mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207196 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2501 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2501 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineAndOrXor.cpp --------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitAnd, visitOr, and visitXor functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| /// isFreeToInvert - Return true if the specified value is free to invert (apply
 | |
| /// ~ to).  This happens in cases where the ~ can be eliminated.
 | |
| static inline bool isFreeToInvert(Value *V) {
 | |
|   // ~(~(X)) -> X.
 | |
|   if (BinaryOperator::isNot(V))
 | |
|     return true;
 | |
| 
 | |
|   // Constants can be considered to be not'ed values.
 | |
|   if (isa<ConstantInt>(V))
 | |
|     return true;
 | |
| 
 | |
|   // Compares can be inverted if they have a single use.
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(V))
 | |
|     return CI->hasOneUse();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline Value *dyn_castNotVal(Value *V) {
 | |
|   // If this is not(not(x)) don't return that this is a not: we want the two
 | |
|   // not's to be folded first.
 | |
|   if (BinaryOperator::isNot(V)) {
 | |
|     Value *Operand = BinaryOperator::getNotArgument(V);
 | |
|     if (!isFreeToInvert(Operand))
 | |
|       return Operand;
 | |
|   }
 | |
| 
 | |
|   // Constants can be considered to be not'ed values...
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantInt::get(C->getType(), ~C->getValue());
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
 | |
| /// predicate into a three bit mask. It also returns whether it is an ordered
 | |
| /// predicate by reference.
 | |
| static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
 | |
|   isOrdered = false;
 | |
|   switch (CC) {
 | |
|   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
 | |
|   case FCmpInst::FCMP_UNO:                   return 0;  // 000
 | |
|   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
 | |
|   case FCmpInst::FCMP_UGT:                   return 1;  // 001
 | |
|   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
 | |
|   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
 | |
|   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
 | |
|   case FCmpInst::FCMP_UGE:                   return 3;  // 011
 | |
|   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
 | |
|   case FCmpInst::FCMP_ULT:                   return 4;  // 100
 | |
|   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
 | |
|   case FCmpInst::FCMP_UNE:                   return 5;  // 101
 | |
|   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
 | |
|   case FCmpInst::FCMP_ULE:                   return 6;  // 110
 | |
|     // True -> 7
 | |
|   default:
 | |
|     // Not expecting FCMP_FALSE and FCMP_TRUE;
 | |
|     llvm_unreachable("Unexpected FCmp predicate!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getNewICmpValue - This is the complement of getICmpCode, which turns an
 | |
| /// opcode and two operands into either a constant true or false, or a brand
 | |
| /// new ICmp instruction. The sign is passed in to determine which kind
 | |
| /// of predicate to use in the new icmp instruction.
 | |
| static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
 | |
|                               InstCombiner::BuilderTy *Builder) {
 | |
|   ICmpInst::Predicate NewPred;
 | |
|   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
 | |
|     return NewConstant;
 | |
|   return Builder->CreateICmp(NewPred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// getFCmpValue - This is the complement of getFCmpCode, which turns an
 | |
| /// opcode and two operands into either a FCmp instruction. isordered is passed
 | |
| /// in to determine which kind of predicate to use in the new fcmp instruction.
 | |
| static Value *getFCmpValue(bool isordered, unsigned code,
 | |
|                            Value *LHS, Value *RHS,
 | |
|                            InstCombiner::BuilderTy *Builder) {
 | |
|   CmpInst::Predicate Pred;
 | |
|   switch (code) {
 | |
|   default: llvm_unreachable("Illegal FCmp code!");
 | |
|   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
 | |
|   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
 | |
|   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
 | |
|   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
 | |
|   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
 | |
|   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
 | |
|   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
 | |
|   case 7:
 | |
|     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
 | |
|     Pred = FCmpInst::FCMP_ORD; break;
 | |
|   }
 | |
|   return Builder->CreateFCmp(Pred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
 | |
| // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | |
| // guaranteed to be a binary operator.
 | |
| Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | |
|                                     ConstantInt *OpRHS,
 | |
|                                     ConstantInt *AndRHS,
 | |
|                                     BinaryOperator &TheAnd) {
 | |
|   Value *X = Op->getOperand(0);
 | |
|   Constant *Together = nullptr;
 | |
|   if (!Op->isShift())
 | |
|     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | |
| 
 | |
|   switch (Op->getOpcode()) {
 | |
|   case Instruction::Xor:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | |
|       Value *And = Builder->CreateAnd(X, AndRHS);
 | |
|       And->takeName(Op);
 | |
|       return BinaryOperator::CreateXor(And, Together);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     if (Op->hasOneUse()){
 | |
|       if (Together != OpRHS) {
 | |
|         // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | |
|         Value *Or = Builder->CreateOr(X, Together);
 | |
|         Or->takeName(Op);
 | |
|         return BinaryOperator::CreateAnd(Or, AndRHS);
 | |
|       }
 | |
| 
 | |
|       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
 | |
|       if (TogetherCI && !TogetherCI->isZero()){
 | |
|         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
 | |
|         // NOTE: This reduces the number of bits set in the & mask, which
 | |
|         // can expose opportunities for store narrowing.
 | |
|         Together = ConstantExpr::getXor(AndRHS, Together);
 | |
|         Value *And = Builder->CreateAnd(X, Together);
 | |
|         And->takeName(Op);
 | |
|         return BinaryOperator::CreateOr(And, OpRHS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // Adding a one to a single bit bit-field should be turned into an XOR
 | |
|       // of the bit.  First thing to check is to see if this AND is with a
 | |
|       // single bit constant.
 | |
|       const APInt &AndRHSV = AndRHS->getValue();
 | |
| 
 | |
|       // If there is only one bit set.
 | |
|       if (AndRHSV.isPowerOf2()) {
 | |
|         // Ok, at this point, we know that we are masking the result of the
 | |
|         // ADD down to exactly one bit.  If the constant we are adding has
 | |
|         // no bits set below this bit, then we can eliminate the ADD.
 | |
|         const APInt& AddRHS = OpRHS->getValue();
 | |
| 
 | |
|         // Check to see if any bits below the one bit set in AndRHSV are set.
 | |
|         if ((AddRHS & (AndRHSV-1)) == 0) {
 | |
|           // If not, the only thing that can effect the output of the AND is
 | |
|           // the bit specified by AndRHSV.  If that bit is set, the effect of
 | |
|           // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | |
|           // no effect.
 | |
|           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | |
|             TheAnd.setOperand(0, X);
 | |
|             return &TheAnd;
 | |
|           } else {
 | |
|             // Pull the XOR out of the AND.
 | |
|             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
 | |
|             NewAnd->takeName(Op);
 | |
|             return BinaryOperator::CreateXor(NewAnd, AndRHS);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl: {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!
 | |
|     //
 | |
|     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
 | |
|     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
 | |
| 
 | |
|     if (CI->getValue() == ShlMask)
 | |
|       // Masking out bits that the shift already masks.
 | |
|       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
 | |
| 
 | |
|     if (CI != AndRHS) {                  // Reducing bits set in and.
 | |
|       TheAnd.setOperand(1, CI);
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::LShr: {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!  This only applies to
 | |
|     // unsigned shifts, because a signed shr may bring in set bits!
 | |
|     //
 | |
|     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
 | |
|     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
 | |
| 
 | |
|     if (CI->getValue() == ShrMask)
 | |
|       // Masking out bits that the shift already masks.
 | |
|       return ReplaceInstUsesWith(TheAnd, Op);
 | |
| 
 | |
|     if (CI != AndRHS) {
 | |
|       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::AShr:
 | |
|     // Signed shr.
 | |
|     // See if this is shifting in some sign extension, then masking it out
 | |
|     // with an and.
 | |
|     if (Op->hasOneUse()) {
 | |
|       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
 | |
|       Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
 | |
|       if (C == AndRHS) {          // Masking out bits shifted in.
 | |
|         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
 | |
|         // Make the argument unsigned.
 | |
|         Value *ShVal = Op->getOperand(0);
 | |
|         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
 | |
|         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
 | |
| /// (V < Lo || V >= Hi).  In practice, we emit the more efficient
 | |
| /// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
 | |
| /// whether to treat the V, Lo and HI as signed or not. IB is the location to
 | |
| /// insert new instructions.
 | |
| Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                      bool isSigned, bool Inside) {
 | |
|   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
 | |
|             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
 | |
|          "Lo is not <= Hi in range emission code!");
 | |
| 
 | |
|   if (Inside) {
 | |
|     if (Lo == Hi)  // Trivially false.
 | |
|       return Builder->getFalse();
 | |
| 
 | |
|     // V >= Min && V < Hi --> V < Hi
 | |
|     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | |
|       ICmpInst::Predicate pred = (isSigned ?
 | |
|         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
 | |
|       return Builder->CreateICmp(pred, V, Hi);
 | |
|     }
 | |
| 
 | |
|     // Emit V-Lo <u Hi-Lo
 | |
|     Constant *NegLo = ConstantExpr::getNeg(Lo);
 | |
|     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
 | |
|     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
 | |
|     return Builder->CreateICmpULT(Add, UpperBound);
 | |
|   }
 | |
| 
 | |
|   if (Lo == Hi)  // Trivially true.
 | |
|     return Builder->getTrue();
 | |
| 
 | |
|   // V < Min || V >= Hi -> V > Hi-1
 | |
|   Hi = SubOne(cast<ConstantInt>(Hi));
 | |
|   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | |
|     ICmpInst::Predicate pred = (isSigned ?
 | |
|         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
 | |
|     return Builder->CreateICmp(pred, V, Hi);
 | |
|   }
 | |
| 
 | |
|   // Emit V-Lo >u Hi-1-Lo
 | |
|   // Note that Hi has already had one subtracted from it, above.
 | |
|   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
 | |
|   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
 | |
|   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
 | |
|   return Builder->CreateICmpUGT(Add, LowerBound);
 | |
| }
 | |
| 
 | |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | |
| // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| // not, since all 1s are not contiguous.
 | |
| static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
 | |
|   const APInt& V = Val->getValue();
 | |
|   uint32_t BitWidth = Val->getType()->getBitWidth();
 | |
|   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
 | |
| 
 | |
|   // look for the first zero bit after the run of ones
 | |
|   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
 | |
|   // look for the first non-zero bit
 | |
|   ME = V.getActiveBits();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
 | |
| /// where isSub determines whether the operator is a sub.  If we can fold one of
 | |
| /// the following xforms:
 | |
| ///
 | |
| /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
 | |
| /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| ///
 | |
| /// return (A +/- B).
 | |
| ///
 | |
| Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
 | |
|                                         ConstantInt *Mask, bool isSub,
 | |
|                                         Instruction &I) {
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   if (!LHSI || LHSI->getNumOperands() != 2 ||
 | |
|       !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
 | |
| 
 | |
|   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
 | |
| 
 | |
|   switch (LHSI->getOpcode()) {
 | |
|   default: return nullptr;
 | |
|   case Instruction::And:
 | |
|     if (ConstantExpr::getAnd(N, Mask) == Mask) {
 | |
|       // If the AndRHS is a power of two minus one (0+1+), this is simple.
 | |
|       if ((Mask->getValue().countLeadingZeros() +
 | |
|            Mask->getValue().countPopulation()) ==
 | |
|           Mask->getValue().getBitWidth())
 | |
|         break;
 | |
| 
 | |
|       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
 | |
|       // part, we don't need any explicit masks to take them out of A.  If that
 | |
|       // is all N is, ignore it.
 | |
|       uint32_t MB = 0, ME = 0;
 | |
|       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
 | |
|         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
 | |
|         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
 | |
|         if (MaskedValueIsZero(RHS, Mask))
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     return nullptr;
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
 | |
|     if ((Mask->getValue().countLeadingZeros() +
 | |
|          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
 | |
|         && ConstantExpr::getAnd(N, Mask)->isNullValue())
 | |
|       break;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (isSub)
 | |
|     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
 | |
|   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
 | |
| }
 | |
| 
 | |
| /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
 | |
| /// One of A and B is considered the mask, the other the value. This is
 | |
| /// described as the "AMask" or "BMask" part of the enum. If the enum
 | |
| /// contains only "Mask", then both A and B can be considered masks.
 | |
| /// If A is the mask, then it was proven, that (A & C) == C. This
 | |
| /// is trivial if C == A, or C == 0. If both A and C are constants, this
 | |
| /// proof is also easy.
 | |
| /// For the following explanations we assume that A is the mask.
 | |
| /// The part "AllOnes" declares, that the comparison is true only
 | |
| /// if (A & B) == A, or all bits of A are set in B.
 | |
| ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
 | |
| /// The part "AllZeroes" declares, that the comparison is true only
 | |
| /// if (A & B) == 0, or all bits of A are cleared in B.
 | |
| ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
 | |
| /// The part "Mixed" declares, that (A & B) == C and C might or might not
 | |
| /// contain any number of one bits and zero bits.
 | |
| ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
 | |
| /// The Part "Not" means, that in above descriptions "==" should be replaced
 | |
| /// by "!=".
 | |
| ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
 | |
| /// If the mask A contains a single bit, then the following is equivalent:
 | |
| ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
 | |
| ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
 | |
| enum MaskedICmpType {
 | |
|   FoldMskICmp_AMask_AllOnes           =     1,
 | |
|   FoldMskICmp_AMask_NotAllOnes        =     2,
 | |
|   FoldMskICmp_BMask_AllOnes           =     4,
 | |
|   FoldMskICmp_BMask_NotAllOnes        =     8,
 | |
|   FoldMskICmp_Mask_AllZeroes          =    16,
 | |
|   FoldMskICmp_Mask_NotAllZeroes       =    32,
 | |
|   FoldMskICmp_AMask_Mixed             =    64,
 | |
|   FoldMskICmp_AMask_NotMixed          =   128,
 | |
|   FoldMskICmp_BMask_Mixed             =   256,
 | |
|   FoldMskICmp_BMask_NotMixed          =   512
 | |
| };
 | |
| 
 | |
| /// return the set of pattern classes (from MaskedICmpType)
 | |
| /// that (icmp SCC (A & B), C) satisfies
 | |
| static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
 | |
|                                     ICmpInst::Predicate SCC)
 | |
| {
 | |
|   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
 | |
|   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
 | |
|   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
 | |
|   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
 | |
|   bool icmp_abit = (ACst && !ACst->isZero() &&
 | |
|                     ACst->getValue().isPowerOf2());
 | |
|   bool icmp_bbit = (BCst && !BCst->isZero() &&
 | |
|                     BCst->getValue().isPowerOf2());
 | |
|   unsigned result = 0;
 | |
|   if (CCst && CCst->isZero()) {
 | |
|     // if C is zero, then both A and B qualify as mask
 | |
|     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
 | |
|                           FoldMskICmp_Mask_AllZeroes |
 | |
|                           FoldMskICmp_AMask_Mixed |
 | |
|                           FoldMskICmp_BMask_Mixed)
 | |
|                        : (FoldMskICmp_Mask_NotAllZeroes |
 | |
|                           FoldMskICmp_Mask_NotAllZeroes |
 | |
|                           FoldMskICmp_AMask_NotMixed |
 | |
|                           FoldMskICmp_BMask_NotMixed));
 | |
|     if (icmp_abit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
 | |
|                             FoldMskICmp_AMask_NotMixed)
 | |
|                          : (FoldMskICmp_AMask_AllOnes |
 | |
|                             FoldMskICmp_AMask_Mixed));
 | |
|     if (icmp_bbit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
 | |
|                             FoldMskICmp_BMask_NotMixed)
 | |
|                          : (FoldMskICmp_BMask_AllOnes |
 | |
|                             FoldMskICmp_BMask_Mixed));
 | |
|     return result;
 | |
|   }
 | |
|   if (A == C) {
 | |
|     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
 | |
|                           FoldMskICmp_AMask_Mixed)
 | |
|                        : (FoldMskICmp_AMask_NotAllOnes |
 | |
|                           FoldMskICmp_AMask_NotMixed));
 | |
|     if (icmp_abit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
 | |
|                             FoldMskICmp_AMask_NotMixed)
 | |
|                          : (FoldMskICmp_Mask_AllZeroes |
 | |
|                             FoldMskICmp_AMask_Mixed));
 | |
|   } else if (ACst && CCst &&
 | |
|              ConstantExpr::getAnd(ACst, CCst) == CCst) {
 | |
|     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
 | |
|                        : FoldMskICmp_AMask_NotMixed);
 | |
|   }
 | |
|   if (B == C) {
 | |
|     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
 | |
|                           FoldMskICmp_BMask_Mixed)
 | |
|                        : (FoldMskICmp_BMask_NotAllOnes |
 | |
|                           FoldMskICmp_BMask_NotMixed));
 | |
|     if (icmp_bbit)
 | |
|       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
 | |
|                             FoldMskICmp_BMask_NotMixed)
 | |
|                          : (FoldMskICmp_Mask_AllZeroes |
 | |
|                             FoldMskICmp_BMask_Mixed));
 | |
|   } else if (BCst && CCst &&
 | |
|              ConstantExpr::getAnd(BCst, CCst) == CCst) {
 | |
|     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
 | |
|                        : FoldMskICmp_BMask_NotMixed);
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// Convert an analysis of a masked ICmp into its equivalent if all boolean
 | |
| /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
 | |
| /// is adjacent to the corresponding normal flag (recording ==), this just
 | |
| /// involves swapping those bits over.
 | |
| static unsigned conjugateICmpMask(unsigned Mask) {
 | |
|   unsigned NewMask;
 | |
|   NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
 | |
|                      FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
 | |
|                      FoldMskICmp_BMask_Mixed))
 | |
|             << 1;
 | |
| 
 | |
|   NewMask |=
 | |
|       (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
 | |
|                FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
 | |
|                FoldMskICmp_BMask_NotMixed))
 | |
|       >> 1;
 | |
| 
 | |
|   return NewMask;
 | |
| }
 | |
| 
 | |
| /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
 | |
| /// if possible. The returned predicate is either == or !=. Returns false if
 | |
| /// decomposition fails.
 | |
| static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
 | |
|                                  Value *&X, Value *&Y, Value *&Z) {
 | |
|   ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   switch (I->getPredicate()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     // X < 0 is equivalent to (X & SignBit) != 0.
 | |
|     if (!C->isZero())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
 | |
|     Pred = ICmpInst::ICMP_NE;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     // X > -1 is equivalent to (X & SignBit) == 0.
 | |
|     if (!C->isAllOnesValue())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
 | |
|     if (!C->getValue().isPowerOf2())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), -C->getValue());
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
 | |
|     if (!(C->getValue() + 1).isPowerOf2())
 | |
|       return false;
 | |
|     Y = ConstantInt::get(I->getContext(), ~C->getValue());
 | |
|     Pred = ICmpInst::ICMP_NE;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   X = I->getOperand(0);
 | |
|   Z = ConstantInt::getNullValue(C->getType());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// foldLogOpOfMaskedICmpsHelper:
 | |
| /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
 | |
| /// return the set of pattern classes (from MaskedICmpType)
 | |
| /// that both LHS and RHS satisfy
 | |
| static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
 | |
|                                              Value*& B, Value*& C,
 | |
|                                              Value*& D, Value*& E,
 | |
|                                              ICmpInst *LHS, ICmpInst *RHS,
 | |
|                                              ICmpInst::Predicate &LHSCC,
 | |
|                                              ICmpInst::Predicate &RHSCC) {
 | |
|   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
 | |
|   // vectors are not (yet?) supported
 | |
|   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
 | |
| 
 | |
|   // Here comes the tricky part:
 | |
|   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
 | |
|   // and L11 & L12 == L21 & L22. The same goes for RHS.
 | |
|   // Now we must find those components L** and R**, that are equal, so
 | |
|   // that we can extract the parameters A, B, C, D, and E for the canonical
 | |
|   // above.
 | |
|   Value *L1 = LHS->getOperand(0);
 | |
|   Value *L2 = LHS->getOperand(1);
 | |
|   Value *L11,*L12,*L21,*L22;
 | |
|   // Check whether the icmp can be decomposed into a bit test.
 | |
|   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
 | |
|     L21 = L22 = L1 = nullptr;
 | |
|   } else {
 | |
|     // Look for ANDs in the LHS icmp.
 | |
|     if (!L1->getType()->isIntegerTy()) {
 | |
|       // You can icmp pointers, for example. They really aren't masks.
 | |
|       L11 = L12 = nullptr;
 | |
|     } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
 | |
|       // Any icmp can be viewed as being trivially masked; if it allows us to
 | |
|       // remove one, it's worth it.
 | |
|       L11 = L1;
 | |
|       L12 = Constant::getAllOnesValue(L1->getType());
 | |
|     }
 | |
| 
 | |
|     if (!L2->getType()->isIntegerTy()) {
 | |
|       // You can icmp pointers, for example. They really aren't masks.
 | |
|       L21 = L22 = nullptr;
 | |
|     } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
 | |
|       L21 = L2;
 | |
|       L22 = Constant::getAllOnesValue(L2->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Bail if LHS was a icmp that can't be decomposed into an equality.
 | |
|   if (!ICmpInst::isEquality(LHSCC))
 | |
|     return 0;
 | |
| 
 | |
|   Value *R1 = RHS->getOperand(0);
 | |
|   Value *R2 = RHS->getOperand(1);
 | |
|   Value *R11,*R12;
 | |
|   bool ok = false;
 | |
|   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
 | |
|     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
 | |
|       A = R11; D = R12;
 | |
|     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
 | |
|       A = R12; D = R11;
 | |
|     } else {
 | |
|       return 0;
 | |
|     }
 | |
|     E = R2; R1 = nullptr; ok = true;
 | |
|   } else if (R1->getType()->isIntegerTy()) {
 | |
|     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
 | |
|       // As before, model no mask as a trivial mask if it'll let us do an
 | |
|       // optimisation.
 | |
|       R11 = R1;
 | |
|       R12 = Constant::getAllOnesValue(R1->getType());
 | |
|     }
 | |
| 
 | |
|     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
 | |
|       A = R11; D = R12; E = R2; ok = true;
 | |
|     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
 | |
|       A = R12; D = R11; E = R2; ok = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Bail if RHS was a icmp that can't be decomposed into an equality.
 | |
|   if (!ICmpInst::isEquality(RHSCC))
 | |
|     return 0;
 | |
| 
 | |
|   // Look for ANDs in on the right side of the RHS icmp.
 | |
|   if (!ok && R2->getType()->isIntegerTy()) {
 | |
|     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
 | |
|       R11 = R2;
 | |
|       R12 = Constant::getAllOnesValue(R2->getType());
 | |
|     }
 | |
| 
 | |
|     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
 | |
|       A = R11; D = R12; E = R1; ok = true;
 | |
|     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
 | |
|       A = R12; D = R11; E = R1; ok = true;
 | |
|     } else {
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   if (!ok)
 | |
|     return 0;
 | |
| 
 | |
|   if (L11 == A) {
 | |
|     B = L12; C = L2;
 | |
|   } else if (L12 == A) {
 | |
|     B = L11; C = L2;
 | |
|   } else if (L21 == A) {
 | |
|     B = L22; C = L1;
 | |
|   } else if (L22 == A) {
 | |
|     B = L21; C = L1;
 | |
|   }
 | |
| 
 | |
|   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
 | |
|   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
 | |
|   return left_type & right_type;
 | |
| }
 | |
| /// foldLogOpOfMaskedICmps:
 | |
| /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
 | |
| /// into a single (icmp(A & X) ==/!= Y)
 | |
| static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
 | |
|                                      llvm::InstCombiner::BuilderTy* Builder) {
 | |
|   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
 | |
|   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
 | |
|   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
 | |
|                                                LHSCC, RHSCC);
 | |
|   if (mask == 0) return nullptr;
 | |
|   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
 | |
|          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
 | |
| 
 | |
|   // In full generality:
 | |
|   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
 | |
|   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
 | |
|   //
 | |
|   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
 | |
|   // equivalent to (icmp (A & X) !Op Y).
 | |
|   //
 | |
|   // Therefore, we can pretend for the rest of this function that we're dealing
 | |
|   // with the conjunction, provided we flip the sense of any comparisons (both
 | |
|   // input and output).
 | |
| 
 | |
|   // In most cases we're going to produce an EQ for the "&&" case.
 | |
|   ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
 | |
|   if (!IsAnd) {
 | |
|     // Convert the masking analysis into its equivalent with negated
 | |
|     // comparisons.
 | |
|     mask = conjugateICmpMask(mask);
 | |
|   }
 | |
| 
 | |
|   if (mask & FoldMskICmp_Mask_AllZeroes) {
 | |
|     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
 | |
|     // -> (icmp eq (A & (B|D)), 0)
 | |
|     Value* newOr = Builder->CreateOr(B, D);
 | |
|     Value* newAnd = Builder->CreateAnd(A, newOr);
 | |
|     // we can't use C as zero, because we might actually handle
 | |
|     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
 | |
|     // with B and D, having a single bit set
 | |
|     Value* zero = Constant::getNullValue(A->getType());
 | |
|     return Builder->CreateICmp(NEWCC, newAnd, zero);
 | |
|   }
 | |
|   if (mask & FoldMskICmp_BMask_AllOnes) {
 | |
|     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
 | |
|     // -> (icmp eq (A & (B|D)), (B|D))
 | |
|     Value* newOr = Builder->CreateOr(B, D);
 | |
|     Value* newAnd = Builder->CreateAnd(A, newOr);
 | |
|     return Builder->CreateICmp(NEWCC, newAnd, newOr);
 | |
|   }
 | |
|   if (mask & FoldMskICmp_AMask_AllOnes) {
 | |
|     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
 | |
|     // -> (icmp eq (A & (B&D)), A)
 | |
|     Value* newAnd1 = Builder->CreateAnd(B, D);
 | |
|     Value* newAnd = Builder->CreateAnd(A, newAnd1);
 | |
|     return Builder->CreateICmp(NEWCC, newAnd, A);
 | |
|   }
 | |
| 
 | |
|   // Remaining cases assume at least that B and D are constant, and depend on
 | |
|   // their actual values. This isn't strictly, necessary, just a "handle the
 | |
|   // easy cases for now" decision.
 | |
|   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
 | |
|   if (!BCst) return nullptr;
 | |
|   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
 | |
|   if (!DCst) return nullptr;
 | |
| 
 | |
|   if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
 | |
|     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
 | |
|     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
 | |
|     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
 | |
|     // Only valid if one of the masks is a superset of the other (check "B&D" is
 | |
|     // the same as either B or D).
 | |
|     APInt NewMask = BCst->getValue() & DCst->getValue();
 | |
| 
 | |
|     if (NewMask == BCst->getValue())
 | |
|       return LHS;
 | |
|     else if (NewMask == DCst->getValue())
 | |
|       return RHS;
 | |
|   }
 | |
|   if (mask & FoldMskICmp_AMask_NotAllOnes) {
 | |
|     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
 | |
|     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
 | |
|     // Only valid if one of the masks is a superset of the other (check "B|D" is
 | |
|     // the same as either B or D).
 | |
|     APInt NewMask = BCst->getValue() | DCst->getValue();
 | |
| 
 | |
|     if (NewMask == BCst->getValue())
 | |
|       return LHS;
 | |
|     else if (NewMask == DCst->getValue())
 | |
|       return RHS;
 | |
|   }
 | |
|   if (mask & FoldMskICmp_BMask_Mixed) {
 | |
|     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
 | |
|     // We already know that B & C == C && D & E == E.
 | |
|     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
 | |
|     // C and E, which are shared by both the mask B and the mask D, don't
 | |
|     // contradict, then we can transform to
 | |
|     // -> (icmp eq (A & (B|D)), (C|E))
 | |
|     // Currently, we only handle the case of B, C, D, and E being constant.
 | |
|     // we can't simply use C and E, because we might actually handle
 | |
|     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
 | |
|     // with B and D, having a single bit set
 | |
|     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
 | |
|     if (!CCst) return nullptr;
 | |
|     if (LHSCC != NEWCC)
 | |
|       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
 | |
|     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
 | |
|     if (!ECst) return nullptr;
 | |
|     if (RHSCC != NEWCC)
 | |
|       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
 | |
|     ConstantInt* MCst = dyn_cast<ConstantInt>(
 | |
|       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
 | |
|                            ConstantExpr::getXor(CCst, ECst)) );
 | |
|     // if there is a conflict we should actually return a false for the
 | |
|     // whole construct
 | |
|     if (!MCst->isZero())
 | |
|       return nullptr;
 | |
|     Value *newOr1 = Builder->CreateOr(B, D);
 | |
|     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
 | |
|     Value *newAnd = Builder->CreateAnd(A, newOr1);
 | |
|     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
 | |
| Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
 | |
|   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
 | |
| 
 | |
|   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (PredicatesFoldable(LHSCC, RHSCC)) {
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(1) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(0))
 | |
|       LHS->swapOperands();
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(0) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(1)) {
 | |
|       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
 | |
|       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
 | |
|       bool isSigned = LHS->isSigned() || RHS->isSigned();
 | |
|       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
 | |
|   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
 | |
|     return V;
 | |
| 
 | |
|   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
 | |
|   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
 | |
|   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
 | |
|   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
 | |
|   if (!LHSCst || !RHSCst) return nullptr;
 | |
| 
 | |
|   if (LHSCst == RHSCst && LHSCC == RHSCC) {
 | |
|     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
 | |
|     // where C is a power of 2
 | |
|     if (LHSCC == ICmpInst::ICMP_ULT &&
 | |
|         LHSCst->getValue().isPowerOf2()) {
 | |
|       Value *NewOr = Builder->CreateOr(Val, Val2);
 | |
|       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
 | |
|     }
 | |
| 
 | |
|     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
 | |
|     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
 | |
|       Value *NewOr = Builder->CreateOr(Val, Val2);
 | |
|       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
 | |
|   // where CMAX is the all ones value for the truncated type,
 | |
|   // iff the lower bits of C2 and CA are zero.
 | |
|   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
 | |
|       LHS->hasOneUse() && RHS->hasOneUse()) {
 | |
|     Value *V;
 | |
|     ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
 | |
| 
 | |
|     // (trunc x) == C1 & (and x, CA) == C2
 | |
|     // (and x, CA) == C2 & (trunc x) == C1
 | |
|     if (match(Val2, m_Trunc(m_Value(V))) &&
 | |
|         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
 | |
|       SmallCst = RHSCst;
 | |
|       BigCst = LHSCst;
 | |
|     } else if (match(Val, m_Trunc(m_Value(V))) &&
 | |
|                match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
 | |
|       SmallCst = LHSCst;
 | |
|       BigCst = RHSCst;
 | |
|     }
 | |
| 
 | |
|     if (SmallCst && BigCst) {
 | |
|       unsigned BigBitSize = BigCst->getType()->getBitWidth();
 | |
|       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
 | |
| 
 | |
|       // Check that the low bits are zero.
 | |
|       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
 | |
|       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
 | |
|         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
 | |
|         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
 | |
|         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
 | |
|         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // From here on, we only handle:
 | |
|   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
 | |
|   if (Val != Val2) return nullptr;
 | |
| 
 | |
|   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
 | |
|   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
 | |
|       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
 | |
|       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
 | |
|       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make a constant range that's the intersection of the two icmp ranges.
 | |
|   // If the intersection is empty, we know that the result is false.
 | |
|   ConstantRange LHSRange =
 | |
|     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
 | |
|   ConstantRange RHSRange =
 | |
|     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
 | |
| 
 | |
|   if (LHSRange.intersectWith(RHSRange).isEmptySet())
 | |
|     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
| 
 | |
|   // We can't fold (ugt x, C) & (sgt x, C2).
 | |
|   if (!PredicatesFoldable(LHSCC, RHSCC))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Ensure that the larger constant is on the RHS.
 | |
|   bool ShouldSwap;
 | |
|   if (CmpInst::isSigned(LHSCC) ||
 | |
|       (ICmpInst::isEquality(LHSCC) &&
 | |
|        CmpInst::isSigned(RHSCC)))
 | |
|     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
 | |
|   else
 | |
|     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
 | |
| 
 | |
|   if (ShouldSwap) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSCst, RHSCst);
 | |
|     std::swap(LHSCC, RHSCC);
 | |
|   }
 | |
| 
 | |
|   // At this point, we know we have two icmp instructions
 | |
|   // comparing a value against two constants and and'ing the result
 | |
|   // together.  Because of the above check, we know that we only have
 | |
|   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
 | |
|   // (from the icmp folding check above), that the two constants
 | |
|   // are not equal and that the larger constant is on the RHS
 | |
|   assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|   switch (LHSCC) {
 | |
|   default: llvm_unreachable("Unknown integer condition code!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
 | |
|     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
 | |
|     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
 | |
|       return LHS;
 | |
|     }
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
 | |
|         return Builder->CreateICmpULT(Val, LHSCst);
 | |
|       break;                        // (X != 13 & X u< 15) -> no change
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
 | |
|         return Builder->CreateICmpSLT(Val, LHSCst);
 | |
|       break;                        // (X != 13 & X s< 15) -> no change
 | |
|     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
 | |
|     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       // Special case to get the ordering right when the values wrap around
 | |
|       // zero.
 | |
|       if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
 | |
|         std::swap(LHSCst, RHSCst);
 | |
|       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
 | |
|         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
 | |
|         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
 | |
|                                       Val->getName()+".cmp");
 | |
|       }
 | |
|       break;                        // (X != 13 & X != 15) -> no change
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
 | |
|     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
 | |
|       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
 | |
|     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
 | |
|     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
 | |
|         return Builder->CreateICmp(LHSCC, Val, RHSCst);
 | |
|       break;                        // (X u> 13 & X != 15) -> no change
 | |
|     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
 | |
|       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
 | |
|     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
 | |
|         return Builder->CreateICmp(LHSCC, Val, RHSCst);
 | |
|       break;                        // (X s> 13 & X != 15) -> no change
 | |
|     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
 | |
|       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
 | |
|     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
 | |
| /// instcombine, this returns a Value which should already be inserted into the
 | |
| /// function.
 | |
| Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
 | |
|   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
 | |
|       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
 | |
|     if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
 | |
|       return nullptr;
 | |
| 
 | |
|     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
 | |
|     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
 | |
|       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
 | |
|         // If either of the constants are nans, then the whole thing returns
 | |
|         // false.
 | |
|         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
 | |
|           return Builder->getFalse();
 | |
|         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
 | |
|       }
 | |
| 
 | |
|     // Handle vector zeros.  This occurs because the canonical form of
 | |
|     // "fcmp ord x,x" is "fcmp ord x, 0".
 | |
|     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
 | |
|         isa<ConstantAggregateZero>(RHS->getOperand(1)))
 | |
|       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
 | |
|   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
 | |
|   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
 | |
| 
 | |
| 
 | |
|   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
 | |
|     // Swap RHS operands to match LHS.
 | |
|     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
 | |
|     std::swap(Op1LHS, Op1RHS);
 | |
|   }
 | |
| 
 | |
|   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
 | |
|     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
 | |
|     if (Op0CC == Op1CC)
 | |
|       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
 | |
|     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
 | |
|       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|     if (Op0CC == FCmpInst::FCMP_TRUE)
 | |
|       return RHS;
 | |
|     if (Op1CC == FCmpInst::FCMP_TRUE)
 | |
|       return LHS;
 | |
| 
 | |
|     bool Op0Ordered;
 | |
|     bool Op1Ordered;
 | |
|     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
 | |
|     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
 | |
|     // uno && ord -> false
 | |
|     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
 | |
|         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|     if (Op1Pred == 0) {
 | |
|       std::swap(LHS, RHS);
 | |
|       std::swap(Op0Pred, Op1Pred);
 | |
|       std::swap(Op0Ordered, Op1Ordered);
 | |
|     }
 | |
|     if (Op0Pred == 0) {
 | |
|       // uno && ueq -> uno && (uno || eq) -> uno
 | |
|       // ord && olt -> ord && (ord && lt) -> olt
 | |
|       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
 | |
|         return LHS;
 | |
|       if (Op0Ordered && (Op0Ordered == Op1Ordered))
 | |
|         return RHS;
 | |
| 
 | |
|       // uno && oeq -> uno && (ord && eq) -> false
 | |
|       if (!Op0Ordered)
 | |
|         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
 | |
|       // ord && ueq -> ord && (uno || eq) -> oeq
 | |
|       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyAndInst(Op0, Op1, DL))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A|B)&(A|C) -> A|(B&C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     const APInt &AndRHSMask = AndRHS->getValue();
 | |
| 
 | |
|     // Optimize a variety of ((val OP C1) & C2) combinations...
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       Value *Op0LHS = Op0I->getOperand(0);
 | |
|       Value *Op0RHS = Op0I->getOperand(1);
 | |
|       switch (Op0I->getOpcode()) {
 | |
|       default: break;
 | |
|       case Instruction::Xor:
 | |
|       case Instruction::Or: {
 | |
|         // If the mask is only needed on one incoming arm, push it up.
 | |
|         if (!Op0I->hasOneUse()) break;
 | |
| 
 | |
|         APInt NotAndRHS(~AndRHSMask);
 | |
|         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
 | |
|           // Not masking anything out for the LHS, move to RHS.
 | |
|           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
 | |
|                                              Op0RHS->getName()+".masked");
 | |
|           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
 | |
|         }
 | |
|         if (!isa<Constant>(Op0RHS) &&
 | |
|             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
 | |
|           // Not masking anything out for the RHS, move to LHS.
 | |
|           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
 | |
|                                              Op0LHS->getName()+".masked");
 | |
|           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Add:
 | |
|         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Sub:
 | |
|         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);
 | |
| 
 | |
|         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
 | |
|         // has 1's for all bits that the subtraction with A might affect.
 | |
|         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
 | |
|           uint32_t BitWidth = AndRHSMask.getBitWidth();
 | |
|           uint32_t Zeros = AndRHSMask.countLeadingZeros();
 | |
|           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
 | |
| 
 | |
|           if (MaskedValueIsZero(Op0LHS, Mask)) {
 | |
|             Value *NewNeg = Builder->CreateNeg(Op0RHS);
 | |
|             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|         // (1 << x) & 1 --> zext(x == 0)
 | |
|         // (1 >> x) & 1 --> zext(x == 0)
 | |
|         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
 | |
|           Value *NewICmp =
 | |
|             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
 | |
|           return new ZExtInst(NewICmp, I.getType());
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
 | |
|           return Res;
 | |
|     }
 | |
| 
 | |
|     // If this is an integer truncation, and if the source is an 'and' with
 | |
|     // immediate, transform it.  This frequently occurs for bitfield accesses.
 | |
|     {
 | |
|       Value *X = nullptr; ConstantInt *YC = nullptr;
 | |
|       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
 | |
|         // Change: and (trunc (and X, YC) to T), C2
 | |
|         // into  : and (trunc X to T), trunc(YC) & C2
 | |
|         // This will fold the two constants together, which may allow
 | |
|         // other simplifications.
 | |
|         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
 | |
|         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
 | |
|         C3 = ConstantExpr::getAnd(C3, AndRHS);
 | |
|         return BinaryOperator::CreateAnd(NewCast, C3);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // (~A & ~B) == (~(A | B)) - De Morgan's Law
 | |
|   if (Value *Op0NotVal = dyn_castNotVal(Op0))
 | |
|     if (Value *Op1NotVal = dyn_castNotVal(Op1))
 | |
|       if (Op0->hasOneUse() && Op1->hasOneUse()) {
 | |
|         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
 | |
|                                       I.getName()+".demorgan");
 | |
|         return BinaryOperator::CreateNot(Or);
 | |
|       }
 | |
| 
 | |
|   {
 | |
|     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | |
|     // (A|B) & ~(A&B) -> A^B
 | |
|     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
 | |
|         ((A == C && B == D) || (A == D && B == C)))
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
| 
 | |
|     // ~(A&B) & (A|B) -> A^B
 | |
|     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
 | |
|         ((A == C && B == D) || (A == D && B == C)))
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
| 
 | |
|     // A&(A^B) => A & ~B
 | |
|     {
 | |
|       Value *tmpOp0 = Op0;
 | |
|       Value *tmpOp1 = Op1;
 | |
|       if (Op0->hasOneUse() &&
 | |
|           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|         if (A == Op1 || B == Op1 ) {
 | |
|           tmpOp1 = Op0;
 | |
|           tmpOp0 = Op1;
 | |
|           // Simplify below
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (tmpOp1->hasOneUse() &&
 | |
|           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|         if (B == tmpOp0) {
 | |
|           std::swap(A, B);
 | |
|         }
 | |
|         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
 | |
|         // A is originally -1 (or a vector of -1 and undefs), then we enter
 | |
|         // an endless loop. By checking that A is non-constant we ensure that
 | |
|         // we will never get to the loop.
 | |
|         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
 | |
|           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (A&((~A)|B)) -> A&B
 | |
|     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
 | |
|         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
 | |
|       return BinaryOperator::CreateAnd(A, Op1);
 | |
|     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
 | |
|         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
 | |
|       return BinaryOperator::CreateAnd(A, Op0);
 | |
|   }
 | |
| 
 | |
|   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
 | |
|     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
 | |
|       if (Value *Res = FoldAndOfICmps(LHS, RHS))
 | |
|         return ReplaceInstUsesWith(I, Res);
 | |
| 
 | |
|   // If and'ing two fcmp, try combine them into one.
 | |
|   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
 | |
|     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
 | |
|       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
 | |
|         return ReplaceInstUsesWith(I, Res);
 | |
| 
 | |
| 
 | |
|   // fold (and (cast A), (cast B)) -> (cast (and A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
 | |
|       Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
 | |
|           SrcTy == Op1C->getOperand(0)->getType() &&
 | |
|           SrcTy->isIntOrIntVectorTy()) {
 | |
|         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
 | |
| 
 | |
|         // Only do this if the casts both really cause code to be generated.
 | |
|         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
 | |
|             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
 | |
|           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
 | |
|           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
 | |
|         }
 | |
| 
 | |
|         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
 | |
|         // cast is otherwise not optimizable.  This happens for vector sexts.
 | |
|         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
 | |
|           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
 | |
|             if (Value *Res = FoldAndOfICmps(LHS, RHS))
 | |
|               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
 | |
| 
 | |
|         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
 | |
|         // cast is otherwise not optimizable.  This happens for vector sexts.
 | |
|         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
 | |
|           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
 | |
|             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
 | |
|               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
 | |
|   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
 | |
|     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
 | |
|           SI0->getOperand(1) == SI1->getOperand(1) &&
 | |
|           (SI0->hasOneUse() || SI1->hasOneUse())) {
 | |
|         Value *NewOp =
 | |
|           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
 | |
|                              SI0->getName());
 | |
|         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
 | |
|                                       SI1->getOperand(1));
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Value *X = nullptr;
 | |
|     bool OpsSwapped = false;
 | |
|     // Canonicalize SExt or Not to the LHS
 | |
|     if (match(Op1, m_SExt(m_Value())) ||
 | |
|         match(Op1, m_Not(m_Value()))) {
 | |
|       std::swap(Op0, Op1);
 | |
|       OpsSwapped = true;
 | |
|     }
 | |
| 
 | |
|     // Fold (and (sext bool to A), B) --> (select bool, B, 0)
 | |
|     if (match(Op0, m_SExt(m_Value(X))) &&
 | |
|         X->getType()->getScalarType()->isIntegerTy(1)) {
 | |
|       Value *Zero = Constant::getNullValue(Op1->getType());
 | |
|       return SelectInst::Create(X, Op1, Zero);
 | |
|     }
 | |
| 
 | |
|     // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
 | |
|     if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
 | |
|         X->getType()->getScalarType()->isIntegerTy(1)) {
 | |
|       Value *Zero = Constant::getNullValue(Op0->getType());
 | |
|       return SelectInst::Create(X, Zero, Op1);
 | |
|     }
 | |
| 
 | |
|     if (OpsSwapped)
 | |
|       std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| /// CollectBSwapParts - Analyze the specified subexpression and see if it is
 | |
| /// capable of providing pieces of a bswap.  The subexpression provides pieces
 | |
| /// of a bswap if it is proven that each of the non-zero bytes in the output of
 | |
| /// the expression came from the corresponding "byte swapped" byte in some other
 | |
| /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
 | |
| /// we know that the expression deposits the low byte of %X into the high byte
 | |
| /// of the bswap result and that all other bytes are zero.  This expression is
 | |
| /// accepted, the high byte of ByteValues is set to X to indicate a correct
 | |
| /// match.
 | |
| ///
 | |
| /// This function returns true if the match was unsuccessful and false if so.
 | |
| /// On entry to the function the "OverallLeftShift" is a signed integer value
 | |
| /// indicating the number of bytes that the subexpression is later shifted.  For
 | |
| /// example, if the expression is later right shifted by 16 bits, the
 | |
| /// OverallLeftShift value would be -2 on entry.  This is used to specify which
 | |
| /// byte of ByteValues is actually being set.
 | |
| ///
 | |
| /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
 | |
| /// byte is masked to zero by a user.  For example, in (X & 255), X will be
 | |
| /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
 | |
| /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
 | |
| /// always in the local (OverallLeftShift) coordinate space.
 | |
| ///
 | |
| static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
 | |
|                               SmallVectorImpl<Value *> &ByteValues) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // If this is an or instruction, it may be an inner node of the bswap.
 | |
|     if (I->getOpcode() == Instruction::Or) {
 | |
|       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
 | |
|                                ByteValues) ||
 | |
|              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
 | |
|                                ByteValues);
 | |
|     }
 | |
| 
 | |
|     // If this is a logical shift by a constant multiple of 8, recurse with
 | |
|     // OverallLeftShift and ByteMask adjusted.
 | |
|     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
 | |
|       unsigned ShAmt =
 | |
|         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
 | |
|       // Ensure the shift amount is defined and of a byte value.
 | |
|       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
 | |
|         return true;
 | |
| 
 | |
|       unsigned ByteShift = ShAmt >> 3;
 | |
|       if (I->getOpcode() == Instruction::Shl) {
 | |
|         // X << 2 -> collect(X, +2)
 | |
|         OverallLeftShift += ByteShift;
 | |
|         ByteMask >>= ByteShift;
 | |
|       } else {
 | |
|         // X >>u 2 -> collect(X, -2)
 | |
|         OverallLeftShift -= ByteShift;
 | |
|         ByteMask <<= ByteShift;
 | |
|         ByteMask &= (~0U >> (32-ByteValues.size()));
 | |
|       }
 | |
| 
 | |
|       if (OverallLeftShift >= (int)ByteValues.size()) return true;
 | |
|       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
 | |
| 
 | |
|       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
 | |
|                                ByteValues);
 | |
|     }
 | |
| 
 | |
|     // If this is a logical 'and' with a mask that clears bytes, clear the
 | |
|     // corresponding bytes in ByteMask.
 | |
|     if (I->getOpcode() == Instruction::And &&
 | |
|         isa<ConstantInt>(I->getOperand(1))) {
 | |
|       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
 | |
|       unsigned NumBytes = ByteValues.size();
 | |
|       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
 | |
|       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
 | |
| 
 | |
|       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
 | |
|         // If this byte is masked out by a later operation, we don't care what
 | |
|         // the and mask is.
 | |
|         if ((ByteMask & (1 << i)) == 0)
 | |
|           continue;
 | |
| 
 | |
|         // If the AndMask is all zeros for this byte, clear the bit.
 | |
|         APInt MaskB = AndMask & Byte;
 | |
|         if (MaskB == 0) {
 | |
|           ByteMask &= ~(1U << i);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If the AndMask is not all ones for this byte, it's not a bytezap.
 | |
|         if (MaskB != Byte)
 | |
|           return true;
 | |
| 
 | |
|         // Otherwise, this byte is kept.
 | |
|       }
 | |
| 
 | |
|       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
 | |
|                                ByteValues);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
 | |
|   // the input value to the bswap.  Some observations: 1) if more than one byte
 | |
|   // is demanded from this input, then it could not be successfully assembled
 | |
|   // into a byteswap.  At least one of the two bytes would not be aligned with
 | |
|   // their ultimate destination.
 | |
|   if (!isPowerOf2_32(ByteMask)) return true;
 | |
|   unsigned InputByteNo = countTrailingZeros(ByteMask);
 | |
| 
 | |
|   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
 | |
|   // is demanded, it needs to go into byte 0 of the result.  This means that the
 | |
|   // byte needs to be shifted until it lands in the right byte bucket.  The
 | |
|   // shift amount depends on the position: if the byte is coming from the high
 | |
|   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
 | |
|   // low part, it must be shifted left.
 | |
|   unsigned DestByteNo = InputByteNo + OverallLeftShift;
 | |
|   if (ByteValues.size()-1-DestByteNo != InputByteNo)
 | |
|     return true;
 | |
| 
 | |
|   // If the destination byte value is already defined, the values are or'd
 | |
|   // together, which isn't a bswap (unless it's an or of the same bits).
 | |
|   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
 | |
|     return true;
 | |
|   ByteValues[DestByteNo] = V;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
 | |
| /// If so, insert the new bswap intrinsic and return it.
 | |
| Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
 | |
|   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
 | |
|   if (!ITy || ITy->getBitWidth() % 16 ||
 | |
|       // ByteMask only allows up to 32-byte values.
 | |
|       ITy->getBitWidth() > 32*8)
 | |
|     return nullptr;   // Can only bswap pairs of bytes.  Can't do vectors.
 | |
| 
 | |
|   /// ByteValues - For each byte of the result, we keep track of which value
 | |
|   /// defines each byte.
 | |
|   SmallVector<Value*, 8> ByteValues;
 | |
|   ByteValues.resize(ITy->getBitWidth()/8);
 | |
| 
 | |
|   // Try to find all the pieces corresponding to the bswap.
 | |
|   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
 | |
|   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check to see if all of the bytes come from the same value.
 | |
|   Value *V = ByteValues[0];
 | |
|   if (!V) return nullptr;  // Didn't find a byte?  Must be zero.
 | |
| 
 | |
|   // Check to make sure that all of the bytes come from the same value.
 | |
|   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
 | |
|     if (ByteValues[i] != V)
 | |
|       return nullptr;
 | |
|   Module *M = I.getParent()->getParent()->getParent();
 | |
|   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
 | |
|   return CallInst::Create(F, V);
 | |
| }
 | |
| 
 | |
| /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
 | |
| /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
 | |
| /// we can simplify this expression to "cond ? C : D or B".
 | |
| static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
 | |
|                                          Value *C, Value *D) {
 | |
|   // If A is not a select of -1/0, this cannot match.
 | |
|   Value *Cond = nullptr;
 | |
|   if (!match(A, m_SExt(m_Value(Cond))) ||
 | |
|       !Cond->getType()->isIntegerTy(1))
 | |
|     return nullptr;
 | |
| 
 | |
|   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
 | |
|   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, B);
 | |
|   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, B);
 | |
| 
 | |
|   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
 | |
|   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, D);
 | |
|   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, D);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
 | |
| Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
 | |
|   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
 | |
| 
 | |
|   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
 | |
|   // if K1 and K2 are a one-bit mask.
 | |
|   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
 | |
|   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
 | |
| 
 | |
|   if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
 | |
|       RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
 | |
| 
 | |
|     BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
 | |
|     BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
 | |
|     if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
 | |
|         LAnd->getOpcode() == Instruction::And &&
 | |
|         RAnd->getOpcode() == Instruction::And) {
 | |
| 
 | |
|       Value *Mask = nullptr;
 | |
|       Value *Masked = nullptr;
 | |
|       if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
 | |
|           isKnownToBeAPowerOfTwo(LAnd->getOperand(1)) &&
 | |
|           isKnownToBeAPowerOfTwo(RAnd->getOperand(1))) {
 | |
|         Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
 | |
|         Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
 | |
|       } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
 | |
|                  isKnownToBeAPowerOfTwo(LAnd->getOperand(0)) &&
 | |
|                  isKnownToBeAPowerOfTwo(RAnd->getOperand(0))) {
 | |
|         Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
 | |
|         Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
 | |
|       }
 | |
| 
 | |
|       if (Masked)
 | |
|         return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (PredicatesFoldable(LHSCC, RHSCC)) {
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(1) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(0))
 | |
|       LHS->swapOperands();
 | |
|     if (LHS->getOperand(0) == RHS->getOperand(0) &&
 | |
|         LHS->getOperand(1) == RHS->getOperand(1)) {
 | |
|       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
 | |
|       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
 | |
|       bool isSigned = LHS->isSigned() || RHS->isSigned();
 | |
|       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // handle (roughly):
 | |
|   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
 | |
|   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
 | |
|     return V;
 | |
| 
 | |
|   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
 | |
|   if (LHS->hasOneUse() || RHS->hasOneUse()) {
 | |
|     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
 | |
|     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
 | |
|     Value *A = nullptr, *B = nullptr;
 | |
|     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
 | |
|       B = Val;
 | |
|       if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
 | |
|         A = Val2;
 | |
|       else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
 | |
|         A = RHS->getOperand(1);
 | |
|     }
 | |
|     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
 | |
|     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
 | |
|     else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
 | |
|       B = Val2;
 | |
|       if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
 | |
|         A = Val;
 | |
|       else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
 | |
|         A = LHS->getOperand(1);
 | |
|     }
 | |
|     if (A && B)
 | |
|       return Builder->CreateICmp(
 | |
|           ICmpInst::ICMP_UGE,
 | |
|           Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
 | |
|   }
 | |
| 
 | |
|   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
 | |
|   if (!LHSCst || !RHSCst) return nullptr;
 | |
| 
 | |
|   if (LHSCst == RHSCst && LHSCC == RHSCC) {
 | |
|     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
 | |
|     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
 | |
|       Value *NewOr = Builder->CreateOr(Val, Val2);
 | |
|       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
 | |
|   //   iff C2 + CA == C1.
 | |
|   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
 | |
|     ConstantInt *AddCst;
 | |
|     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
 | |
|       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
 | |
|         return Builder->CreateICmpULE(Val, LHSCst);
 | |
|   }
 | |
| 
 | |
|   // From here on, we only handle:
 | |
|   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
 | |
|   if (Val != Val2) return nullptr;
 | |
| 
 | |
|   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
 | |
|   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
 | |
|       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
 | |
|       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
 | |
|       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
 | |
|     return nullptr;
 | |
| 
 | |
|   // We can't fold (ugt x, C) | (sgt x, C2).
 | |
|   if (!PredicatesFoldable(LHSCC, RHSCC))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Ensure that the larger constant is on the RHS.
 | |
|   bool ShouldSwap;
 | |
|   if (CmpInst::isSigned(LHSCC) ||
 | |
|       (ICmpInst::isEquality(LHSCC) &&
 | |
|        CmpInst::isSigned(RHSCC)))
 | |
|     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
 | |
|   else
 | |
|     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
 | |
| 
 | |
|   if (ShouldSwap) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSCst, RHSCst);
 | |
|     std::swap(LHSCC, RHSCC);
 | |
|   }
 | |
| 
 | |
|   // At this point, we know we have two icmp instructions
 | |
|   // comparing a value against two constants and or'ing the result
 | |
|   // together.  Because of the above check, we know that we only have
 | |
|   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
 | |
|   // icmp folding check above), that the two constants are not
 | |
|   // equal.
 | |
|   assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|   switch (LHSCC) {
 | |
|   default: llvm_unreachable("Unknown integer condition code!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       if (LHS->getOperand(0) == RHS->getOperand(0)) {
 | |
|         // if LHSCst and RHSCst differ only by one bit:
 | |
|         // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
 | |
|         assert(LHSCst->getValue().ule(LHSCst->getValue()));
 | |
| 
 | |
|         APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
 | |
|         if (Xor.isPowerOf2()) {
 | |
|           Value *NegCst = Builder->getInt(~Xor);
 | |
|           Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
 | |
|           return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (LHSCst == SubOne(RHSCst)) {
 | |
|         // (X == 13 | X == 14) -> X-13 <u 2
 | |
|         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
 | |
|         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
 | |
|         return Builder->CreateICmpULT(Add, AddCST);
 | |
|       }
 | |
| 
 | |
|       break;                         // (X == 13 | X == 15) -> no change
 | |
|     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
 | |
|     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
 | |
|     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
 | |
|       return RHS;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
 | |
|     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
 | |
|     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
 | |
|     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
 | |
|       return Builder->getTrue();
 | |
|     }
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
 | |
|       // If RHSCst is [us]MAXINT, it is always false.  Not handling
 | |
|       // this can cause overflow.
 | |
|       if (RHSCst->isMaxValue(false))
 | |
|         return LHS;
 | |
|       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
 | |
|     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
 | |
|       // If RHSCst is [us]MAXINT, it is always false.  Not handling
 | |
|       // this can cause overflow.
 | |
|       if (RHSCst->isMaxValue(true))
 | |
|         return LHS;
 | |
|       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
 | |
|     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
 | |
|       return RHS;
 | |
|     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
 | |
|     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
 | |
|       return Builder->getTrue();
 | |
|     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
 | |
|     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
 | |
|       return LHS;
 | |
|     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
 | |
|       return Builder->getTrue();
 | |
|     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
 | |
| /// instcombine, this returns a Value which should already be inserted into the
 | |
| /// function.
 | |
| Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
 | |
|   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
 | |
|       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
 | |
|       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
 | |
|     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
 | |
|       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
 | |
|         // If either of the constants are nans, then the whole thing returns
 | |
|         // true.
 | |
|         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
 | |
|           return Builder->getTrue();
 | |
| 
 | |
|         // Otherwise, no need to compare the two constants, compare the
 | |
|         // rest.
 | |
|         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
 | |
|       }
 | |
| 
 | |
|     // Handle vector zeros.  This occurs because the canonical form of
 | |
|     // "fcmp uno x,x" is "fcmp uno x, 0".
 | |
|     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
 | |
|         isa<ConstantAggregateZero>(RHS->getOperand(1)))
 | |
|       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
 | |
|   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
 | |
|   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
 | |
| 
 | |
|   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
 | |
|     // Swap RHS operands to match LHS.
 | |
|     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
 | |
|     std::swap(Op1LHS, Op1RHS);
 | |
|   }
 | |
|   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
 | |
|     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
 | |
|     if (Op0CC == Op1CC)
 | |
|       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
 | |
|     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
 | |
|       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
 | |
|     if (Op0CC == FCmpInst::FCMP_FALSE)
 | |
|       return RHS;
 | |
|     if (Op1CC == FCmpInst::FCMP_FALSE)
 | |
|       return LHS;
 | |
|     bool Op0Ordered;
 | |
|     bool Op1Ordered;
 | |
|     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
 | |
|     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
 | |
|     if (Op0Ordered == Op1Ordered) {
 | |
|       // If both are ordered or unordered, return a new fcmp with
 | |
|       // or'ed predicates.
 | |
|       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// FoldOrWithConstants - This helper function folds:
 | |
| ///
 | |
| ///     ((A | B) & C1) | (B & C2)
 | |
| ///
 | |
| /// into:
 | |
| ///
 | |
| ///     (A & C1) | B
 | |
| ///
 | |
| /// when the XOR of the two constants is "all ones" (-1).
 | |
| Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
 | |
|                                                Value *A, Value *B, Value *C) {
 | |
|   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
 | |
|   if (!CI1) return nullptr;
 | |
| 
 | |
|   Value *V1 = nullptr;
 | |
|   ConstantInt *CI2 = nullptr;
 | |
|   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
 | |
| 
 | |
|   APInt Xor = CI1->getValue() ^ CI2->getValue();
 | |
|   if (!Xor.isAllOnesValue()) return nullptr;
 | |
| 
 | |
|   if (V1 == A || V1 == B) {
 | |
|     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
 | |
|     return BinaryOperator::CreateOr(NewOp, V1);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyOrInst(Op0, Op1, DL))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A&B)|(A&C) -> A&(B|C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     ConstantInt *C1 = nullptr; Value *X = nullptr;
 | |
|     // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | |
|     // iff (C1 & C2) == 0.
 | |
|     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
 | |
|         (RHS->getValue() & C1->getValue()) != 0 &&
 | |
|         Op0->hasOneUse()) {
 | |
|       Value *Or = Builder->CreateOr(X, RHS);
 | |
|       Or->takeName(Op0);
 | |
|       return BinaryOperator::CreateAnd(Or,
 | |
|                              Builder->getInt(RHS->getValue() | C1->getValue()));
 | |
|     }
 | |
| 
 | |
|     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | |
|     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
 | |
|         Op0->hasOneUse()) {
 | |
|       Value *Or = Builder->CreateOr(X, RHS);
 | |
|       Or->takeName(Op0);
 | |
|       return BinaryOperator::CreateXor(Or,
 | |
|                             Builder->getInt(C1->getValue() & ~RHS->getValue()));
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   Value *A = nullptr, *B = nullptr;
 | |
|   ConstantInt *C1 = nullptr, *C2 = nullptr;
 | |
| 
 | |
|   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
 | |
|   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
 | |
|   if (match(Op0, m_Or(m_Value(), m_Value())) ||
 | |
|       match(Op1, m_Or(m_Value(), m_Value())) ||
 | |
|       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
 | |
|        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
 | |
|     if (Instruction *BSwap = MatchBSwap(I))
 | |
|       return BSwap;
 | |
|   }
 | |
| 
 | |
|   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op0->hasOneUse() &&
 | |
|       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op1, C1->getValue())) {
 | |
|     Value *NOr = Builder->CreateOr(A, Op1);
 | |
|     NOr->takeName(Op0);
 | |
|     return BinaryOperator::CreateXor(NOr, C1);
 | |
|   }
 | |
| 
 | |
|   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op1->hasOneUse() &&
 | |
|       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op0, C1->getValue())) {
 | |
|     Value *NOr = Builder->CreateOr(A, Op0);
 | |
|     NOr->takeName(Op0);
 | |
|     return BinaryOperator::CreateXor(NOr, C1);
 | |
|   }
 | |
| 
 | |
|   // (A & C)|(B & D)
 | |
|   Value *C = nullptr, *D = nullptr;
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_Value(D)))) {
 | |
|     Value *V1 = nullptr, *V2 = nullptr;
 | |
|     C1 = dyn_cast<ConstantInt>(C);
 | |
|     C2 = dyn_cast<ConstantInt>(D);
 | |
|     if (C1 && C2) {  // (A & C1)|(B & C2)
 | |
|       // If we have: ((V + N) & C1) | (V & C2)
 | |
|       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
 | |
|       // replace with V+N.
 | |
|       if (C1->getValue() == ~C2->getValue()) {
 | |
|         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
 | |
|             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|           // Add commutes, try both ways.
 | |
|           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
 | |
|             return ReplaceInstUsesWith(I, A);
 | |
|           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
 | |
|             return ReplaceInstUsesWith(I, A);
 | |
|         }
 | |
|         // Or commutes, try both ways.
 | |
|         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
 | |
|             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|           // Add commutes, try both ways.
 | |
|           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
 | |
|             return ReplaceInstUsesWith(I, B);
 | |
|           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
 | |
|             return ReplaceInstUsesWith(I, B);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if ((C1->getValue() & C2->getValue()) == 0) {
 | |
|         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
 | |
|         // iff (C1&C2) == 0 and (N&~C1) == 0
 | |
|         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
 | |
|             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
 | |
|              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
 | |
|           return BinaryOperator::CreateAnd(A,
 | |
|                                 Builder->getInt(C1->getValue()|C2->getValue()));
 | |
|         // Or commutes, try both ways.
 | |
|         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
 | |
|             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
 | |
|              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
 | |
|           return BinaryOperator::CreateAnd(B,
 | |
|                                 Builder->getInt(C1->getValue()|C2->getValue()));
 | |
| 
 | |
|         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
 | |
|         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
 | |
|         ConstantInt *C3 = nullptr, *C4 = nullptr;
 | |
|         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
 | |
|             (C3->getValue() & ~C1->getValue()) == 0 &&
 | |
|             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
 | |
|             (C4->getValue() & ~C2->getValue()) == 0) {
 | |
|           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
 | |
|           return BinaryOperator::CreateAnd(V2,
 | |
|                                 Builder->getInt(C1->getValue()|C2->getValue()));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
 | |
|     // Don't do this for vector select idioms, the code generator doesn't handle
 | |
|     // them well yet.
 | |
|     if (!I.getType()->isVectorTy()) {
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
 | |
|         return Match;
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
 | |
|         return Match;
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
 | |
|         return Match;
 | |
|       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
 | |
|         return Match;
 | |
|     }
 | |
| 
 | |
|     // ((A&~B)|(~A&B)) -> A^B
 | |
|     if ((match(C, m_Not(m_Specific(D))) &&
 | |
|          match(B, m_Not(m_Specific(A)))))
 | |
|       return BinaryOperator::CreateXor(A, D);
 | |
|     // ((~B&A)|(~A&B)) -> A^B
 | |
|     if ((match(A, m_Not(m_Specific(D))) &&
 | |
|          match(B, m_Not(m_Specific(C)))))
 | |
|       return BinaryOperator::CreateXor(C, D);
 | |
|     // ((A&~B)|(B&~A)) -> A^B
 | |
|     if ((match(C, m_Not(m_Specific(B))) &&
 | |
|          match(D, m_Not(m_Specific(A)))))
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
|     // ((~B&A)|(B&~A)) -> A^B
 | |
|     if ((match(A, m_Not(m_Specific(B))) &&
 | |
|          match(D, m_Not(m_Specific(C)))))
 | |
|       return BinaryOperator::CreateXor(C, B);
 | |
| 
 | |
|     // ((A|B)&1)|(B&-2) -> (A&1) | B
 | |
|     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
 | |
|         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
 | |
|       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
 | |
|       if (Ret) return Ret;
 | |
|     }
 | |
|     // (B&-2)|((A|B)&1) -> (A&1) | B
 | |
|     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
 | |
|         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
 | |
|       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
 | |
|       if (Ret) return Ret;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
 | |
|   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
 | |
|     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
 | |
|           SI0->getOperand(1) == SI1->getOperand(1) &&
 | |
|           (SI0->hasOneUse() || SI1->hasOneUse())) {
 | |
|         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
 | |
|                                          SI0->getName());
 | |
|         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
 | |
|                                       SI1->getOperand(1));
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // (~A | ~B) == (~(A & B)) - De Morgan's Law
 | |
|   if (Value *Op0NotVal = dyn_castNotVal(Op0))
 | |
|     if (Value *Op1NotVal = dyn_castNotVal(Op1))
 | |
|       if (Op0->hasOneUse() && Op1->hasOneUse()) {
 | |
|         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
 | |
|                                         I.getName()+".demorgan");
 | |
|         return BinaryOperator::CreateNot(And);
 | |
|       }
 | |
| 
 | |
|   // Canonicalize xor to the RHS.
 | |
|   bool SwappedForXor = false;
 | |
|   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
 | |
|     std::swap(Op0, Op1);
 | |
|     SwappedForXor = true;
 | |
|   }
 | |
| 
 | |
|   // A | ( A ^ B) -> A |  B
 | |
|   // A | (~A ^ B) -> A | ~B
 | |
|   // (A & B) | (A ^ B)
 | |
|   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|     if (Op0 == A || Op0 == B)
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
| 
 | |
|     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|         match(Op0, m_And(m_Specific(B), m_Specific(A))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
| 
 | |
|     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
 | |
|       Value *Not = Builder->CreateNot(B, B->getName()+".not");
 | |
|       return BinaryOperator::CreateOr(Not, Op0);
 | |
|     }
 | |
|     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
 | |
|       Value *Not = Builder->CreateNot(A, A->getName()+".not");
 | |
|       return BinaryOperator::CreateOr(Not, Op0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // A | ~(A | B) -> A | ~B
 | |
|   // A | ~(A ^ B) -> A | ~B
 | |
|   if (match(Op1, m_Not(m_Value(A))))
 | |
|     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
 | |
|       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
 | |
|           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
 | |
|                                B->getOpcode() == Instruction::Xor)) {
 | |
|         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
 | |
|                                                  B->getOperand(0);
 | |
|         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
 | |
|         return BinaryOperator::CreateOr(Not, Op0);
 | |
|       }
 | |
| 
 | |
|   if (SwappedForXor)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
 | |
|     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
 | |
|       if (Value *Res = FoldOrOfICmps(LHS, RHS))
 | |
|         return ReplaceInstUsesWith(I, Res);
 | |
| 
 | |
|   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
 | |
|   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
 | |
|     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
 | |
|       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
 | |
|         return ReplaceInstUsesWith(I, Res);
 | |
| 
 | |
|   // fold (or (cast A), (cast B)) -> (cast (or A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     CastInst *Op1C = dyn_cast<CastInst>(Op1);
 | |
|     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
 | |
|       Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|       if (SrcTy == Op1C->getOperand(0)->getType() &&
 | |
|           SrcTy->isIntOrIntVectorTy()) {
 | |
|         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
 | |
| 
 | |
|         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
 | |
|             // Only do this if the casts both really cause code to be
 | |
|             // generated.
 | |
|             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
 | |
|             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
 | |
|           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
 | |
|           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
 | |
|         }
 | |
| 
 | |
|         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
 | |
|         // cast is otherwise not optimizable.  This happens for vector sexts.
 | |
|         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
 | |
|           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
 | |
|             if (Value *Res = FoldOrOfICmps(LHS, RHS))
 | |
|               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
 | |
| 
 | |
|         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
 | |
|         // cast is otherwise not optimizable.  This happens for vector sexts.
 | |
|         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
 | |
|           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
 | |
|             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
 | |
|               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // or(sext(A), B) -> A ? -1 : B where A is an i1
 | |
|   // or(A, sext(B)) -> B ? -1 : A where B is an i1
 | |
|   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
 | |
|     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
 | |
|   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
 | |
|     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
 | |
| 
 | |
|   // Note: If we've gotten to the point of visiting the outer OR, then the
 | |
|   // inner one couldn't be simplified.  If it was a constant, then it won't
 | |
|   // be simplified by a later pass either, so we try swapping the inner/outer
 | |
|   // ORs in the hopes that we'll be able to simplify it this way.
 | |
|   // (X|C) | V --> (X|V) | C
 | |
|   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
 | |
|       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
 | |
|     Value *Inner = Builder->CreateOr(A, Op1);
 | |
|     Inner->takeName(Op0);
 | |
|     return BinaryOperator::CreateOr(Inner, C1);
 | |
|   }
 | |
| 
 | |
|   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
 | |
|   // Since this OR statement hasn't been optimized further yet, we hope
 | |
|   // that this transformation will allow the new ORs to be optimized.
 | |
|   {
 | |
|     Value *X = nullptr, *Y = nullptr;
 | |
|     if (Op0->hasOneUse() && Op1->hasOneUse() &&
 | |
|         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
 | |
|         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
 | |
|       Value *orTrue = Builder->CreateOr(A, C);
 | |
|       Value *orFalse = Builder->CreateOr(B, D);
 | |
|       return SelectInst::Create(X, orTrue, orFalse);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyXorInst(Op0, Op1, DL))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A&B)^(A&C) -> A&(B^C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   // Is this a ~ operation?
 | |
|   if (Value *NotOp = dyn_castNotVal(&I)) {
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
 | |
|       if (Op0I->getOpcode() == Instruction::And ||
 | |
|           Op0I->getOpcode() == Instruction::Or) {
 | |
|         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
 | |
|         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
 | |
|         if (dyn_castNotVal(Op0I->getOperand(1)))
 | |
|           Op0I->swapOperands();
 | |
|         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | |
|           Value *NotY =
 | |
|             Builder->CreateNot(Op0I->getOperand(1),
 | |
|                                Op0I->getOperand(1)->getName()+".not");
 | |
|           if (Op0I->getOpcode() == Instruction::And)
 | |
|             return BinaryOperator::CreateOr(Op0NotVal, NotY);
 | |
|           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
 | |
|         }
 | |
| 
 | |
|         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
 | |
|         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
 | |
|         if (isFreeToInvert(Op0I->getOperand(0)) &&
 | |
|             isFreeToInvert(Op0I->getOperand(1))) {
 | |
|           Value *NotX =
 | |
|             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
 | |
|           Value *NotY =
 | |
|             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
 | |
|           if (Op0I->getOpcode() == Instruction::And)
 | |
|             return BinaryOperator::CreateOr(NotX, NotY);
 | |
|           return BinaryOperator::CreateAnd(NotX, NotY);
 | |
|         }
 | |
| 
 | |
|       } else if (Op0I->getOpcode() == Instruction::AShr) {
 | |
|         // ~(~X >>s Y) --> (X >>s Y)
 | |
|         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
 | |
|           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (RHS->isOne() && Op0->hasOneUse())
 | |
|       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
 | |
|       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
 | |
|         return CmpInst::Create(CI->getOpcode(),
 | |
|                                CI->getInversePredicate(),
 | |
|                                CI->getOperand(0), CI->getOperand(1));
 | |
| 
 | |
|     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
 | |
|     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
 | |
|         if (CI->hasOneUse() && Op0C->hasOneUse()) {
 | |
|           Instruction::CastOps Opcode = Op0C->getOpcode();
 | |
|           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
 | |
|               (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
 | |
|                                             Op0C->getDestTy()))) {
 | |
|             CI->setPredicate(CI->getInversePredicate());
 | |
|             return CastInst::Create(Opcode, CI, Op0C->getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // ~(c-X) == X-c-1 == X+(-c-1)
 | |
|       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | |
|         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | |
|           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | |
|           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | |
|                                       ConstantInt::get(I.getType(), 1));
 | |
|           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
 | |
|         }
 | |
| 
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | |
|         if (Op0I->getOpcode() == Instruction::Add) {
 | |
|           // ~(X-c) --> (-c-1)-X
 | |
|           if (RHS->isAllOnesValue()) {
 | |
|             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | |
|             return BinaryOperator::CreateSub(
 | |
|                            ConstantExpr::getSub(NegOp0CI,
 | |
|                                       ConstantInt::get(I.getType(), 1)),
 | |
|                                       Op0I->getOperand(0));
 | |
|           } else if (RHS->getValue().isSignBit()) {
 | |
|             // (X + C) ^ signbit -> (X + C + signbit)
 | |
|             Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
 | |
|             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
 | |
| 
 | |
|           }
 | |
|         } else if (Op0I->getOpcode() == Instruction::Or) {
 | |
|           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
 | |
|           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
 | |
|             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
 | |
|             // Anything in both C1 and C2 is known to be zero, remove it from
 | |
|             // NewRHS.
 | |
|             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
 | |
|             NewRHS = ConstantExpr::getAnd(NewRHS,
 | |
|                                        ConstantExpr::getNot(CommonBits));
 | |
|             Worklist.Add(Op0I);
 | |
|             I.setOperand(0, Op0I->getOperand(0));
 | |
|             I.setOperand(1, NewRHS);
 | |
|             return &I;
 | |
|           }
 | |
|         } else if (Op0I->getOpcode() == Instruction::LShr) {
 | |
|           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
 | |
|           // E1 = "X ^ C1"
 | |
|           BinaryOperator *E1;
 | |
|           ConstantInt *C1;
 | |
|           if (Op0I->hasOneUse() &&
 | |
|               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
 | |
|               E1->getOpcode() == Instruction::Xor &&
 | |
|               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
 | |
|             // fold (C1 >> C2) ^ C3
 | |
|             ConstantInt *C2 = Op0CI, *C3 = RHS;
 | |
|             APInt FoldConst = C1->getValue().lshr(C2->getValue());
 | |
|             FoldConst ^= C3->getValue();
 | |
|             // Prepare the two operands.
 | |
|             Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
 | |
|             Opnd0->takeName(Op0I);
 | |
|             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
 | |
|             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
 | |
| 
 | |
|             return BinaryOperator::CreateXor(Opnd0, FoldVal);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
 | |
|   if (Op1I) {
 | |
|     Value *A, *B;
 | |
|     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op0) {              // B^(B|A) == (A|B)^B
 | |
|         Op1I->swapOperands();
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
 | |
|                Op1I->hasOneUse()){
 | |
|       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
 | |
|         Op1I->swapOperands();
 | |
|         std::swap(A, B);
 | |
|       }
 | |
|       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
 | |
|   if (Op0I) {
 | |
|     Value *A, *B;
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         Op0I->hasOneUse()) {
 | |
|       if (A == Op1)                                  // (B|A)^B == (A|B)^B
 | |
|         std::swap(A, B);
 | |
|       if (B == Op1)                                  // (A|B)^B == A & ~B
 | |
|         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
 | |
|     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
 | |
|                Op0I->hasOneUse()){
 | |
|       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
 | |
|         std::swap(A, B);
 | |
|       if (B == Op1 &&                                      // (B&A)^A == ~B & A
 | |
|           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
 | |
|         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
 | |
|   if (Op0I && Op1I && Op0I->isShift() &&
 | |
|       Op0I->getOpcode() == Op1I->getOpcode() &&
 | |
|       Op0I->getOperand(1) == Op1I->getOperand(1) &&
 | |
|       (Op0I->hasOneUse() || Op1I->hasOneUse())) {
 | |
|     Value *NewOp =
 | |
|       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
 | |
|                          Op0I->getName());
 | |
|     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
 | |
|                                   Op1I->getOperand(1));
 | |
|   }
 | |
| 
 | |
|   if (Op0I && Op1I) {
 | |
|     Value *A, *B, *C, *D;
 | |
|     // (A & B)^(A | B) -> A ^ B
 | |
|     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
 | |
|       if ((A == C && B == D) || (A == D && B == C))
 | |
|         return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (A | B)^(A & B) -> A ^ B
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
 | |
|       if ((A == C && B == D) || (A == D && B == C))
 | |
|         return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
 | |
|     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
 | |
|       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
 | |
|         if (LHS->getOperand(0) == RHS->getOperand(1) &&
 | |
|             LHS->getOperand(1) == RHS->getOperand(0))
 | |
|           LHS->swapOperands();
 | |
|         if (LHS->getOperand(0) == RHS->getOperand(0) &&
 | |
|             LHS->getOperand(1) == RHS->getOperand(1)) {
 | |
|           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
 | |
|           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
 | |
|           bool isSigned = LHS->isSigned() || RHS->isSigned();
 | |
|           return ReplaceInstUsesWith(I,
 | |
|                                getNewICmpValue(isSigned, Code, Op0, Op1,
 | |
|                                                Builder));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | |
|       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
 | |
|         Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
 | |
|             // Only do this if the casts both really cause code to be generated.
 | |
|             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
 | |
|                                I.getType()) &&
 | |
|             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
 | |
|                                I.getType())) {
 | |
|           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
 | |
|                                             Op1C->getOperand(0), I.getName());
 | |
|           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 |