mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	a new class, MachineInstrIndex, which hides arithmetic details from most clients. This is a step towards allowing the register allocator to update/insert code during allocation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81040 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1053 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1053 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass eliminates machine instruction PHI nodes by inserting copy
 | |
| // instructions, using an intelligent copy-folding technique based on
 | |
| // dominator information.  This is technique is derived from:
 | |
| // 
 | |
| //    Budimlic, et al. Fast copy coalescing and live-range identification.
 | |
| //    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
 | |
| //    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
 | |
| //    PLDI '02. ACM, New York, NY, 25-32.
 | |
| //    DOI= http://doi.acm.org/10.1145/512529.512534
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "strongphielim"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RegisterCoalescer.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     StrongPHIElimination() : MachineFunctionPass(&ID) {}
 | |
| 
 | |
|     // Waiting stores, for each MBB, the set of copies that need to
 | |
|     // be inserted into that MBB
 | |
|     DenseMap<MachineBasicBlock*,
 | |
|              std::multimap<unsigned, unsigned> > Waiting;
 | |
|     
 | |
|     // Stacks holds the renaming stack for each register
 | |
|     std::map<unsigned, std::vector<unsigned> > Stacks;
 | |
|     
 | |
|     // Registers in UsedByAnother are PHI nodes that are themselves
 | |
|     // used as operands to another another PHI node
 | |
|     std::set<unsigned> UsedByAnother;
 | |
|     
 | |
|     // RenameSets are the is a map from a PHI-defined register
 | |
|     // to the input registers to be coalesced along with the 
 | |
|     // predecessor block for those input registers.
 | |
|     std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > RenameSets;
 | |
|     
 | |
|     // PhiValueNumber holds the ID numbers of the VNs for each phi that we're
 | |
|     // eliminating, indexed by the register defined by that phi.
 | |
|     std::map<unsigned, unsigned> PhiValueNumber;
 | |
| 
 | |
|     // Store the DFS-in number of each block
 | |
|     DenseMap<MachineBasicBlock*, unsigned> preorder;
 | |
|     
 | |
|     // Store the DFS-out number of each block
 | |
|     DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &Fn);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addRequired<LiveIntervals>();
 | |
|       
 | |
|       // TODO: Actually make this true.
 | |
|       AU.addPreserved<LiveIntervals>();
 | |
|       AU.addPreserved<RegisterCoalescer>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|     
 | |
|     virtual void releaseMemory() {
 | |
|       preorder.clear();
 | |
|       maxpreorder.clear();
 | |
|       
 | |
|       Waiting.clear();
 | |
|       Stacks.clear();
 | |
|       UsedByAnother.clear();
 | |
|       RenameSets.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     
 | |
|     /// DomForestNode - Represents a node in the "dominator forest".  This is
 | |
|     /// a forest in which the nodes represent registers and the edges
 | |
|     /// represent a dominance relation in the block defining those registers.
 | |
|     struct DomForestNode {
 | |
|     private:
 | |
|       // Store references to our children
 | |
|       std::vector<DomForestNode*> children;
 | |
|       // The register we represent
 | |
|       unsigned reg;
 | |
|       
 | |
|       // Add another node as our child
 | |
|       void addChild(DomForestNode* DFN) { children.push_back(DFN); }
 | |
|       
 | |
|     public:
 | |
|       typedef std::vector<DomForestNode*>::iterator iterator;
 | |
|       
 | |
|       // Create a DomForestNode by providing the register it represents, and
 | |
|       // the node to be its parent.  The virtual root node has register 0
 | |
|       // and a null parent.
 | |
|       DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
 | |
|         if (parent)
 | |
|           parent->addChild(this);
 | |
|       }
 | |
|       
 | |
|       ~DomForestNode() {
 | |
|         for (iterator I = begin(), E = end(); I != E; ++I)
 | |
|           delete *I;
 | |
|       }
 | |
|       
 | |
|       /// getReg - Return the regiser that this node represents
 | |
|       inline unsigned getReg() { return reg; }
 | |
|       
 | |
|       // Provide iterator access to our children
 | |
|       inline DomForestNode::iterator begin() { return children.begin(); }
 | |
|       inline DomForestNode::iterator end() { return children.end(); }
 | |
|     };
 | |
|     
 | |
|     void computeDFS(MachineFunction& MF);
 | |
|     void processBlock(MachineBasicBlock* MBB);
 | |
|     
 | |
|     std::vector<DomForestNode*> computeDomForest(
 | |
|                            std::map<unsigned, MachineBasicBlock*>& instrs,
 | |
|                                                  MachineRegisterInfo& MRI);
 | |
|     void processPHIUnion(MachineInstr* Inst,
 | |
|                          std::map<unsigned, MachineBasicBlock*>& PHIUnion,
 | |
|                          std::vector<StrongPHIElimination::DomForestNode*>& DF,
 | |
|                          std::vector<std::pair<unsigned, unsigned> >& locals);
 | |
|     void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
 | |
|     void InsertCopies(MachineDomTreeNode* MBB,
 | |
|                       SmallPtrSet<MachineBasicBlock*, 16>& v);
 | |
|     bool mergeLiveIntervals(unsigned primary, unsigned secondary);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char StrongPHIElimination::ID = 0;
 | |
| static RegisterPass<StrongPHIElimination>
 | |
| X("strong-phi-node-elimination",
 | |
|   "Eliminate PHI nodes for register allocation, intelligently");
 | |
| 
 | |
| const PassInfo *const llvm::StrongPHIEliminationID = &X;
 | |
| 
 | |
| /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
 | |
| /// of the given MachineFunction.  These numbers are then used in other parts
 | |
| /// of the PHI elimination process.
 | |
| void StrongPHIElimination::computeDFS(MachineFunction& MF) {
 | |
|   SmallPtrSet<MachineDomTreeNode*, 8> frontier;
 | |
|   SmallPtrSet<MachineDomTreeNode*, 8> visited;
 | |
|   
 | |
|   unsigned time = 0;
 | |
|   
 | |
|   MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
 | |
|   
 | |
|   MachineDomTreeNode* node = DT.getRootNode();
 | |
|   
 | |
|   std::vector<MachineDomTreeNode*> worklist;
 | |
|   worklist.push_back(node);
 | |
|   
 | |
|   while (!worklist.empty()) {
 | |
|     MachineDomTreeNode* currNode = worklist.back();
 | |
|     
 | |
|     if (!frontier.count(currNode)) {
 | |
|       frontier.insert(currNode);
 | |
|       ++time;
 | |
|       preorder.insert(std::make_pair(currNode->getBlock(), time));
 | |
|     }
 | |
|     
 | |
|     bool inserted = false;
 | |
|     for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end();
 | |
|          I != E; ++I)
 | |
|       if (!frontier.count(*I) && !visited.count(*I)) {
 | |
|         worklist.push_back(*I);
 | |
|         inserted = true;
 | |
|         break;
 | |
|       }
 | |
|     
 | |
|     if (!inserted) {
 | |
|       frontier.erase(currNode);
 | |
|       visited.insert(currNode);
 | |
|       maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
 | |
|       
 | |
|       worklist.pop_back();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// PreorderSorter - a helper class that is used to sort registers
 | |
| /// according to the preorder number of their defining blocks
 | |
| class PreorderSorter {
 | |
| private:
 | |
|   DenseMap<MachineBasicBlock*, unsigned>& preorder;
 | |
|   MachineRegisterInfo& MRI;
 | |
|   
 | |
| public:
 | |
|   PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
 | |
|                 MachineRegisterInfo& M) : preorder(p), MRI(M) { }
 | |
|   
 | |
|   bool operator()(unsigned A, unsigned B) {
 | |
|     if (A == B)
 | |
|       return false;
 | |
|     
 | |
|     MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
 | |
|     MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
 | |
|     
 | |
|     if (preorder[ABlock] < preorder[BBlock])
 | |
|       return true;
 | |
|     else if (preorder[ABlock] > preorder[BBlock])
 | |
|       return false;
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// computeDomForest - compute the subforest of the DomTree corresponding
 | |
| /// to the defining blocks of the registers in question
 | |
| std::vector<StrongPHIElimination::DomForestNode*>
 | |
| StrongPHIElimination::computeDomForest(
 | |
|                   std::map<unsigned, MachineBasicBlock*>& regs, 
 | |
|                                        MachineRegisterInfo& MRI) {
 | |
|   // Begin by creating a virtual root node, since the actual results
 | |
|   // may well be a forest.  Assume this node has maximum DFS-out number.
 | |
|   DomForestNode* VirtualRoot = new DomForestNode(0, 0);
 | |
|   maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
 | |
|   
 | |
|   // Populate a worklist with the registers
 | |
|   std::vector<unsigned> worklist;
 | |
|   worklist.reserve(regs.size());
 | |
|   for (std::map<unsigned, MachineBasicBlock*>::iterator I = regs.begin(),
 | |
|        E = regs.end(); I != E; ++I)
 | |
|     worklist.push_back(I->first);
 | |
|   
 | |
|   // Sort the registers by the DFS-in number of their defining block
 | |
|   PreorderSorter PS(preorder, MRI);
 | |
|   std::sort(worklist.begin(), worklist.end(), PS);
 | |
|   
 | |
|   // Create a "current parent" stack, and put the virtual root on top of it
 | |
|   DomForestNode* CurrentParent = VirtualRoot;
 | |
|   std::vector<DomForestNode*> stack;
 | |
|   stack.push_back(VirtualRoot);
 | |
|   
 | |
|   // Iterate over all the registers in the previously computed order
 | |
|   for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
 | |
|     MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
 | |
|                  MRI.getVRegDef(CurrentParent->getReg())->getParent() :
 | |
|                  0;
 | |
|     
 | |
|     // If the DFS-in number of the register is greater than the DFS-out number
 | |
|     // of the current parent, repeatedly pop the parent stack until it isn't.
 | |
|     while (pre > maxpreorder[parentBlock]) {
 | |
|       stack.pop_back();
 | |
|       CurrentParent = stack.back();
 | |
|       
 | |
|       parentBlock = CurrentParent->getReg() ?
 | |
|                    MRI.getVRegDef(CurrentParent->getReg())->getParent() :
 | |
|                    0;
 | |
|     }
 | |
|     
 | |
|     // Now that we've found the appropriate parent, create a DomForestNode for
 | |
|     // this register and attach it to the forest
 | |
|     DomForestNode* child = new DomForestNode(*I, CurrentParent);
 | |
|     
 | |
|     // Push this new node on the "current parent" stack
 | |
|     stack.push_back(child);
 | |
|     CurrentParent = child;
 | |
|   }
 | |
|   
 | |
|   // Return a vector containing the children of the virtual root node
 | |
|   std::vector<DomForestNode*> ret;
 | |
|   ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /// isLiveIn - helper method that determines, from a regno, if a register
 | |
| /// is live into a block
 | |
| static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
 | |
|                      LiveIntervals& LI) {
 | |
|   LiveInterval& I = LI.getOrCreateInterval(r);
 | |
|   MachineInstrIndex idx = LI.getMBBStartIdx(MBB);
 | |
|   return I.liveAt(idx);
 | |
| }
 | |
| 
 | |
| /// isLiveOut - help method that determines, from a regno, if a register is
 | |
| /// live out of a block.
 | |
| static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
 | |
|                       LiveIntervals& LI) {
 | |
|   for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
 | |
|        E = MBB->succ_end(); PI != E; ++PI)
 | |
|     if (isLiveIn(r, *PI, LI))
 | |
|       return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// interferes - checks for local interferences by scanning a block.  The only
 | |
| /// trick parameter is 'mode' which tells it the relationship of the two
 | |
| /// registers. 0 - defined in the same block, 1 - first properly dominates
 | |
| /// second, 2 - second properly dominates first 
 | |
| static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
 | |
|                        LiveIntervals& LV, unsigned mode) {
 | |
|   MachineInstr* def = 0;
 | |
|   MachineInstr* kill = 0;
 | |
|   
 | |
|   // The code is still in SSA form at this point, so there is only one
 | |
|   // definition per VReg.  Thus we can safely use MRI->getVRegDef().
 | |
|   const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
 | |
|   
 | |
|   bool interference = false;
 | |
|   
 | |
|   // Wallk the block, checking for interferences
 | |
|   for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
 | |
|        MBI != MBE; ++MBI) {
 | |
|     MachineInstr* curr = MBI;
 | |
|     
 | |
|     // Same defining block...
 | |
|     if (mode == 0) {
 | |
|       if (curr == MRI->getVRegDef(a)) {
 | |
|         // If we find our first definition, save it
 | |
|         if (!def) {
 | |
|           def = curr;
 | |
|         // If there's already an unkilled definition, then 
 | |
|         // this is an interference
 | |
|         } else if (!kill) {
 | |
|           interference = true;
 | |
|           break;
 | |
|         // If there's a definition followed by a KillInst, then
 | |
|         // they can't interfere
 | |
|         } else {
 | |
|           interference = false;
 | |
|           break;
 | |
|         }
 | |
|       // Symmetric with the above
 | |
|       } else if (curr == MRI->getVRegDef(b)) {
 | |
|         if (!def) {
 | |
|           def = curr;
 | |
|         } else if (!kill) {
 | |
|           interference = true;
 | |
|           break;
 | |
|         } else {
 | |
|           interference = false;
 | |
|           break;
 | |
|         }
 | |
|       // Store KillInsts if they match up with the definition
 | |
|       } else if (curr->killsRegister(a)) {
 | |
|         if (def == MRI->getVRegDef(a)) {
 | |
|           kill = curr;
 | |
|         } else if (curr->killsRegister(b)) {
 | |
|           if (def == MRI->getVRegDef(b)) {
 | |
|             kill = curr;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     // First properly dominates second...
 | |
|     } else if (mode == 1) {
 | |
|       if (curr == MRI->getVRegDef(b)) {
 | |
|         // Definition of second without kill of first is an interference
 | |
|         if (!kill) {
 | |
|           interference = true;
 | |
|           break;
 | |
|         // Definition after a kill is a non-interference
 | |
|         } else {
 | |
|           interference = false;
 | |
|           break;
 | |
|         }
 | |
|       // Save KillInsts of First
 | |
|       } else if (curr->killsRegister(a)) {
 | |
|         kill = curr;
 | |
|       }
 | |
|     // Symmetric with the above
 | |
|     } else if (mode == 2) {
 | |
|       if (curr == MRI->getVRegDef(a)) {
 | |
|         if (!kill) {
 | |
|           interference = true;
 | |
|           break;
 | |
|         } else {
 | |
|           interference = false;
 | |
|           break;
 | |
|         }
 | |
|       } else if (curr->killsRegister(b)) {
 | |
|         kill = curr;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return interference;
 | |
| }
 | |
| 
 | |
| /// processBlock - Determine how to break up PHIs in the current block.  Each
 | |
| /// PHI is broken up by some combination of renaming its operands and inserting
 | |
| /// copies.  This method is responsible for determining which operands receive
 | |
| /// which treatment.
 | |
| void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
 | |
|   LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | |
|   MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
 | |
|   
 | |
|   // Holds names that have been added to a set in any PHI within this block
 | |
|   // before the current one.
 | |
|   std::set<unsigned> ProcessedNames;
 | |
|   
 | |
|   // Iterate over all the PHI nodes in this block
 | |
|   MachineBasicBlock::iterator P = MBB->begin();
 | |
|   while (P != MBB->end() && P->getOpcode() == TargetInstrInfo::PHI) {
 | |
|     unsigned DestReg = P->getOperand(0).getReg();
 | |
|     
 | |
|     // Don't both doing PHI elimination for dead PHI's.
 | |
|     if (P->registerDefIsDead(DestReg)) {
 | |
|       ++P;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     LiveInterval& PI = LI.getOrCreateInterval(DestReg);
 | |
|     MachineInstrIndex pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
 | |
|     VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
 | |
|     PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
 | |
| 
 | |
|     // PHIUnion is the set of incoming registers to the PHI node that
 | |
|     // are going to be renames rather than having copies inserted.  This set
 | |
|     // is refinded over the course of this function.  UnionedBlocks is the set
 | |
|     // of corresponding MBBs.
 | |
|     std::map<unsigned, MachineBasicBlock*> PHIUnion;
 | |
|     SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks;
 | |
|   
 | |
|     // Iterate over the operands of the PHI node
 | |
|     for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
 | |
|       unsigned SrcReg = P->getOperand(i-1).getReg();
 | |
|       
 | |
|       // Don't need to try to coalesce a register with itself.
 | |
|       if (SrcReg == DestReg) {
 | |
|         ProcessedNames.insert(SrcReg);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // We don't need to insert copies for implicit_defs.
 | |
|       MachineInstr* DefMI = MRI.getVRegDef(SrcReg);
 | |
|       if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
 | |
|         ProcessedNames.insert(SrcReg);
 | |
|     
 | |
|       // Check for trivial interferences via liveness information, allowing us
 | |
|       // to avoid extra work later.  Any registers that interfere cannot both
 | |
|       // be in the renaming set, so choose one and add copies for it instead.
 | |
|       // The conditions are:
 | |
|       //   1) if the operand is live into the PHI node's block OR
 | |
|       //   2) if the PHI node is live out of the operand's defining block OR
 | |
|       //   3) if the operand is itself a PHI node and the original PHI is
 | |
|       //      live into the operand's defining block OR
 | |
|       //   4) if the operand is already being renamed for another PHI node
 | |
|       //      in this block OR
 | |
|       //   5) if any two operands are defined in the same block, insert copies
 | |
|       //      for one of them
 | |
|       if (isLiveIn(SrcReg, P->getParent(), LI) ||
 | |
|           isLiveOut(P->getOperand(0).getReg(),
 | |
|                     MRI.getVRegDef(SrcReg)->getParent(), LI) ||
 | |
|           ( MRI.getVRegDef(SrcReg)->getOpcode() == TargetInstrInfo::PHI &&
 | |
|             isLiveIn(P->getOperand(0).getReg(),
 | |
|                      MRI.getVRegDef(SrcReg)->getParent(), LI) ) ||
 | |
|           ProcessedNames.count(SrcReg) ||
 | |
|           UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
 | |
|         
 | |
|         // Add a copy for the selected register
 | |
|         MachineBasicBlock* From = P->getOperand(i).getMBB();
 | |
|         Waiting[From].insert(std::make_pair(SrcReg, DestReg));
 | |
|         UsedByAnother.insert(SrcReg);
 | |
|       } else {
 | |
|         // Otherwise, add it to the renaming set
 | |
|         PHIUnion.insert(std::make_pair(SrcReg,P->getOperand(i).getMBB()));
 | |
|         UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Compute the dominator forest for the renaming set.  This is a forest
 | |
|     // where the nodes are the registers and the edges represent dominance 
 | |
|     // relations between the defining blocks of the registers
 | |
|     std::vector<StrongPHIElimination::DomForestNode*> DF = 
 | |
|                                                 computeDomForest(PHIUnion, MRI);
 | |
|     
 | |
|     // Walk DomForest to resolve interferences at an inter-block level.  This
 | |
|     // will remove registers from the renaming set (and insert copies for them)
 | |
|     // if interferences are found.
 | |
|     std::vector<std::pair<unsigned, unsigned> > localInterferences;
 | |
|     processPHIUnion(P, PHIUnion, DF, localInterferences);
 | |
|     
 | |
|     // If one of the inputs is defined in the same block as the current PHI
 | |
|     // then we need to check for a local interference between that input and
 | |
|     // the PHI.
 | |
|     for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
 | |
|          E = PHIUnion.end(); I != E; ++I)
 | |
|       if (MRI.getVRegDef(I->first)->getParent() == P->getParent())
 | |
|         localInterferences.push_back(std::make_pair(I->first,
 | |
|                                                     P->getOperand(0).getReg()));
 | |
|     
 | |
|     // The dominator forest walk may have returned some register pairs whose
 | |
|     // interference cannot be determined from dominator analysis.  We now 
 | |
|     // examine these pairs for local interferences.
 | |
|     for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
 | |
|         localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
 | |
|       std::pair<unsigned, unsigned> p = *I;
 | |
|       
 | |
|       MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
 | |
|       
 | |
|       // Determine the block we need to scan and the relationship between
 | |
|       // the two registers
 | |
|       MachineBasicBlock* scan = 0;
 | |
|       unsigned mode = 0;
 | |
|       if (MRI.getVRegDef(p.first)->getParent() ==
 | |
|           MRI.getVRegDef(p.second)->getParent()) {
 | |
|         scan = MRI.getVRegDef(p.first)->getParent();
 | |
|         mode = 0; // Same block
 | |
|       } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
 | |
|                                MRI.getVRegDef(p.second)->getParent())) {
 | |
|         scan = MRI.getVRegDef(p.second)->getParent();
 | |
|         mode = 1; // First dominates second
 | |
|       } else {
 | |
|         scan = MRI.getVRegDef(p.first)->getParent();
 | |
|         mode = 2; // Second dominates first
 | |
|       }
 | |
|       
 | |
|       // If there's an interference, we need to insert  copies
 | |
|       if (interferes(p.first, p.second, scan, LI, mode)) {
 | |
|         // Insert copies for First
 | |
|         for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
 | |
|           if (P->getOperand(i-1).getReg() == p.first) {
 | |
|             unsigned SrcReg = p.first;
 | |
|             MachineBasicBlock* From = P->getOperand(i).getMBB();
 | |
|             
 | |
|             Waiting[From].insert(std::make_pair(SrcReg,
 | |
|                                                 P->getOperand(0).getReg()));
 | |
|             UsedByAnother.insert(SrcReg);
 | |
|             
 | |
|             PHIUnion.erase(SrcReg);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Add the renaming set for this PHI node to our overall renaming information
 | |
|     for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(),
 | |
|          QE = PHIUnion.end(); QI != QE; ++QI) {
 | |
|       DEBUG(errs() << "Adding Renaming: " << QI->first << " -> "
 | |
|                    << P->getOperand(0).getReg() << "\n");
 | |
|     }
 | |
|     
 | |
|     RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
 | |
|     
 | |
|     // Remember which registers are already renamed, so that we don't try to 
 | |
|     // rename them for another PHI node in this block
 | |
|     for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
 | |
|          E = PHIUnion.end(); I != E; ++I)
 | |
|       ProcessedNames.insert(I->first);
 | |
|     
 | |
|     ++P;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// processPHIUnion - Take a set of candidate registers to be coalesced when
 | |
| /// decomposing the PHI instruction.  Use the DominanceForest to remove the ones
 | |
| /// that are known to interfere, and flag others that need to be checked for
 | |
| /// local interferences.
 | |
| void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
 | |
|                         std::map<unsigned, MachineBasicBlock*>& PHIUnion,
 | |
|                         std::vector<StrongPHIElimination::DomForestNode*>& DF,
 | |
|                         std::vector<std::pair<unsigned, unsigned> >& locals) {
 | |
|   
 | |
|   std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
 | |
|   SmallPtrSet<DomForestNode*, 4> visited;
 | |
|   
 | |
|   // Code is still in SSA form, so we can use MRI::getVRegDef()
 | |
|   MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
 | |
|   
 | |
|   LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | |
|   unsigned DestReg = Inst->getOperand(0).getReg();
 | |
|   
 | |
|   // DF walk on the DomForest
 | |
|   while (!worklist.empty()) {
 | |
|     DomForestNode* DFNode = worklist.back();
 | |
|     
 | |
|     visited.insert(DFNode);
 | |
|     
 | |
|     bool inserted = false;
 | |
|     for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
 | |
|          CI != CE; ++CI) {
 | |
|       DomForestNode* child = *CI;   
 | |
|       
 | |
|       // If the current node is live-out of the defining block of one of its
 | |
|       // children, insert a copy for it.  NOTE: The paper actually calls for
 | |
|       // a more elaborate heuristic for determining whether to insert copies
 | |
|       // for the child or the parent.  In the interest of simplicity, we're
 | |
|       // just always choosing the parent.
 | |
|       if (isLiveOut(DFNode->getReg(),
 | |
|           MRI.getVRegDef(child->getReg())->getParent(), LI)) {
 | |
|         // Insert copies for parent
 | |
|         for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
 | |
|           if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
 | |
|             unsigned SrcReg = DFNode->getReg();
 | |
|             MachineBasicBlock* From = Inst->getOperand(i).getMBB();
 | |
|             
 | |
|             Waiting[From].insert(std::make_pair(SrcReg, DestReg));
 | |
|             UsedByAnother.insert(SrcReg);
 | |
|             
 | |
|             PHIUnion.erase(SrcReg);
 | |
|           }
 | |
|         }
 | |
|       
 | |
|       // If a node is live-in to the defining block of one of its children, but
 | |
|       // not live-out, then we need to scan that block for local interferences.
 | |
|       } else if (isLiveIn(DFNode->getReg(),
 | |
|                           MRI.getVRegDef(child->getReg())->getParent(), LI) ||
 | |
|                  MRI.getVRegDef(DFNode->getReg())->getParent() ==
 | |
|                                  MRI.getVRegDef(child->getReg())->getParent()) {
 | |
|         // Add (p, c) to possible local interferences
 | |
|         locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
 | |
|       }
 | |
|       
 | |
|       if (!visited.count(child)) {
 | |
|         worklist.push_back(child);
 | |
|         inserted = true;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!inserted) worklist.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleCopies - Insert copies into predecessor blocks, scheduling
 | |
| /// them properly so as to avoid the 'lost copy' and the 'virtual swap'
 | |
| /// problems.
 | |
| ///
 | |
| /// Based on "Practical Improvements to the Construction and Destruction
 | |
| /// of Static Single Assignment Form" by Briggs, et al.
 | |
| void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
 | |
|                                           std::set<unsigned>& pushed) {
 | |
|   // FIXME: This function needs to update LiveIntervals
 | |
|   std::multimap<unsigned, unsigned>& copy_set= Waiting[MBB];
 | |
|   
 | |
|   std::multimap<unsigned, unsigned> worklist;
 | |
|   std::map<unsigned, unsigned> map;
 | |
|   
 | |
|   // Setup worklist of initial copies
 | |
|   for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
 | |
|        E = copy_set.end(); I != E; ) {
 | |
|     map.insert(std::make_pair(I->first, I->first));
 | |
|     map.insert(std::make_pair(I->second, I->second));
 | |
|          
 | |
|     if (!UsedByAnother.count(I->second)) {
 | |
|       worklist.insert(*I);
 | |
|       
 | |
|       // Avoid iterator invalidation
 | |
|       std::multimap<unsigned, unsigned>::iterator OI = I;
 | |
|       ++I;
 | |
|       copy_set.erase(OI);
 | |
|     } else {
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | |
|   MachineFunction* MF = MBB->getParent();
 | |
|   MachineRegisterInfo& MRI = MF->getRegInfo();
 | |
|   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
|   
 | |
|   SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests;
 | |
|   
 | |
|   // Iterate over the worklist, inserting copies
 | |
|   while (!worklist.empty() || !copy_set.empty()) {
 | |
|     while (!worklist.empty()) {
 | |
|       std::multimap<unsigned, unsigned>::iterator WI = worklist.begin();
 | |
|       std::pair<unsigned, unsigned> curr = *WI;
 | |
|       worklist.erase(WI);
 | |
|       
 | |
|       const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
 | |
|       
 | |
|       if (isLiveOut(curr.second, MBB, LI)) {
 | |
|         // Create a temporary
 | |
|         unsigned t = MF->getRegInfo().createVirtualRegister(RC);
 | |
|         
 | |
|         // Insert copy from curr.second to a temporary at
 | |
|         // the Phi defining curr.second
 | |
|         MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
 | |
|         TII->copyRegToReg(*PI->getParent(), PI, t,
 | |
|                           curr.second, RC, RC);
 | |
|         
 | |
|         DEBUG(errs() << "Inserted copy from " << curr.second << " to " << t
 | |
|                      << "\n");
 | |
|         
 | |
|         // Push temporary on Stacks
 | |
|         Stacks[curr.second].push_back(t);
 | |
|         
 | |
|         // Insert curr.second in pushed
 | |
|         pushed.insert(curr.second);
 | |
|         
 | |
|         // Create a live interval for this temporary
 | |
|         InsertedPHIDests.push_back(std::make_pair(t, --PI));
 | |
|       }
 | |
|       
 | |
|       // Insert copy from map[curr.first] to curr.second
 | |
|       TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
 | |
|                         map[curr.first], RC, RC);
 | |
|       map[curr.first] = curr.second;
 | |
|       DEBUG(errs() << "Inserted copy from " << curr.first << " to "
 | |
|                    << curr.second << "\n");
 | |
|       
 | |
|       // Push this copy onto InsertedPHICopies so we can
 | |
|       // update LiveIntervals with it.
 | |
|       MachineBasicBlock::iterator MI = MBB->getFirstTerminator();
 | |
|       InsertedPHIDests.push_back(std::make_pair(curr.second, --MI));
 | |
|       
 | |
|       // If curr.first is a destination in copy_set...
 | |
|       for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
 | |
|            E = copy_set.end(); I != E; )
 | |
|         if (curr.first == I->second) {
 | |
|           std::pair<unsigned, unsigned> temp = *I;
 | |
|           worklist.insert(temp);
 | |
|           
 | |
|           // Avoid iterator invalidation
 | |
|           std::multimap<unsigned, unsigned>::iterator OI = I;
 | |
|           ++I;
 | |
|           copy_set.erase(OI);
 | |
|           
 | |
|           break;
 | |
|         } else {
 | |
|           ++I;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     if (!copy_set.empty()) {
 | |
|       std::multimap<unsigned, unsigned>::iterator CI = copy_set.begin();
 | |
|       std::pair<unsigned, unsigned> curr = *CI;
 | |
|       worklist.insert(curr);
 | |
|       copy_set.erase(CI);
 | |
|       
 | |
|       LiveInterval& I = LI.getInterval(curr.second);
 | |
|       MachineBasicBlock::iterator term = MBB->getFirstTerminator();
 | |
|       MachineInstrIndex endIdx = MachineInstrIndex();
 | |
|       if (term != MBB->end())
 | |
|         endIdx = LI.getInstructionIndex(term);
 | |
|       else
 | |
|         endIdx = LI.getMBBEndIdx(MBB);
 | |
|       
 | |
|       if (I.liveAt(endIdx)) {
 | |
|         const TargetRegisterClass *RC =
 | |
|                                        MF->getRegInfo().getRegClass(curr.first);
 | |
|         
 | |
|         // Insert a copy from dest to a new temporary t at the end of b
 | |
|         unsigned t = MF->getRegInfo().createVirtualRegister(RC);
 | |
|         TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t,
 | |
|                           curr.second, RC, RC);
 | |
|         map[curr.second] = t;
 | |
|         
 | |
|         MachineBasicBlock::iterator TI = MBB->getFirstTerminator();
 | |
|         InsertedPHIDests.push_back(std::make_pair(t, --TI));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Renumber the instructions so that we can perform the index computations
 | |
|   // needed to create new live intervals.
 | |
|   LI.computeNumbering();
 | |
|   
 | |
|   // For copies that we inserted at the ends of predecessors, we construct
 | |
|   // live intervals.  This is pretty easy, since we know that the destination
 | |
|   // register cannot have be in live at that point previously.  We just have
 | |
|   // to make sure that, for registers that serve as inputs to more than one
 | |
|   // PHI, we don't create multiple overlapping live intervals.
 | |
|   std::set<unsigned> RegHandled;
 | |
|   for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I =
 | |
|        InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
 | |
|     if (RegHandled.insert(I->first).second) {
 | |
|       LiveInterval& Int = LI.getOrCreateInterval(I->first);
 | |
|       MachineInstrIndex instrIdx = LI.getInstructionIndex(I->second);
 | |
|       if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
 | |
|         Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
 | |
|                         LI.getNextSlot(LI.getMBBEndIdx(I->second->getParent())),
 | |
|                         true);
 | |
|       
 | |
|       LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second);
 | |
|       R.valno->setCopy(I->second);
 | |
|       R.valno->def =
 | |
|                   LiveIntervals::getDefIndex(LI.getInstructionIndex(I->second));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InsertCopies - insert copies into MBB and all of its successors
 | |
| void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
 | |
|                                  SmallPtrSet<MachineBasicBlock*, 16>& visited) {
 | |
|   MachineBasicBlock* MBB = MDTN->getBlock();
 | |
|   visited.insert(MBB);
 | |
|   
 | |
|   std::set<unsigned> pushed;
 | |
|   
 | |
|   LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | |
|   // Rewrite register uses from Stacks
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | |
|       I != E; ++I) {
 | |
|     if (I->getOpcode() == TargetInstrInfo::PHI)
 | |
|       continue;
 | |
|     
 | |
|     for (unsigned i = 0; i < I->getNumOperands(); ++i)
 | |
|       if (I->getOperand(i).isReg() &&
 | |
|           Stacks[I->getOperand(i).getReg()].size()) {
 | |
|         // Remove the live range for the old vreg.
 | |
|         LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg());
 | |
|         LiveInterval::iterator OldLR = OldInt.FindLiveRangeContaining(
 | |
|                   LiveIntervals::getUseIndex(LI.getInstructionIndex(I)));
 | |
|         if (OldLR != OldInt.end())
 | |
|           OldInt.removeRange(*OldLR, true);
 | |
|         
 | |
|         // Change the register
 | |
|         I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
 | |
|         
 | |
|         // Add a live range for the new vreg
 | |
|         LiveInterval& Int = LI.getInterval(I->getOperand(i).getReg());
 | |
|         VNInfo* FirstVN = *Int.vni_begin();
 | |
|         FirstVN->setHasPHIKill(false);
 | |
|         if (I->getOperand(i).isKill())
 | |
|           FirstVN->addKill(
 | |
|                  LiveIntervals::getUseIndex(LI.getInstructionIndex(I)));
 | |
|         
 | |
|         LiveRange LR (LI.getMBBStartIdx(I->getParent()),
 | |
|                       LI.getNextSlot(LI.getUseIndex(LI.getInstructionIndex(I))),
 | |
|                       FirstVN);
 | |
|         
 | |
|         Int.addRange(LR);
 | |
|       }
 | |
|   }    
 | |
|   
 | |
|   // Schedule the copies for this block
 | |
|   ScheduleCopies(MBB, pushed);
 | |
|   
 | |
|   // Recur down the dominator tree.
 | |
|   for (MachineDomTreeNode::iterator I = MDTN->begin(),
 | |
|        E = MDTN->end(); I != E; ++I)
 | |
|     if (!visited.count((*I)->getBlock()))
 | |
|       InsertCopies(*I, visited);
 | |
|   
 | |
|   // As we exit this block, pop the names we pushed while processing it
 | |
|   for (std::set<unsigned>::iterator I = pushed.begin(), 
 | |
|        E = pushed.end(); I != E; ++I)
 | |
|     Stacks[*I].pop_back();
 | |
| }
 | |
| 
 | |
| bool StrongPHIElimination::mergeLiveIntervals(unsigned primary,
 | |
|                                               unsigned secondary) {
 | |
|   
 | |
|   LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | |
|   LiveInterval& LHS = LI.getOrCreateInterval(primary);
 | |
|   LiveInterval& RHS = LI.getOrCreateInterval(secondary);
 | |
|   
 | |
|   LI.computeNumbering();
 | |
|   
 | |
|   DenseMap<VNInfo*, VNInfo*> VNMap;
 | |
|   for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
 | |
|     LiveRange R = *I;
 | |
|  
 | |
|     MachineInstrIndex Start = R.start;
 | |
|     MachineInstrIndex End = R.end;
 | |
|     if (LHS.getLiveRangeContaining(Start))
 | |
|       return false;
 | |
|     
 | |
|     if (LHS.getLiveRangeContaining(End))
 | |
|       return false;
 | |
|     
 | |
|     LiveInterval::iterator RI = std::upper_bound(LHS.begin(), LHS.end(), R);
 | |
|     if (RI != LHS.end() && RI->start < End)
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
 | |
|     LiveRange R = *I;
 | |
|     VNInfo* OldVN = R.valno;
 | |
|     VNInfo*& NewVN = VNMap[OldVN];
 | |
|     if (!NewVN) {
 | |
|       NewVN = LHS.createValueCopy(OldVN, LI.getVNInfoAllocator());
 | |
|     }
 | |
|     
 | |
|     LiveRange LR (R.start, R.end, NewVN);
 | |
|     LHS.addRange(LR);
 | |
|   }
 | |
|   
 | |
|   LI.removeInterval(RHS.reg);
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
 | |
|   LiveIntervals& LI = getAnalysis<LiveIntervals>();
 | |
|   
 | |
|   // Compute DFS numbers of each block
 | |
|   computeDFS(Fn);
 | |
|   
 | |
|   // Determine which phi node operands need copies
 | |
|   for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|     if (!I->empty() &&
 | |
|         I->begin()->getOpcode() == TargetInstrInfo::PHI)
 | |
|       processBlock(I);
 | |
|   
 | |
|   // Break interferences where two different phis want to coalesce
 | |
|   // in the same register.
 | |
|   std::set<unsigned> seen;
 | |
|   typedef std::map<unsigned, std::map<unsigned, MachineBasicBlock*> >
 | |
|           RenameSetType;
 | |
|   for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
 | |
|        I != E; ++I) {
 | |
|     for (std::map<unsigned, MachineBasicBlock*>::iterator
 | |
|          OI = I->second.begin(), OE = I->second.end(); OI != OE; ) {
 | |
|       if (!seen.count(OI->first)) {
 | |
|         seen.insert(OI->first);
 | |
|         ++OI;
 | |
|       } else {
 | |
|         Waiting[OI->second].insert(std::make_pair(OI->first, I->first));
 | |
|         unsigned reg = OI->first;
 | |
|         ++OI;
 | |
|         I->second.erase(reg);
 | |
|         DEBUG(errs() << "Removing Renaming: " << reg << " -> " << I->first
 | |
|                      << "\n");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Insert copies
 | |
|   // FIXME: This process should probably preserve LiveIntervals
 | |
|   SmallPtrSet<MachineBasicBlock*, 16> visited;
 | |
|   MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
 | |
|   InsertCopies(MDT.getRootNode(), visited);
 | |
|   
 | |
|   // Perform renaming
 | |
|   for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
 | |
|        I != E; ++I)
 | |
|     while (I->second.size()) {
 | |
|       std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin();
 | |
|       
 | |
|       DEBUG(errs() << "Renaming: " << SI->first << " -> " << I->first << "\n");
 | |
|       
 | |
|       if (SI->first != I->first) {
 | |
|         if (mergeLiveIntervals(I->first, SI->first)) {
 | |
|           Fn.getRegInfo().replaceRegWith(SI->first, I->first);
 | |
|       
 | |
|           if (RenameSets.count(SI->first)) {
 | |
|             I->second.insert(RenameSets[SI->first].begin(),
 | |
|                              RenameSets[SI->first].end());
 | |
|             RenameSets.erase(SI->first);
 | |
|           }
 | |
|         } else {
 | |
|           // Insert a last-minute copy if a conflict was detected.
 | |
|           const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
 | |
|           const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(I->first);
 | |
|           TII->copyRegToReg(*SI->second, SI->second->getFirstTerminator(),
 | |
|                             I->first, SI->first, RC, RC);
 | |
|           
 | |
|           LI.computeNumbering();
 | |
|           
 | |
|           LiveInterval& Int = LI.getOrCreateInterval(I->first);
 | |
|           MachineInstrIndex instrIdx =
 | |
|                      LI.getInstructionIndex(--SI->second->getFirstTerminator());
 | |
|           if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
 | |
|             Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
 | |
|                             LI.getNextSlot(LI.getMBBEndIdx(SI->second)), true);
 | |
| 
 | |
|           LiveRange R = LI.addLiveRangeToEndOfBlock(I->first,
 | |
|                                             --SI->second->getFirstTerminator());
 | |
|           R.valno->setCopy(--SI->second->getFirstTerminator());
 | |
|           R.valno->def = LiveIntervals::getDefIndex(instrIdx);
 | |
|           
 | |
|           DEBUG(errs() << "Renaming failed: " << SI->first << " -> "
 | |
|                        << I->first << "\n");
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       LiveInterval& Int = LI.getOrCreateInterval(I->first);
 | |
|       const LiveRange* LR =
 | |
|                        Int.getLiveRangeContaining(LI.getMBBEndIdx(SI->second));
 | |
|       LR->valno->setHasPHIKill(true);
 | |
|       
 | |
|       I->second.erase(SI->first);
 | |
|     }
 | |
|   
 | |
|   // Remove PHIs
 | |
|   std::vector<MachineInstr*> phis;
 | |
|   for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
 | |
|     for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
 | |
|          BI != BE; ++BI)
 | |
|       if (BI->getOpcode() == TargetInstrInfo::PHI)
 | |
|         phis.push_back(BI);
 | |
|   }
 | |
|   
 | |
|   for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
 | |
|        I != E; ) {
 | |
|     MachineInstr* PInstr = *(I++);
 | |
|     
 | |
|     // If this is a dead PHI node, then remove it from LiveIntervals.
 | |
|     unsigned DestReg = PInstr->getOperand(0).getReg();
 | |
|     LiveInterval& PI = LI.getInterval(DestReg);
 | |
|     if (PInstr->registerDefIsDead(DestReg)) {
 | |
|       if (PI.containsOneValue()) {
 | |
|         LI.removeInterval(DestReg);
 | |
|       } else {
 | |
|         MachineInstrIndex idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
 | |
|         PI.removeRange(*PI.getLiveRangeContaining(idx), true);
 | |
|       }
 | |
|     } else {
 | |
|       // Trim live intervals of input registers.  They are no longer live into
 | |
|       // this block if they died after the PHI.  If they lived after it, don't
 | |
|       // trim them because they might have other legitimate uses.
 | |
|       for (unsigned i = 1; i < PInstr->getNumOperands(); i += 2) {
 | |
|         unsigned reg = PInstr->getOperand(i).getReg();
 | |
|         
 | |
|         MachineBasicBlock* MBB = PInstr->getOperand(i+1).getMBB();
 | |
|         LiveInterval& InputI = LI.getInterval(reg);
 | |
|         if (MBB != PInstr->getParent() &&
 | |
|             InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) &&
 | |
|             InputI.expiredAt(LI.getNextIndex(LI.getInstructionIndex(PInstr))))
 | |
|           InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()),
 | |
|                              LI.getInstructionIndex(PInstr),
 | |
|                              true);
 | |
|       }
 | |
|       
 | |
|       // If the PHI is not dead, then the valno defined by the PHI
 | |
|       // now has an unknown def.
 | |
|       MachineInstrIndex idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
 | |
|       const LiveRange* PLR = PI.getLiveRangeContaining(idx);
 | |
|       PLR->valno->setIsPHIDef(true);
 | |
|       LiveRange R (LI.getMBBStartIdx(PInstr->getParent()),
 | |
|                    PLR->start, PLR->valno);
 | |
|       PI.addRange(R);
 | |
|     }
 | |
|     
 | |
|     LI.RemoveMachineInstrFromMaps(PInstr);
 | |
|     PInstr->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   LI.computeNumbering();
 | |
|   
 | |
|   return true;
 | |
| }
 |