
 | 
						|
  }
 | 
						|
 | 
						|
  // Then, for each destroyWeak with an alloca operand, check to see if
 | 
						|
  // the alloca and all its users can be zapped.
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
    ARCInstKind Class = GetBasicARCInstKind(Inst);
 | 
						|
    if (Class != ARCInstKind::DestroyWeak)
 | 
						|
      continue;
 | 
						|
 | 
						|
    CallInst *Call = cast<CallInst>(Inst);
 | 
						|
    Value *Arg = Call->getArgOperand(0);
 | 
						|
    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
 | 
						|
      for (User *U : Alloca->users()) {
 | 
						|
        const Instruction *UserInst = cast<Instruction>(U);
 | 
						|
        switch (GetBasicARCInstKind(UserInst)) {
 | 
						|
        case ARCInstKind::InitWeak:
 | 
						|
        case ARCInstKind::StoreWeak:
 | 
						|
        case ARCInstKind::DestroyWeak:
 | 
						|
          continue;
 | 
						|
        default:
 | 
						|
          goto done;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Changed = true;
 | 
						|
      for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
 | 
						|
        CallInst *UserInst = cast<CallInst>(*UI++);
 | 
						|
        switch (GetBasicARCInstKind(UserInst)) {
 | 
						|
        case ARCInstKind::InitWeak:
 | 
						|
        case ARCInstKind::StoreWeak:
 | 
						|
          // These functions return their second argument.
 | 
						|
          UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
 | 
						|
          break;
 | 
						|
        case ARCInstKind::DestroyWeak:
 | 
						|
          // No return value.
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("alloca really is used!");
 | 
						|
        }
 | 
						|
        UserInst->eraseFromParent();
 | 
						|
      }
 | 
						|
      Alloca->eraseFromParent();
 | 
						|
    done:;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Identify program paths which execute sequences of retains and releases which
 | 
						|
/// can be eliminated.
 | 
						|
bool ObjCARCOpt::OptimizeSequences(Function &F) {
 | 
						|
  // Releases, Retains - These are used to store the results of the main flow
 | 
						|
  // analysis. These use Value* as the key instead of Instruction* so that the
 | 
						|
  // map stays valid when we get around to rewriting code and calls get
 | 
						|
  // replaced by arguments.
 | 
						|
  DenseMap<Value *, RRInfo> Releases;
 | 
						|
  BlotMapVector<Value *, RRInfo> Retains;
 | 
						|
 | 
						|
  // This is used during the traversal of the function to track the
 | 
						|
  // states for each identified object at each block.
 | 
						|
  DenseMap<const BasicBlock *, BBState> BBStates;
 | 
						|
 | 
						|
  // Analyze the CFG of the function, and all instructions.
 | 
						|
  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
 | 
						|
 | 
						|
  // Transform.
 | 
						|
  bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
 | 
						|
                                                           Releases,
 | 
						|
                                                           F.getParent());
 | 
						|
 | 
						|
  // Cleanup.
 | 
						|
  MultiOwnersSet.clear();
 | 
						|
 | 
						|
  return AnyPairsCompletelyEliminated && NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if there is a dependent call earlier that does not have anything in
 | 
						|
/// between the Retain and the call that can affect the reference count of their
 | 
						|
/// shared pointer argument. Note that Retain need not be in BB.
 | 
						|
static bool
 | 
						|
HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
 | 
						|
                             SmallPtrSetImpl<Instruction *> &DepInsts,
 | 
						|
                             SmallPtrSetImpl<const BasicBlock *> &Visited,
 | 
						|
                             ProvenanceAnalysis &PA) {
 | 
						|
  FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
 | 
						|
                   DepInsts, Visited, PA);
 | 
						|
  if (DepInsts.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | 
						|
 | 
						|
  // Check that the pointer is the return value of the call.
 | 
						|
  if (!Call || Arg != Call)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the call is a regular call.
 | 
						|
  ARCInstKind Class = GetBasicARCInstKind(Call);
 | 
						|
  if (Class != ARCInstKind::CallOrUser && Class != ARCInstKind::Call)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Find a dependent retain that precedes the given autorelease for which there
 | 
						|
/// is nothing in between the two instructions that can affect the ref count of
 | 
						|
/// Arg.
 | 
						|
static CallInst *
 | 
						|
FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
 | 
						|
                                  Instruction *Autorelease,
 | 
						|
                                  SmallPtrSetImpl<Instruction *> &DepInsts,
 | 
						|
                                  SmallPtrSetImpl<const BasicBlock *> &Visited,
 | 
						|
                                  ProvenanceAnalysis &PA) {
 | 
						|
  FindDependencies(CanChangeRetainCount, Arg,
 | 
						|
                   BB, Autorelease, DepInsts, Visited, PA);
 | 
						|
  if (DepInsts.size() != 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | 
						|
 | 
						|
  // Check that we found a retain with the same argument.
 | 
						|
  if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
 | 
						|
      GetArgRCIdentityRoot(Retain) != Arg) {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return Retain;
 | 
						|
}
 | 
						|
 | 
						|
/// Look for an ``autorelease'' instruction dependent on Arg such that there are
 | 
						|
/// no instructions dependent on Arg that need a positive ref count in between
 | 
						|
/// the autorelease and the ret.
 | 
						|
static CallInst *
 | 
						|
FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
 | 
						|
                                       ReturnInst *Ret,
 | 
						|
                                       SmallPtrSetImpl<Instruction *> &DepInsts,
 | 
						|
                                       SmallPtrSetImpl<const BasicBlock *> &V,
 | 
						|
                                       ProvenanceAnalysis &PA) {
 | 
						|
  FindDependencies(NeedsPositiveRetainCount, Arg,
 | 
						|
                   BB, Ret, DepInsts, V, PA);
 | 
						|
  if (DepInsts.size() != 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | 
						|
  if (!Autorelease)
 | 
						|
    return nullptr;
 | 
						|
  ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
 | 
						|
  if (!IsAutorelease(AutoreleaseClass))
 | 
						|
    return nullptr;
 | 
						|
  if (GetArgRCIdentityRoot(Autorelease) != Arg)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return Autorelease;
 | 
						|
}
 | 
						|
 | 
						|
/// Look for this pattern:
 | 
						|
/// \code
 | 
						|
///    %call = call i8* @something(...)
 | 
						|
///    %2 = call i8* @objc_retain(i8* %call)
 | 
						|
///    %3 = call i8* @objc_autorelease(i8* %2)
 | 
						|
///    ret i8* %3
 | 
						|
/// \endcode
 | 
						|
/// And delete the retain and autorelease.
 | 
						|
void ObjCARCOpt::OptimizeReturns(Function &F) {
 | 
						|
  if (!F.getReturnType()->isPointerTy())
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 4> DependingInstructions;
 | 
						|
  SmallPtrSet<const BasicBlock *, 4> Visited;
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
 | 
						|
    BasicBlock *BB = FI;
 | 
						|
    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
 | 
						|
 | 
						|
    if (!Ret)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
 | 
						|
 | 
						|
    // Look for an ``autorelease'' instruction that is a predecessor of Ret and
 | 
						|
    // dependent on Arg such that there are no instructions dependent on Arg
 | 
						|
    // that need a positive ref count in between the autorelease and Ret.
 | 
						|
    CallInst *Autorelease =
 | 
						|
      FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
 | 
						|
                                             DependingInstructions, Visited,
 | 
						|
                                             PA);
 | 
						|
    DependingInstructions.clear();
 | 
						|
    Visited.clear();
 | 
						|
 | 
						|
    if (!Autorelease)
 | 
						|
      continue;
 | 
						|
 | 
						|
    CallInst *Retain =
 | 
						|
      FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
 | 
						|
                                        DependingInstructions, Visited, PA);
 | 
						|
    DependingInstructions.clear();
 | 
						|
    Visited.clear();
 | 
						|
 | 
						|
    if (!Retain)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that there is nothing that can affect the reference count
 | 
						|
    // between the retain and the call.  Note that Retain need not be in BB.
 | 
						|
    bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
 | 
						|
                                                          DependingInstructions,
 | 
						|
                                                          Visited, PA);
 | 
						|
    DependingInstructions.clear();
 | 
						|
    Visited.clear();
 | 
						|
 | 
						|
    if (!HasSafePathToCall)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If so, we can zap the retain and autorelease.
 | 
						|
    Changed = true;
 | 
						|
    ++NumRets;
 | 
						|
    DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
 | 
						|
          << *Autorelease << "\n");
 | 
						|
    EraseInstruction(Retain);
 | 
						|
    EraseInstruction(Autorelease);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void
 | 
						|
ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
 | 
						|
  llvm::Statistic &NumRetains =
 | 
						|
    AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
 | 
						|
  llvm::Statistic &NumReleases =
 | 
						|
    AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
 | 
						|
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
    switch (GetBasicARCInstKind(Inst)) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case ARCInstKind::Retain:
 | 
						|
      ++NumRetains;
 | 
						|
      break;
 | 
						|
    case ARCInstKind::Release:
 | 
						|
      ++NumReleases;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool ObjCARCOpt::doInitialization(Module &M) {
 | 
						|
  if (!EnableARCOpts)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If nothing in the Module uses ARC, don't do anything.
 | 
						|
  Run = ModuleHasARC(M);
 | 
						|
  if (!Run)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Intuitively, objc_retain and others are nocapture, however in practice
 | 
						|
  // they are not, because they return their argument value. And objc_release
 | 
						|
  // calls finalizers which can have arbitrary side effects.
 | 
						|
  MDKindCache.init(&M);
 | 
						|
 | 
						|
  // Initialize our runtime entry point cache.
 | 
						|
  EP.init(&M);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCARCOpt::runOnFunction(Function &F) {
 | 
						|
  if (!EnableARCOpts)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If nothing in the Module uses ARC, don't do anything.
 | 
						|
  if (!Run)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Changed = false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
 | 
						|
        "\n");
 | 
						|
 | 
						|
  PA.setAA(&getAnalysis<AliasAnalysis>());
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (AreStatisticsEnabled()) {
 | 
						|
    GatherStatistics(F, false);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // This pass performs several distinct transformations. As a compile-time aid
 | 
						|
  // when compiling code that isn't ObjC, skip these if the relevant ObjC
 | 
						|
  // library functions aren't declared.
 | 
						|
 | 
						|
  // Preliminary optimizations. This also computes UsedInThisFunction.
 | 
						|
  OptimizeIndividualCalls(F);
 | 
						|
 | 
						|
  // Optimizations for weak pointers.
 | 
						|
  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::StoreWeak)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::InitWeak)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::CopyWeak)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::MoveWeak)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::DestroyWeak))))
 | 
						|
    OptimizeWeakCalls(F);
 | 
						|
 | 
						|
  // Optimizations for retain+release pairs.
 | 
						|
  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::RetainRV)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::RetainBlock))))
 | 
						|
    if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
 | 
						|
      // Run OptimizeSequences until it either stops making changes or
 | 
						|
      // no retain+release pair nesting is detected.
 | 
						|
      while (OptimizeSequences(F)) {}
 | 
						|
 | 
						|
  // Optimizations if objc_autorelease is used.
 | 
						|
  if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
 | 
						|
                            (1 << unsigned(ARCInstKind::AutoreleaseRV))))
 | 
						|
    OptimizeReturns(F);
 | 
						|
 | 
						|
  // Gather statistics after optimization.
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (AreStatisticsEnabled()) {
 | 
						|
    GatherStatistics(F, true);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void ObjCARCOpt::releaseMemory() {
 | 
						|
  PA.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// @}
 | 
						|
///
 |