llvm-6502/lib/CodeGen/AsmPrinter/DwarfAccelTable.h
Eric Christopher 577056f89c Move accelerator table defines and constants to Dwarf.h since
we're proposing it for DWARF5.

No functional change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190074 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-05 18:20:16 +00:00

254 lines
8.0 KiB
C++

//==-- llvm/CodeGen/DwarfAccelTable.h - Dwarf Accelerator Tables -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing dwarf accelerator tables.
//
//===----------------------------------------------------------------------===//
#ifndef CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__
#define CODEGEN_ASMPRINTER_DWARFACCELTABLE_H__
#include "DIE.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include <map>
#include <vector>
// The dwarf accelerator tables are an indirect hash table optimized
// for null lookup rather than access to known data. They are output into
// an on-disk format that looks like this:
//
// .-------------.
// | HEADER |
// |-------------|
// | BUCKETS |
// |-------------|
// | HASHES |
// |-------------|
// | OFFSETS |
// |-------------|
// | DATA |
// `-------------'
//
// where the header contains a magic number, version, type of hash function,
// the number of buckets, total number of hashes, and room for a special
// struct of data and the length of that struct.
//
// The buckets contain an index (e.g. 6) into the hashes array. The hashes
// section contains all of the 32-bit hash values in contiguous memory, and
// the offsets contain the offset into the data area for the particular
// hash.
//
// For a lookup example, we could hash a function name and take it modulo the
// number of buckets giving us our bucket. From there we take the bucket value
// as an index into the hashes table and look at each successive hash as long
// as the hash value is still the same modulo result (bucket value) as earlier.
// If we have a match we look at that same entry in the offsets table and
// grab the offset in the data for our final match.
namespace llvm {
class AsmPrinter;
class DIE;
class DwarfUnits;
class DwarfAccelTable {
static uint32_t HashDJB(StringRef Str) {
uint32_t h = 5381;
for (unsigned i = 0, e = Str.size(); i != e; ++i)
h = ((h << 5) + h) + Str[i];
return h;
}
// Helper function to compute the number of buckets needed based on
// the number of unique hashes.
void ComputeBucketCount(void);
struct TableHeader {
uint32_t magic; // 'HASH' magic value to allow endian detection
uint16_t version; // Version number.
uint16_t hash_function; // The hash function enumeration that was used.
uint32_t bucket_count; // The number of buckets in this hash table.
uint32_t hashes_count; // The total number of unique hash values
// and hash data offsets in this table.
uint32_t header_data_len; // The bytes to skip to get to the hash
// indexes (buckets) for correct alignment.
// Also written to disk is the implementation specific header data.
static const uint32_t MagicHash = 0x48415348;
TableHeader(uint32_t data_len)
: magic(MagicHash), version(1),
hash_function(dwarf::DW_hash_function_djb), bucket_count(0),
hashes_count(0), header_data_len(data_len) {}
#ifndef NDEBUG
void print(raw_ostream &O) {
O << "Magic: " << format("0x%x", magic) << "\n"
<< "Version: " << version << "\n"
<< "Hash Function: " << hash_function << "\n"
<< "Bucket Count: " << bucket_count << "\n"
<< "Header Data Length: " << header_data_len << "\n";
}
void dump() { print(dbgs()); }
#endif
};
public:
// The HeaderData describes the form of each set of data. In general this
// is as a list of atoms (atom_count) where each atom contains a type
// (AtomType type) of data, and an encoding form (form). In the case of
// data that is referenced via DW_FORM_ref_* the die_offset_base is
// used to describe the offset for all forms in the list of atoms.
// This also serves as a public interface of sorts.
// When written to disk this will have the form:
//
// uint32_t die_offset_base
// uint32_t atom_count
// atom_count Atoms
// Make these public so that they can be used as a general interface to
// the class.
struct Atom {
uint16_t type; // enum AtomType
uint16_t form; // DWARF DW_FORM_ defines
Atom(uint16_t type, uint16_t form) : type(type), form(form) {}
#ifndef NDEBUG
void print(raw_ostream &O) {
O << "Type: " << dwarf::AtomTypeString(type) << "\n"
<< "Form: " << dwarf::FormEncodingString(form) << "\n";
}
void dump() { print(dbgs()); }
#endif
};
private:
struct TableHeaderData {
uint32_t die_offset_base;
SmallVector<Atom, 1> Atoms;
TableHeaderData(ArrayRef<Atom> AtomList, uint32_t offset = 0)
: die_offset_base(offset), Atoms(AtomList.begin(), AtomList.end()) {}
#ifndef NDEBUG
void print(raw_ostream &O) {
O << "die_offset_base: " << die_offset_base << "\n";
for (size_t i = 0; i < Atoms.size(); i++)
Atoms[i].print(O);
}
void dump() { print(dbgs()); }
#endif
};
// The data itself consists of a str_offset, a count of the DIEs in the
// hash and the offsets to the DIEs themselves.
// On disk each data section is ended with a 0 KeyType as the end of the
// hash chain.
// On output this looks like:
// uint32_t str_offset
// uint32_t hash_data_count
// HashData[hash_data_count]
public:
struct HashDataContents {
DIE *Die; // Offsets
char Flags; // Specific flags to output
HashDataContents(DIE *D, char Flags) : Die(D), Flags(Flags) {}
#ifndef NDEBUG
void print(raw_ostream &O) const {
O << " Offset: " << Die->getOffset() << "\n";
O << " Tag: " << dwarf::TagString(Die->getTag()) << "\n";
O << " Flags: " << Flags << "\n";
}
#endif
};
private:
struct HashData {
StringRef Str;
uint32_t HashValue;
MCSymbol *Sym;
ArrayRef<HashDataContents *> Data; // offsets
HashData(StringRef S, ArrayRef<HashDataContents *> Data)
: Str(S), Data(Data) {
HashValue = DwarfAccelTable::HashDJB(S);
}
#ifndef NDEBUG
void print(raw_ostream &O) {
O << "Name: " << Str << "\n";
O << " Hash Value: " << format("0x%x", HashValue) << "\n";
O << " Symbol: ";
if (Sym)
Sym->print(O);
else
O << "<none>";
O << "\n";
for (size_t i = 0; i < Data.size(); i++) {
O << " Offset: " << Data[i]->Die->getOffset() << "\n";
O << " Tag: " << dwarf::TagString(Data[i]->Die->getTag()) << "\n";
O << " Flags: " << Data[i]->Flags << "\n";
}
}
void dump() { print(dbgs()); }
#endif
};
DwarfAccelTable(const DwarfAccelTable &) LLVM_DELETED_FUNCTION;
void operator=(const DwarfAccelTable &) LLVM_DELETED_FUNCTION;
// Internal Functions
void EmitHeader(AsmPrinter *);
void EmitBuckets(AsmPrinter *);
void EmitHashes(AsmPrinter *);
void EmitOffsets(AsmPrinter *, MCSymbol *);
void EmitData(AsmPrinter *, DwarfUnits *D);
// Allocator for HashData and HashDataContents.
BumpPtrAllocator Allocator;
// Output Variables
TableHeader Header;
TableHeaderData HeaderData;
std::vector<HashData *> Data;
// String Data
typedef std::vector<HashDataContents *> DataArray;
typedef StringMap<DataArray, BumpPtrAllocator &> StringEntries;
StringEntries Entries;
// Buckets/Hashes/Offsets
typedef std::vector<HashData *> HashList;
typedef std::vector<HashList> BucketList;
BucketList Buckets;
HashList Hashes;
// Public Implementation
public:
DwarfAccelTable(ArrayRef<DwarfAccelTable::Atom>);
~DwarfAccelTable();
void AddName(StringRef, DIE *, char = 0);
void FinalizeTable(AsmPrinter *, StringRef);
void Emit(AsmPrinter *, MCSymbol *, DwarfUnits *);
#ifndef NDEBUG
void print(raw_ostream &O);
void dump() { print(dbgs()); }
#endif
};
}
#endif