mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	lib/Analysis/IPA/InlineCost.cpp | 18 ------------------ lib/Analysis/RegionPass.cpp | 1 - lib/Analysis/TypeBasedAliasAnalysis.cpp | 1 - lib/Transforms/Scalar/LoopUnswitch.cpp | 21 --------------------- lib/Transforms/Utils/LCSSA.cpp | 2 -- lib/Transforms/Utils/LoopSimplify.cpp | 6 ------ utils/TableGen/AsmWriterEmitter.cpp | 13 ------------- utils/TableGen/DFAPacketizerEmitter.cpp | 7 ------- utils/TableGen/IntrinsicEmitter.cpp | 2 -- 9 files changed, 71 deletions(-) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206506 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			609 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the TypeBasedAliasAnalysis pass, which implements
 | |
| // metadata-based TBAA.
 | |
| //
 | |
| // In LLVM IR, memory does not have types, so LLVM's own type system is not
 | |
| // suitable for doing TBAA. Instead, metadata is added to the IR to describe
 | |
| // a type system of a higher level language. This can be used to implement
 | |
| // typical C/C++ TBAA, but it can also be used to implement custom alias
 | |
| // analysis behavior for other languages.
 | |
| //
 | |
| // We now support two types of metadata format: scalar TBAA and struct-path
 | |
| // aware TBAA. After all testing cases are upgraded to use struct-path aware
 | |
| // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
 | |
| // can be dropped.
 | |
| //
 | |
| // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
 | |
| // three fields, e.g.:
 | |
| //   !0 = metadata !{ metadata !"an example type tree" }
 | |
| //   !1 = metadata !{ metadata !"int", metadata !0 }
 | |
| //   !2 = metadata !{ metadata !"float", metadata !0 }
 | |
| //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
 | |
| //
 | |
| // The first field is an identity field. It can be any value, usually
 | |
| // an MDString, which uniquely identifies the type. The most important
 | |
| // name in the tree is the name of the root node. Two trees with
 | |
| // different root node names are entirely disjoint, even if they
 | |
| // have leaves with common names.
 | |
| //
 | |
| // The second field identifies the type's parent node in the tree, or
 | |
| // is null or omitted for a root node. A type is considered to alias
 | |
| // all of its descendants and all of its ancestors in the tree. Also,
 | |
| // a type is considered to alias all types in other trees, so that
 | |
| // bitcode produced from multiple front-ends is handled conservatively.
 | |
| //
 | |
| // If the third field is present, it's an integer which if equal to 1
 | |
| // indicates that the type is "constant" (meaning pointsToConstantMemory
 | |
| // should return true; see
 | |
| // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
 | |
| //
 | |
| // With struct-path aware TBAA, the MDNodes attached to an instruction using
 | |
| // "!tbaa" are called path tag nodes.
 | |
| //
 | |
| // The path tag node has 4 fields with the last field being optional.
 | |
| //
 | |
| // The first field is the base type node, it can be a struct type node
 | |
| // or a scalar type node. The second field is the access type node, it
 | |
| // must be a scalar type node. The third field is the offset into the base type.
 | |
| // The last field has the same meaning as the last field of our scalar TBAA:
 | |
| // it's an integer which if equal to 1 indicates that the access is "constant".
 | |
| //
 | |
| // The struct type node has a name and a list of pairs, one pair for each member
 | |
| // of the struct. The first element of each pair is a type node (a struct type
 | |
| // node or a sclar type node), specifying the type of the member, the second
 | |
| // element of each pair is the offset of the member.
 | |
| //
 | |
| // Given an example
 | |
| // typedef struct {
 | |
| //   short s;
 | |
| // } A;
 | |
| // typedef struct {
 | |
| //   uint16_t s;
 | |
| //   A a;
 | |
| // } B;
 | |
| //
 | |
| // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
 | |
| // instruction. The base type is !4 (struct B), the access type is !2 (scalar
 | |
| // type short) and the offset is 4.
 | |
| //
 | |
| // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
 | |
| // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
 | |
| // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
 | |
| // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
 | |
| // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
 | |
| //                                                           // Struct type node
 | |
| // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
 | |
| //
 | |
| // The struct type nodes and the scalar type nodes form a type DAG.
 | |
| //         Root (!0)
 | |
| //         char (!1)  -- edge to Root
 | |
| //         short (!2) -- edge to char
 | |
| //         A (!3) -- edge with offset 0 to short
 | |
| //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
 | |
| //
 | |
| // To check if two tags (tagX and tagY) can alias, we start from the base type
 | |
| // of tagX, follow the edge with the correct offset in the type DAG and adjust
 | |
| // the offset until we reach the base type of tagY or until we reach the Root
 | |
| // node.
 | |
| // If we reach the base type of tagY, compare the adjusted offset with
 | |
| // offset of tagY, return Alias if the offsets are the same, return NoAlias
 | |
| // otherwise.
 | |
| // If we reach the Root node, perform the above starting from base type of tagY
 | |
| // to see if we reach base type of tagX.
 | |
| //
 | |
| // If they have different roots, they're part of different potentially
 | |
| // unrelated type systems, so we return Alias to be conservative.
 | |
| // If neither node is an ancestor of the other and they have the same root,
 | |
| // then we say NoAlias.
 | |
| //
 | |
| // TODO: The current metadata format doesn't support struct
 | |
| // fields. For example:
 | |
| //   struct X {
 | |
| //     double d;
 | |
| //     int i;
 | |
| //   };
 | |
| //   void foo(struct X *x, struct X *y, double *p) {
 | |
| //     *x = *y;
 | |
| //     *p = 0.0;
 | |
| //   }
 | |
| // Struct X has a double member, so the store to *x can alias the store to *p.
 | |
| // Currently it's not possible to precisely describe all the things struct X
 | |
| // aliases, so struct assignments must use conservative TBAA nodes. There's
 | |
| // no scheme for attaching metadata to @llvm.memcpy yet either.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| // A handy option for disabling TBAA functionality. The same effect can also be
 | |
| // achieved by stripping the !tbaa tags from IR, but this option is sometimes
 | |
| // more convenient.
 | |
| static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
 | |
| 
 | |
| namespace {
 | |
|   /// TBAANode - This is a simple wrapper around an MDNode which provides a
 | |
|   /// higher-level interface by hiding the details of how alias analysis
 | |
|   /// information is encoded in its operands.
 | |
|   class TBAANode {
 | |
|     const MDNode *Node;
 | |
| 
 | |
|   public:
 | |
|     TBAANode() : Node(nullptr) {}
 | |
|     explicit TBAANode(const MDNode *N) : Node(N) {}
 | |
| 
 | |
|     /// getNode - Get the MDNode for this TBAANode.
 | |
|     const MDNode *getNode() const { return Node; }
 | |
| 
 | |
|     /// getParent - Get this TBAANode's Alias tree parent.
 | |
|     TBAANode getParent() const {
 | |
|       if (Node->getNumOperands() < 2)
 | |
|         return TBAANode();
 | |
|       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
 | |
|       if (!P)
 | |
|         return TBAANode();
 | |
|       // Ok, this node has a valid parent. Return it.
 | |
|       return TBAANode(P);
 | |
|     }
 | |
| 
 | |
|     /// TypeIsImmutable - Test if this TBAANode represents a type for objects
 | |
|     /// which are not modified (by any means) in the context where this
 | |
|     /// AliasAnalysis is relevant.
 | |
|     bool TypeIsImmutable() const {
 | |
|       if (Node->getNumOperands() < 3)
 | |
|         return false;
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
 | |
|       if (!CI)
 | |
|         return false;
 | |
|       return CI->getValue()[0];
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// This is a simple wrapper around an MDNode which provides a
 | |
|   /// higher-level interface by hiding the details of how alias analysis
 | |
|   /// information is encoded in its operands.
 | |
|   class TBAAStructTagNode {
 | |
|     /// This node should be created with createTBAAStructTagNode.
 | |
|     const MDNode *Node;
 | |
| 
 | |
|   public:
 | |
|     explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
 | |
| 
 | |
|     /// Get the MDNode for this TBAAStructTagNode.
 | |
|     const MDNode *getNode() const { return Node; }
 | |
| 
 | |
|     const MDNode *getBaseType() const {
 | |
|       return dyn_cast_or_null<MDNode>(Node->getOperand(0));
 | |
|     }
 | |
|     const MDNode *getAccessType() const {
 | |
|       return dyn_cast_or_null<MDNode>(Node->getOperand(1));
 | |
|     }
 | |
|     uint64_t getOffset() const {
 | |
|       return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
 | |
|     }
 | |
|     /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
 | |
|     /// objects which are not modified (by any means) in the context where this
 | |
|     /// AliasAnalysis is relevant.
 | |
|     bool TypeIsImmutable() const {
 | |
|       if (Node->getNumOperands() < 4)
 | |
|         return false;
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
 | |
|       if (!CI)
 | |
|         return false;
 | |
|       return CI->getValue()[0];
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// This is a simple wrapper around an MDNode which provides a
 | |
|   /// higher-level interface by hiding the details of how alias analysis
 | |
|   /// information is encoded in its operands.
 | |
|   class TBAAStructTypeNode {
 | |
|     /// This node should be created with createTBAAStructTypeNode.
 | |
|     const MDNode *Node;
 | |
| 
 | |
|   public:
 | |
|     TBAAStructTypeNode() : Node(nullptr) {}
 | |
|     explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
 | |
| 
 | |
|     /// Get the MDNode for this TBAAStructTypeNode.
 | |
|     const MDNode *getNode() const { return Node; }
 | |
| 
 | |
|     /// Get this TBAAStructTypeNode's field in the type DAG with
 | |
|     /// given offset. Update the offset to be relative to the field type.
 | |
|     TBAAStructTypeNode getParent(uint64_t &Offset) const {
 | |
|       // Parent can be omitted for the root node.
 | |
|       if (Node->getNumOperands() < 2)
 | |
|         return TBAAStructTypeNode();
 | |
| 
 | |
|       // Fast path for a scalar type node and a struct type node with a single
 | |
|       // field.
 | |
|       if (Node->getNumOperands() <= 3) {
 | |
|         uint64_t Cur = Node->getNumOperands() == 2 ? 0 :
 | |
|                        cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
 | |
|         Offset -= Cur;
 | |
|         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
 | |
|         if (!P)
 | |
|           return TBAAStructTypeNode();
 | |
|         return TBAAStructTypeNode(P);
 | |
|       }
 | |
| 
 | |
|       // Assume the offsets are in order. We return the previous field if
 | |
|       // the current offset is bigger than the given offset.
 | |
|       unsigned TheIdx = 0;
 | |
|       for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
 | |
|         uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
 | |
|                          getZExtValue();
 | |
|         if (Cur > Offset) {
 | |
|           assert(Idx >= 3 &&
 | |
|                  "TBAAStructTypeNode::getParent should have an offset match!");
 | |
|           TheIdx = Idx - 2;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // Move along the last field.
 | |
|       if (TheIdx == 0)
 | |
|         TheIdx = Node->getNumOperands() - 2;
 | |
|       uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
 | |
|                        getZExtValue();
 | |
|       Offset -= Cur;
 | |
|       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
 | |
|       if (!P)
 | |
|         return TBAAStructTypeNode();
 | |
|       return TBAAStructTypeNode(P);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// TypeBasedAliasAnalysis - This is a simple alias analysis
 | |
|   /// implementation that uses TypeBased to answer queries.
 | |
|   class TypeBasedAliasAnalysis : public ImmutablePass,
 | |
|                                  public AliasAnalysis {
 | |
|   public:
 | |
|     static char ID; // Class identification, replacement for typeinfo
 | |
|     TypeBasedAliasAnalysis() : ImmutablePass(ID) {
 | |
|       initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     void initializePass() override {
 | |
|       InitializeAliasAnalysis(this);
 | |
|     }
 | |
| 
 | |
|     /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | |
|     /// an analysis interface through multiple inheritance.  If needed, it
 | |
|     /// should override this to adjust the this pointer as needed for the
 | |
|     /// specified pass info.
 | |
|     void *getAdjustedAnalysisPointer(const void *PI) override {
 | |
|       if (PI == &AliasAnalysis::ID)
 | |
|         return (AliasAnalysis*)this;
 | |
|       return this;
 | |
|     }
 | |
| 
 | |
|     bool Aliases(const MDNode *A, const MDNode *B) const;
 | |
|     bool PathAliases(const MDNode *A, const MDNode *B) const;
 | |
| 
 | |
|   private:
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
|     AliasResult alias(const Location &LocA, const Location &LocB) override;
 | |
|     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
 | |
|     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
 | |
|     ModRefBehavior getModRefBehavior(const Function *F) override;
 | |
|     ModRefResult getModRefInfo(ImmutableCallSite CS,
 | |
|                                const Location &Loc) override;
 | |
|     ModRefResult getModRefInfo(ImmutableCallSite CS1,
 | |
|                                ImmutableCallSite CS2) override;
 | |
|   };
 | |
| }  // End of anonymous namespace
 | |
| 
 | |
| // Register this pass...
 | |
| char TypeBasedAliasAnalysis::ID = 0;
 | |
| INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
 | |
|                    "Type-Based Alias Analysis", false, true, false)
 | |
| 
 | |
| ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
 | |
|   return new TypeBasedAliasAnalysis();
 | |
| }
 | |
| 
 | |
| void
 | |
| TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AliasAnalysis::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
 | |
| /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
 | |
| /// format.
 | |
| static bool isStructPathTBAA(const MDNode *MD) {
 | |
|   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
 | |
|   // a TBAA tag.
 | |
|   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
 | |
| }
 | |
| 
 | |
| /// Aliases - Test whether the type represented by A may alias the
 | |
| /// type represented by B.
 | |
| bool
 | |
| TypeBasedAliasAnalysis::Aliases(const MDNode *A,
 | |
|                                 const MDNode *B) const {
 | |
|   if (isStructPathTBAA(A))
 | |
|     return PathAliases(A, B);
 | |
| 
 | |
|   // Keep track of the root node for A and B.
 | |
|   TBAANode RootA, RootB;
 | |
| 
 | |
|   // Climb the tree from A to see if we reach B.
 | |
|   for (TBAANode T(A); ; ) {
 | |
|     if (T.getNode() == B)
 | |
|       // B is an ancestor of A.
 | |
|       return true;
 | |
| 
 | |
|     RootA = T;
 | |
|     T = T.getParent();
 | |
|     if (!T.getNode())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Climb the tree from B to see if we reach A.
 | |
|   for (TBAANode T(B); ; ) {
 | |
|     if (T.getNode() == A)
 | |
|       // A is an ancestor of B.
 | |
|       return true;
 | |
| 
 | |
|     RootB = T;
 | |
|     T = T.getParent();
 | |
|     if (!T.getNode())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Neither node is an ancestor of the other.
 | |
|   
 | |
|   // If they have different roots, they're part of different potentially
 | |
|   // unrelated type systems, so we must be conservative.
 | |
|   if (RootA.getNode() != RootB.getNode())
 | |
|     return true;
 | |
| 
 | |
|   // If they have the same root, then we've proved there's no alias.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Test whether the struct-path tag represented by A may alias the
 | |
| /// struct-path tag represented by B.
 | |
| bool
 | |
| TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
 | |
|                                     const MDNode *B) const {
 | |
|   // Keep track of the root node for A and B.
 | |
|   TBAAStructTypeNode RootA, RootB;
 | |
|   TBAAStructTagNode TagA(A), TagB(B);
 | |
| 
 | |
|   // TODO: We need to check if AccessType of TagA encloses AccessType of
 | |
|   // TagB to support aggregate AccessType. If yes, return true.
 | |
| 
 | |
|   // Start from the base type of A, follow the edge with the correct offset in
 | |
|   // the type DAG and adjust the offset until we reach the base type of B or
 | |
|   // until we reach the Root node.
 | |
|   // Compare the adjusted offset once we have the same base.
 | |
| 
 | |
|   // Climb the type DAG from base type of A to see if we reach base type of B.
 | |
|   const MDNode *BaseA = TagA.getBaseType();
 | |
|   const MDNode *BaseB = TagB.getBaseType();
 | |
|   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
 | |
|   for (TBAAStructTypeNode T(BaseA); ; ) {
 | |
|     if (T.getNode() == BaseB)
 | |
|       // Base type of A encloses base type of B, check if the offsets match.
 | |
|       return OffsetA == OffsetB;
 | |
| 
 | |
|     RootA = T;
 | |
|     // Follow the edge with the correct offset, OffsetA will be adjusted to
 | |
|     // be relative to the field type.
 | |
|     T = T.getParent(OffsetA);
 | |
|     if (!T.getNode())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
 | |
|   // base type of A.
 | |
|   OffsetA = TagA.getOffset();
 | |
|   for (TBAAStructTypeNode T(BaseB); ; ) {
 | |
|     if (T.getNode() == BaseA)
 | |
|       // Base type of B encloses base type of A, check if the offsets match.
 | |
|       return OffsetA == OffsetB;
 | |
| 
 | |
|     RootB = T;
 | |
|     // Follow the edge with the correct offset, OffsetB will be adjusted to
 | |
|     // be relative to the field type.
 | |
|     T = T.getParent(OffsetB);
 | |
|     if (!T.getNode())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Neither node is an ancestor of the other.
 | |
| 
 | |
|   // If they have different roots, they're part of different potentially
 | |
|   // unrelated type systems, so we must be conservative.
 | |
|   if (RootA.getNode() != RootB.getNode())
 | |
|     return true;
 | |
| 
 | |
|   // If they have the same root, then we've proved there's no alias.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| AliasAnalysis::AliasResult
 | |
| TypeBasedAliasAnalysis::alias(const Location &LocA,
 | |
|                               const Location &LocB) {
 | |
|   if (!EnableTBAA)
 | |
|     return AliasAnalysis::alias(LocA, LocB);
 | |
| 
 | |
|   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
 | |
|   // be conservative.
 | |
|   const MDNode *AM = LocA.TBAATag;
 | |
|   if (!AM) return AliasAnalysis::alias(LocA, LocB);
 | |
|   const MDNode *BM = LocB.TBAATag;
 | |
|   if (!BM) return AliasAnalysis::alias(LocA, LocB);
 | |
| 
 | |
|   // If they may alias, chain to the next AliasAnalysis.
 | |
|   if (Aliases(AM, BM))
 | |
|     return AliasAnalysis::alias(LocA, LocB);
 | |
| 
 | |
|   // Otherwise return a definitive result.
 | |
|   return NoAlias;
 | |
| }
 | |
| 
 | |
| bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
 | |
|                                                     bool OrLocal) {
 | |
|   if (!EnableTBAA)
 | |
|     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | |
| 
 | |
|   const MDNode *M = Loc.TBAATag;
 | |
|   if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | |
| 
 | |
|   // If this is an "immutable" type, we can assume the pointer is pointing
 | |
|   // to constant memory.
 | |
|   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
 | |
|       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
 | |
|     return true;
 | |
| 
 | |
|   return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefBehavior
 | |
| TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
 | |
|   if (!EnableTBAA)
 | |
|     return AliasAnalysis::getModRefBehavior(CS);
 | |
| 
 | |
|   ModRefBehavior Min = UnknownModRefBehavior;
 | |
| 
 | |
|   // If this is an "immutable" type, we can assume the call doesn't write
 | |
|   // to memory.
 | |
|   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
 | |
|     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
 | |
|         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
 | |
|       Min = OnlyReadsMemory;
 | |
| 
 | |
|   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefBehavior
 | |
| TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
 | |
|   // Functions don't have metadata. Just chain to the next implementation.
 | |
|   return AliasAnalysis::getModRefBehavior(F);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
 | |
|                                       const Location &Loc) {
 | |
|   if (!EnableTBAA)
 | |
|     return AliasAnalysis::getModRefInfo(CS, Loc);
 | |
| 
 | |
|   if (const MDNode *L = Loc.TBAATag)
 | |
|     if (const MDNode *M =
 | |
|           CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
 | |
|       if (!Aliases(L, M))
 | |
|         return NoModRef;
 | |
| 
 | |
|   return AliasAnalysis::getModRefInfo(CS, Loc);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
 | |
|                                       ImmutableCallSite CS2) {
 | |
|   if (!EnableTBAA)
 | |
|     return AliasAnalysis::getModRefInfo(CS1, CS2);
 | |
| 
 | |
|   if (const MDNode *M1 =
 | |
|         CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
 | |
|     if (const MDNode *M2 =
 | |
|           CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
 | |
|       if (!Aliases(M1, M2))
 | |
|         return NoModRef;
 | |
| 
 | |
|   return AliasAnalysis::getModRefInfo(CS1, CS2);
 | |
| }
 | |
| 
 | |
| bool MDNode::isTBAAVtableAccess() const {
 | |
|   if (!isStructPathTBAA(this)) {
 | |
|     if (getNumOperands() < 1) return false;
 | |
|     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
 | |
|       if (Tag1->getString() == "vtable pointer") return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For struct-path aware TBAA, we use the access type of the tag.
 | |
|   if (getNumOperands() < 2) return false;
 | |
|   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
 | |
|   if (!Tag) return false;
 | |
|   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
 | |
|     if (Tag1->getString() == "vtable pointer") return true;
 | |
|   }
 | |
|   return false;  
 | |
| }
 | |
| 
 | |
| MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
 | |
|   if (!A || !B)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (A == B)
 | |
|     return A;
 | |
| 
 | |
|   // For struct-path aware TBAA, we use the access type of the tag.
 | |
|   bool StructPath = isStructPathTBAA(A);
 | |
|   if (StructPath) {
 | |
|     A = cast_or_null<MDNode>(A->getOperand(1));
 | |
|     if (!A) return nullptr;
 | |
|     B = cast_or_null<MDNode>(B->getOperand(1));
 | |
|     if (!B) return nullptr;
 | |
|   }
 | |
| 
 | |
|   SmallVector<MDNode *, 4> PathA;
 | |
|   MDNode *T = A;
 | |
|   while (T) {
 | |
|     PathA.push_back(T);
 | |
|     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
 | |
|                                  : nullptr;
 | |
|   }
 | |
| 
 | |
|   SmallVector<MDNode *, 4> PathB;
 | |
|   T = B;
 | |
|   while (T) {
 | |
|     PathB.push_back(T);
 | |
|     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
 | |
|                                  : nullptr;
 | |
|   }
 | |
| 
 | |
|   int IA = PathA.size() - 1;
 | |
|   int IB = PathB.size() - 1;
 | |
| 
 | |
|   MDNode *Ret = nullptr;
 | |
|   while (IA >= 0 && IB >=0) {
 | |
|     if (PathA[IA] == PathB[IB])
 | |
|       Ret = PathA[IA];
 | |
|     else
 | |
|       break;
 | |
|     --IA;
 | |
|     --IB;
 | |
|   }
 | |
|   if (!StructPath)
 | |
|     return Ret;
 | |
| 
 | |
|   if (!Ret)
 | |
|     return nullptr;
 | |
|   // We need to convert from a type node to a tag node.
 | |
|   Type *Int64 = IntegerType::get(A->getContext(), 64);
 | |
|   Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
 | |
|   return MDNode::get(A->getContext(), Ops);
 | |
| }
 |