llvm-6502/lib/IR/Verifier.cpp

2715 lines
102 KiB
C++

//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
// * Both of a binary operator's parameters are of the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first-class
// types. Verify that shifts & logicals only happen on integrals f.e.
// * All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// * It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * PHI nodes must have at least one entry
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embedded into a basic block
// * Functions cannot take a void-typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal global value with no initializer
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * A landing pad is defined by a landingpad instruction, and can be jumped to
// only by the unwind edge of an invoke instruction.
// * A landingpad instruction must be the first non-PHI instruction in the
// block.
// * All landingpad instructions must use the same personality function with
// the same function.
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Verifier.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(false));
namespace {
struct VerifierSupport {
raw_ostream &OS;
const Module *M;
/// \brief Track the brokenness of the module while recursively visiting.
bool Broken;
explicit VerifierSupport(raw_ostream &OS)
: OS(OS), M(nullptr), Broken(false) {}
void WriteValue(const Value *V) {
if (!V)
return;
if (isa<Instruction>(V)) {
OS << *V << '\n';
} else {
V->printAsOperand(OS, true, M);
OS << '\n';
}
}
void WriteType(Type *T) {
if (!T)
return;
OS << ' ' << *T;
}
void WriteComdat(const Comdat *C) {
if (!C)
return;
OS << *C;
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const Twine &Message, const Value *V1 = nullptr,
const Value *V2 = nullptr, const Value *V3 = nullptr,
const Value *V4 = nullptr) {
OS << Message.str() << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
WriteValue(V4);
Broken = true;
}
void CheckFailed(const Twine &Message, const Value *V1, Type *T2,
const Value *V3 = nullptr) {
OS << Message.str() << "\n";
WriteValue(V1);
WriteType(T2);
WriteValue(V3);
Broken = true;
}
void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr,
Type *T3 = nullptr) {
OS << Message.str() << "\n";
WriteType(T1);
WriteType(T2);
WriteType(T3);
Broken = true;
}
void CheckFailed(const Twine &Message, const Comdat *C) {
OS << Message.str() << "\n";
WriteComdat(C);
Broken = true;
}
};
class Verifier : public InstVisitor<Verifier>, VerifierSupport {
friend class InstVisitor<Verifier>;
LLVMContext *Context;
const DataLayout *DL;
DominatorTree DT;
/// \brief When verifying a basic block, keep track of all of the
/// instructions we have seen so far.
///
/// This allows us to do efficient dominance checks for the case when an
/// instruction has an operand that is an instruction in the same block.
SmallPtrSet<Instruction *, 16> InstsInThisBlock;
/// \brief Keep track of the metadata nodes that have been checked already.
SmallPtrSet<MDNode *, 32> MDNodes;
/// \brief The personality function referenced by the LandingPadInsts.
/// All LandingPadInsts within the same function must use the same
/// personality function.
const Value *PersonalityFn;
public:
explicit Verifier(raw_ostream &OS = dbgs())
: VerifierSupport(OS), Context(nullptr), DL(nullptr),
PersonalityFn(nullptr) {}
bool verify(const Function &F) {
M = F.getParent();
Context = &M->getContext();
// First ensure the function is well-enough formed to compute dominance
// information.
if (F.empty()) {
OS << "Function '" << F.getName()
<< "' does not contain an entry block!\n";
return false;
}
for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
if (I->empty() || !I->back().isTerminator()) {
OS << "Basic Block in function '" << F.getName()
<< "' does not have terminator!\n";
I->printAsOperand(OS, true);
OS << "\n";
return false;
}
}
// Now directly compute a dominance tree. We don't rely on the pass
// manager to provide this as it isolates us from a potentially
// out-of-date dominator tree and makes it significantly more complex to
// run this code outside of a pass manager.
// FIXME: It's really gross that we have to cast away constness here.
DT.recalculate(const_cast<Function &>(F));
Broken = false;
// FIXME: We strip const here because the inst visitor strips const.
visit(const_cast<Function &>(F));
InstsInThisBlock.clear();
PersonalityFn = nullptr;
return !Broken;
}
bool verify(const Module &M) {
this->M = &M;
Context = &M.getContext();
Broken = false;
// Scan through, checking all of the external function's linkage now...
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
visitGlobalValue(*I);
// Check to make sure function prototypes are okay.
if (I->isDeclaration())
visitFunction(*I);
}
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
visitGlobalVariable(*I);
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I)
visitGlobalAlias(*I);
for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
E = M.named_metadata_end();
I != E; ++I)
visitNamedMDNode(*I);
for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
visitComdat(SMEC.getValue());
visitModuleFlags(M);
visitModuleIdents(M);
return !Broken;
}
private:
// Verification methods...
void visitGlobalValue(const GlobalValue &GV);
void visitGlobalVariable(const GlobalVariable &GV);
void visitGlobalAlias(const GlobalAlias &GA);
void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
const GlobalAlias &A, const Constant &C);
void visitNamedMDNode(const NamedMDNode &NMD);
void visitMDNode(MDNode &MD, Function *F);
void visitComdat(const Comdat &C);
void visitModuleIdents(const Module &M);
void visitModuleFlags(const Module &M);
void visitModuleFlag(const MDNode *Op,
DenseMap<const MDString *, const MDNode *> &SeenIDs,
SmallVectorImpl<const MDNode *> &Requirements);
void visitFunction(const Function &F);
void visitBasicBlock(BasicBlock &BB);
// InstVisitor overrides...
using InstVisitor<Verifier>::visit;
void visit(Instruction &I);
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
void visitFPTruncInst(FPTruncInst &I);
void visitFPExtInst(FPExtInst &I);
void visitFPToUIInst(FPToUIInst &I);
void visitFPToSIInst(FPToSIInst &I);
void visitUIToFPInst(UIToFPInst &I);
void visitSIToFPInst(SIToFPInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
void visitFCmpInst(FCmpInst &FC);
void visitExtractElementInst(ExtractElementInst &EI);
void visitInsertElementInst(InsertElementInst &EI);
void visitShuffleVectorInst(ShuffleVectorInst &EI);
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void verifyDominatesUse(Instruction &I, unsigned i);
void visitInstruction(Instruction &I);
void visitTerminatorInst(TerminatorInst &I);
void visitBranchInst(BranchInst &BI);
void visitReturnInst(ReturnInst &RI);
void visitSwitchInst(SwitchInst &SI);
void visitIndirectBrInst(IndirectBrInst &BI);
void visitSelectInst(SelectInst &SI);
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
void visitAtomicRMWInst(AtomicRMWInst &RMWI);
void visitFenceInst(FenceInst &FI);
void visitAllocaInst(AllocaInst &AI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
void visitLandingPadInst(LandingPadInst &LPI);
void VerifyCallSite(CallSite CS);
void verifyMustTailCall(CallInst &CI);
bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
unsigned ArgNo, std::string &Suffix);
bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys);
bool VerifyIntrinsicIsVarArg(bool isVarArg,
ArrayRef<Intrinsic::IITDescriptor> &Infos);
bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
const Value *V);
void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
bool isReturnValue, const Value *V);
void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
const Value *V);
void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
void VerifyConstantExprBitcastType(const ConstantExpr *CE);
};
class DebugInfoVerifier : public VerifierSupport {
public:
explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {}
bool verify(const Module &M) {
this->M = &M;
verifyDebugInfo();
return !Broken;
}
private:
void verifyDebugInfo();
void processInstructions(DebugInfoFinder &Finder);
void processCallInst(DebugInfoFinder &Finder, const CallInst &CI);
};
} // End anonymous namespace
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
void Verifier::visit(Instruction &I) {
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Assert1(I.getOperand(i) != nullptr, "Operand is null", &I);
InstVisitor<Verifier>::visit(I);
}
void Verifier::visitGlobalValue(const GlobalValue &GV) {
Assert1(!GV.isDeclaration() || GV.isMaterializable() ||
GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
"Global is external, but doesn't have external or weak linkage!",
&GV);
Assert1(GV.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &GV);
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
"Only global arrays can have appending linkage!", GVar);
}
}
void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
if (GV.hasInitializer()) {
Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
"Global variable initializer type does not match global "
"variable type!", &GV);
// If the global has common linkage, it must have a zero initializer and
// cannot be constant.
if (GV.hasCommonLinkage()) {
Assert1(GV.getInitializer()->isNullValue(),
"'common' global must have a zero initializer!", &GV);
Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
&GV);
Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
}
} else {
Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
"invalid linkage type for global declaration", &GV);
}
if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
GV.getName() == "llvm.global_dtors")) {
Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
"invalid linkage for intrinsic global variable", &GV);
// Don't worry about emitting an error for it not being an array,
// visitGlobalValue will complain on appending non-array.
if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
StructType *STy = dyn_cast<StructType>(ATy->getElementType());
PointerType *FuncPtrTy =
FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
// FIXME: Reject the 2-field form in LLVM 4.0.
Assert1(STy && (STy->getNumElements() == 2 ||
STy->getNumElements() == 3) &&
STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
STy->getTypeAtIndex(1) == FuncPtrTy,
"wrong type for intrinsic global variable", &GV);
if (STy->getNumElements() == 3) {
Type *ETy = STy->getTypeAtIndex(2);
Assert1(ETy->isPointerTy() &&
cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
"wrong type for intrinsic global variable", &GV);
}
}
}
if (GV.hasName() && (GV.getName() == "llvm.used" ||
GV.getName() == "llvm.compiler.used")) {
Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
"invalid linkage for intrinsic global variable", &GV);
Type *GVType = GV.getType()->getElementType();
if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
Assert1(PTy, "wrong type for intrinsic global variable", &GV);
if (GV.hasInitializer()) {
const Constant *Init = GV.getInitializer();
const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
Assert1(InitArray, "wrong initalizer for intrinsic global variable",
Init);
for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
Assert1(
isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
"invalid llvm.used member", V);
Assert1(V->hasName(), "members of llvm.used must be named", V);
}
}
}
}
Assert1(!GV.hasDLLImportStorageClass() ||
(GV.isDeclaration() && GV.hasExternalLinkage()) ||
GV.hasAvailableExternallyLinkage(),
"Global is marked as dllimport, but not external", &GV);
if (!GV.hasInitializer()) {
visitGlobalValue(GV);
return;
}
// Walk any aggregate initializers looking for bitcasts between address spaces
SmallPtrSet<const Value *, 4> Visited;
SmallVector<const Value *, 4> WorkStack;
WorkStack.push_back(cast<Value>(GV.getInitializer()));
while (!WorkStack.empty()) {
const Value *V = WorkStack.pop_back_val();
if (!Visited.insert(V))
continue;
if (const User *U = dyn_cast<User>(V)) {
for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
WorkStack.push_back(U->getOperand(I));
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
VerifyConstantExprBitcastType(CE);
if (Broken)
return;
}
}
visitGlobalValue(GV);
}
void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
SmallPtrSet<const GlobalAlias*, 4> Visited;
Visited.insert(&GA);
visitAliaseeSubExpr(Visited, GA, C);
}
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
const GlobalAlias &GA, const Constant &C) {
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA);
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
Assert1(Visited.insert(GA2), "Aliases cannot form a cycle", &GA);
Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
&GA);
} else {
// Only continue verifying subexpressions of GlobalAliases.
// Do not recurse into global initializers.
return;
}
}
if (const auto *CE = dyn_cast<ConstantExpr>(&C))
VerifyConstantExprBitcastType(CE);
for (const Use &U : C.operands()) {
Value *V = &*U;
if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
else if (const auto *C2 = dyn_cast<Constant>(V))
visitAliaseeSubExpr(Visited, GA, *C2);
}
}
void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
Assert1(!GA.getName().empty(),
"Alias name cannot be empty!", &GA);
Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
"Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!",
&GA);
const Constant *Aliasee = GA.getAliasee();
Assert1(Aliasee, "Aliasee cannot be NULL!", &GA);
Assert1(GA.getType() == Aliasee->getType(),
"Alias and aliasee types should match!", &GA);
Assert1(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
"Aliasee should be either GlobalValue or ConstantExpr", &GA);
visitAliaseeSubExpr(GA, *Aliasee);
visitGlobalValue(GA);
}
void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
MDNode *MD = NMD.getOperand(i);
if (!MD)
continue;
Assert1(!MD->isFunctionLocal(),
"Named metadata operand cannot be function local!", MD);
visitMDNode(*MD, nullptr);
}
}
void Verifier::visitMDNode(MDNode &MD, Function *F) {
// Only visit each node once. Metadata can be mutually recursive, so this
// avoids infinite recursion here, as well as being an optimization.
if (!MDNodes.insert(&MD))
return;
for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
Value *Op = MD.getOperand(i);
if (!Op)
continue;
if (isa<Constant>(Op) || isa<MDString>(Op))
continue;
if (MDNode *N = dyn_cast<MDNode>(Op)) {
Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
"Global metadata operand cannot be function local!", &MD, N);
visitMDNode(*N, F);
continue;
}
Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
// If this was an instruction, bb, or argument, verify that it is in the
// function that we expect.
Function *ActualF = nullptr;
if (Instruction *I = dyn_cast<Instruction>(Op))
ActualF = I->getParent()->getParent();
else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
ActualF = BB->getParent();
else if (Argument *A = dyn_cast<Argument>(Op))
ActualF = A->getParent();
assert(ActualF && "Unimplemented function local metadata case!");
Assert2(ActualF == F, "function-local metadata used in wrong function",
&MD, Op);
}
}
void Verifier::visitComdat(const Comdat &C) {
// All Comdat::SelectionKind values other than Comdat::Any require a
// GlobalValue with the same name as the Comdat.
const GlobalValue *GV = M->getNamedValue(C.getName());
if (C.getSelectionKind() != Comdat::Any)
Assert1(GV,
"comdat selection kind requires a global value with the same name",
&C);
// The Module is invalid if the GlobalValue has private linkage. Entities
// with private linkage don't have entries in the symbol table.
if (GV)
Assert1(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
GV);
}
void Verifier::visitModuleIdents(const Module &M) {
const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
if (!Idents)
return;
// llvm.ident takes a list of metadata entry. Each entry has only one string.
// Scan each llvm.ident entry and make sure that this requirement is met.
for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
const MDNode *N = Idents->getOperand(i);
Assert1(N->getNumOperands() == 1,
"incorrect number of operands in llvm.ident metadata", N);
Assert1(isa<MDString>(N->getOperand(0)),
("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"),
N->getOperand(0));
}
}
void Verifier::visitModuleFlags(const Module &M) {
const NamedMDNode *Flags = M.getModuleFlagsMetadata();
if (!Flags) return;
// Scan each flag, and track the flags and requirements.
DenseMap<const MDString*, const MDNode*> SeenIDs;
SmallVector<const MDNode*, 16> Requirements;
for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
}
// Validate that the requirements in the module are valid.
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
const MDNode *Requirement = Requirements[I];
const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
const Value *ReqValue = Requirement->getOperand(1);
const MDNode *Op = SeenIDs.lookup(Flag);
if (!Op) {
CheckFailed("invalid requirement on flag, flag is not present in module",
Flag);
continue;
}
if (Op->getOperand(2) != ReqValue) {
CheckFailed(("invalid requirement on flag, "
"flag does not have the required value"),
Flag);
continue;
}
}
}
void
Verifier::visitModuleFlag(const MDNode *Op,
DenseMap<const MDString *, const MDNode *> &SeenIDs,
SmallVectorImpl<const MDNode *> &Requirements) {
// Each module flag should have three arguments, the merge behavior (a
// constant int), the flag ID (an MDString), and the value.
Assert1(Op->getNumOperands() == 3,
"incorrect number of operands in module flag", Op);
ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
Assert1(Behavior,
"invalid behavior operand in module flag (expected constant integer)",
Op->getOperand(0));
unsigned BehaviorValue = Behavior->getZExtValue();
Assert1(ID,
"invalid ID operand in module flag (expected metadata string)",
Op->getOperand(1));
// Sanity check the values for behaviors with additional requirements.
switch (BehaviorValue) {
default:
Assert1(false,
"invalid behavior operand in module flag (unexpected constant)",
Op->getOperand(0));
break;
case Module::Error:
case Module::Warning:
case Module::Override:
// These behavior types accept any value.
break;
case Module::Require: {
// The value should itself be an MDNode with two operands, a flag ID (an
// MDString), and a value.
MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
Assert1(Value && Value->getNumOperands() == 2,
"invalid value for 'require' module flag (expected metadata pair)",
Op->getOperand(2));
Assert1(isa<MDString>(Value->getOperand(0)),
("invalid value for 'require' module flag "
"(first value operand should be a string)"),
Value->getOperand(0));
// Append it to the list of requirements, to check once all module flags are
// scanned.
Requirements.push_back(Value);
break;
}
case Module::Append:
case Module::AppendUnique: {
// These behavior types require the operand be an MDNode.
Assert1(isa<MDNode>(Op->getOperand(2)),
"invalid value for 'append'-type module flag "
"(expected a metadata node)", Op->getOperand(2));
break;
}
}
// Unless this is a "requires" flag, check the ID is unique.
if (BehaviorValue != Module::Require) {
bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
Assert1(Inserted,
"module flag identifiers must be unique (or of 'require' type)",
ID);
}
}
void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
bool isFunction, const Value *V) {
unsigned Slot = ~0U;
for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Idx) {
Slot = I;
break;
}
assert(Slot != ~0U && "Attribute set inconsistency!");
for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
I != E; ++I) {
if (I->isStringAttribute())
continue;
if (I->getKindAsEnum() == Attribute::NoReturn ||
I->getKindAsEnum() == Attribute::NoUnwind ||
I->getKindAsEnum() == Attribute::NoInline ||
I->getKindAsEnum() == Attribute::AlwaysInline ||
I->getKindAsEnum() == Attribute::OptimizeForSize ||
I->getKindAsEnum() == Attribute::StackProtect ||
I->getKindAsEnum() == Attribute::StackProtectReq ||
I->getKindAsEnum() == Attribute::StackProtectStrong ||
I->getKindAsEnum() == Attribute::NoRedZone ||
I->getKindAsEnum() == Attribute::NoImplicitFloat ||
I->getKindAsEnum() == Attribute::Naked ||
I->getKindAsEnum() == Attribute::InlineHint ||
I->getKindAsEnum() == Attribute::StackAlignment ||
I->getKindAsEnum() == Attribute::UWTable ||
I->getKindAsEnum() == Attribute::NonLazyBind ||
I->getKindAsEnum() == Attribute::ReturnsTwice ||
I->getKindAsEnum() == Attribute::SanitizeAddress ||
I->getKindAsEnum() == Attribute::SanitizeThread ||
I->getKindAsEnum() == Attribute::SanitizeMemory ||
I->getKindAsEnum() == Attribute::MinSize ||
I->getKindAsEnum() == Attribute::NoDuplicate ||
I->getKindAsEnum() == Attribute::Builtin ||
I->getKindAsEnum() == Attribute::NoBuiltin ||
I->getKindAsEnum() == Attribute::Cold ||
I->getKindAsEnum() == Attribute::OptimizeNone ||
I->getKindAsEnum() == Attribute::JumpTable) {
if (!isFunction) {
CheckFailed("Attribute '" + I->getAsString() +
"' only applies to functions!", V);
return;
}
} else if (I->getKindAsEnum() == Attribute::ReadOnly ||
I->getKindAsEnum() == Attribute::ReadNone) {
if (Idx == 0) {
CheckFailed("Attribute '" + I->getAsString() +
"' does not apply to function returns");
return;
}
} else if (isFunction) {
CheckFailed("Attribute '" + I->getAsString() +
"' does not apply to functions!", V);
return;
}
}
}
// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
bool isReturnValue, const Value *V) {
if (!Attrs.hasAttributes(Idx))
return;
VerifyAttributeTypes(Attrs, Idx, false, V);
if (isReturnValue)
Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) &&
!Attrs.hasAttribute(Idx, Attribute::StructRet) &&
!Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
!Attrs.hasAttribute(Idx, Attribute::Returned) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca),
"Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V);
// Check for mutually incompatible attributes. Only inreg is compatible with
// sret.
unsigned AttrCount = 0;
AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
Attrs.hasAttribute(Idx, Attribute::InReg);
AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V);
Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
"'inalloca and readonly' are incompatible!", V);
Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
"'sret and returned' are incompatible!", V);
Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
"'zeroext and signext' are incompatible!", V);
Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
"'readnone and readonly' are incompatible!", V);
Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
"'noinline and alwaysinline' are incompatible!", V);
Assert1(!AttrBuilder(Attrs, Idx).
hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
"Wrong types for attribute: " +
AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
if (!PTy->getElementType()->isSized()) {
Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca),
"Attributes 'byval' and 'inalloca' do not support unsized types!",
V);
}
} else {
Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
"Attribute 'byval' only applies to parameters with pointer type!",
V);
}
}
// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
const Value *V) {
if (Attrs.isEmpty())
return;
bool SawNest = false;
bool SawReturned = false;
bool SawSRet = false;
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
unsigned Idx = Attrs.getSlotIndex(i);
Type *Ty;
if (Idx == 0)
Ty = FT->getReturnType();
else if (Idx-1 < FT->getNumParams())
Ty = FT->getParamType(Idx-1);
else
break; // VarArgs attributes, verified elsewhere.
VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
if (Idx == 0)
continue;
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
Assert1(!SawNest, "More than one parameter has attribute nest!", V);
SawNest = true;
}
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
Assert1(!SawReturned, "More than one parameter has attribute returned!",
V);
Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
"argument and return types for 'returned' attribute", V);
SawReturned = true;
}
if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
Assert1(Idx == 1 || Idx == 2,
"Attribute 'sret' is not on first or second parameter!", V);
SawSRet = true;
}
if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
Assert1(Idx == FT->getNumParams(),
"inalloca isn't on the last parameter!", V);
}
}
if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
return;
VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::ReadNone) &&
Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::ReadOnly)),
"Attributes 'readnone and readonly' are incompatible!", V);
Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::NoInline) &&
Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::AlwaysInline)),
"Attributes 'noinline and alwaysinline' are incompatible!", V);
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeNone)) {
Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::NoInline),
"Attribute 'optnone' requires 'noinline'!", V);
Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeForSize),
"Attributes 'optsize and optnone' are incompatible!", V);
Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::MinSize),
"Attributes 'minsize and optnone' are incompatible!", V);
}
if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::JumpTable)) {
const GlobalValue *GV = cast<GlobalValue>(V);
Assert1(GV->hasUnnamedAddr(),
"Attribute 'jumptable' requires 'unnamed_addr'", V);
}
}
void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
// BitCast implies a no-op cast of type only. No bits change.
// However, you can't cast pointers to anything but pointers.
Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
"Bitcast requires both operands to be pointer or neither", V);
Assert1(SrcBitSize == DestBitSize,
"Bitcast requires types of same width", V);
// Disallow aggregates.
Assert1(!SrcTy->isAggregateType(),
"Bitcast operand must not be aggregate", V);
Assert1(!DestTy->isAggregateType(),
"Bitcast type must not be aggregate", V);
// Without datalayout, assume all address spaces are the same size.
// Don't check if both types are not pointers.
// Skip casts between scalars and vectors.
if (!DL ||
!SrcTy->isPtrOrPtrVectorTy() ||
!DestTy->isPtrOrPtrVectorTy() ||
SrcTy->isVectorTy() != DestTy->isVectorTy()) {
return;
}
unsigned SrcAS = SrcTy->getPointerAddressSpace();
unsigned DstAS = DestTy->getPointerAddressSpace();
Assert1(SrcAS == DstAS,
"Bitcasts between pointers of different address spaces is not legal."
"Use AddrSpaceCast instead.", V);
}
void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
if (CE->getOpcode() == Instruction::BitCast) {
Type *SrcTy = CE->getOperand(0)->getType();
Type *DstTy = CE->getType();
VerifyBitcastType(CE, DstTy, SrcTy);
}
}
bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
if (Attrs.getNumSlots() == 0)
return true;
unsigned LastSlot = Attrs.getNumSlots() - 1;
unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
if (LastIndex <= Params
|| (LastIndex == AttributeSet::FunctionIndex
&& (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
return true;
return false;
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
// Check function arguments.
FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
Assert1(Context == &F.getContext(),
"Function context does not match Module context!", &F);
Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
Assert2(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!",
&F, FT);
Assert1(F.getReturnType()->isFirstClassType() ||
F.getReturnType()->isVoidTy() ||
F.getReturnType()->isStructTy(),
"Functions cannot return aggregate values!", &F);
Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
"Invalid struct return type!", &F);
AttributeSet Attrs = F.getAttributes();
Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
"Attribute after last parameter!", &F);
// Check function attributes.
VerifyFunctionAttrs(FT, Attrs, &F);
// On function declarations/definitions, we do not support the builtin
// attribute. We do not check this in VerifyFunctionAttrs since that is
// checking for Attributes that can/can not ever be on functions.
Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::Builtin),
"Attribute 'builtin' can only be applied to a callsite.", &F);
// Check that this function meets the restrictions on this calling convention.
switch (F.getCallingConv()) {
default:
break;
case CallingConv::C:
break;
case CallingConv::Fast:
case CallingConv::Cold:
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::Intel_OCL_BI:
case CallingConv::PTX_Kernel:
case CallingConv::PTX_Device:
Assert1(!F.isVarArg(),
"Varargs functions must have C calling conventions!", &F);
break;
}
bool isLLVMdotName = F.getName().size() >= 5 &&
F.getName().substr(0, 5) == "llvm.";
// Check that the argument values match the function type for this function...
unsigned i = 0;
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
++I, ++i) {
Assert2(I->getType() == FT->getParamType(i),
"Argument value does not match function argument type!",
I, FT->getParamType(i));
Assert1(I->getType()->isFirstClassType(),
"Function arguments must have first-class types!", I);
if (!isLLVMdotName)
Assert2(!I->getType()->isMetadataTy(),
"Function takes metadata but isn't an intrinsic", I, &F);
}
if (F.isMaterializable()) {
// Function has a body somewhere we can't see.
} else if (F.isDeclaration()) {
Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
"invalid linkage type for function declaration", &F);
} else {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
// Check the entry node
const BasicBlock *Entry = &F.getEntryBlock();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
// The address of the entry block cannot be taken, unless it is dead.
if (Entry->hasAddressTaken()) {
Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(),
"blockaddress may not be used with the entry block!", Entry);
}
}
// If this function is actually an intrinsic, verify that it is only used in
// direct call/invokes, never having its "address taken".
if (F.getIntrinsicID()) {
const User *U;
if (F.hasAddressTaken(&U))
Assert1(0, "Invalid user of intrinsic instruction!", U);
}
Assert1(!F.hasDLLImportStorageClass() ||
(F.isDeclaration() && F.hasExternalLinkage()) ||
F.hasAvailableExternallyLinkage(),
"Function is marked as dllimport, but not external.", &F);
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
if (isa<PHINode>(BB.front())) {
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
std::sort(Preds.begin(), Preds.end());
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
// Ensure that PHI nodes have at least one entry!
Assert1(PN->getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN);
Assert1(PN->getNumIncomingValues() == Preds.size(),
"PHINode should have one entry for each predecessor of its "
"parent basic block!", PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
Values.reserve(PN->getNumIncomingValues());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
PN->getIncomingValue(i)));
std::sort(Values.begin(), Values.end());
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
// Check to make sure that if there is more than one entry for a
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
Values[i].second == Values[i-1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first,
Values[i].second, Values[i-1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
Assert3(Values[i].first == Preds[i],
"PHI node entries do not match predecessors!", PN,
Values[i].first, Preds[i]);
}
}
}
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert1(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitBranchInst(BranchInst &BI) {
if (BI.isConditional()) {
Assert2(BI.getCondition()->getType()->isIntegerTy(1),
"Branch condition is not 'i1' type!", &BI, BI.getCondition());
}
visitTerminatorInst(BI);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
if (F->getReturnType()->isVoidTy())
Assert2(N == 0,
"Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType());
else
Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminatorInst(RI);
}
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
Type *SwitchTy = SI.getCondition()->getType();
SmallPtrSet<ConstantInt*, 32> Constants;
for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
Assert1(i.getCaseValue()->getType() == SwitchTy,
"Switch constants must all be same type as switch value!", &SI);
Assert2(Constants.insert(i.getCaseValue()),
"Duplicate integer as switch case", &SI, i.getCaseValue());
}
visitTerminatorInst(SI);
}
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
Assert1(BI.getAddress()->getType()->isPointerTy(),
"Indirectbr operand must have pointer type!", &BI);
for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
Assert1(BI.getDestination(i)->getType()->isLabelTy(),
"Indirectbr destinations must all have pointer type!", &BI);
visitTerminatorInst(BI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
SI.getOperand(2)),
"Invalid operands for select instruction!", &SI);
Assert1(SI.getTrueValue()->getType() == SI.getType(),
"Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"trunc source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
visitInstruction(I);
}
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"zext source and destination must both be a vector or neither", &I);
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
visitInstruction(I);
}
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"sext source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
visitInstruction(I);
}
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fptrunc source and destination must both be a vector or neither",&I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fpext source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
visitInstruction(I);
}
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"UIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVectorTy(),
"UIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVectorTy(),
"UIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"UIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"SIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVectorTy(),
"SIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVectorTy(),
"SIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"SIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"FPToUI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
&I);
Assert1(DestTy->isIntOrIntVectorTy(),
"FPToUI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToUI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"FPToSI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVectorTy(),
"FPToSI source must be FP or FP vector", &I);
Assert1(DestTy->isIntOrIntVectorTy(),
"FPToSI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToSI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert1(SrcTy->getScalarType()->isPointerTy(),
"PtrToInt source must be pointer", &I);
Assert1(DestTy->getScalarType()->isIntegerTy(),
"PtrToInt result must be integral", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"PtrToInt type mismatch", &I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
Assert1(VSrc->getNumElements() == VDest->getNumElements(),
"PtrToInt Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert1(SrcTy->getScalarType()->isIntegerTy(),
"IntToPtr source must be an integral", &I);
Assert1(DestTy->getScalarType()->isPointerTy(),
"IntToPtr result must be a pointer",&I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"IntToPtr type mismatch", &I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
Assert1(VSrc->getNumElements() == VDest->getNumElements(),
"IntToPtr Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
VerifyBitcastType(&I, DestTy, SrcTy);
visitInstruction(I);
}
void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert1(SrcTy->isPtrOrPtrVectorTy(),
"AddrSpaceCast source must be a pointer", &I);
Assert1(DestTy->isPtrOrPtrVectorTy(),
"AddrSpaceCast result must be a pointer", &I);
Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
"AddrSpaceCast must be between different address spaces", &I);
if (SrcTy->isVectorTy())
Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
"AddrSpaceCast vector pointer number of elements mismatch", &I);
visitInstruction(I);
}
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert2(&PN == &PN.getParent()->front() ||
isa<PHINode>(--BasicBlock::iterator(&PN)),
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
// Check that all of the values of the PHI node have the same type as the
// result, and that the incoming blocks are really basic blocks.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node operands are not the same type as the result!", &PN);
}
// All other PHI node constraints are checked in the visitBasicBlock method.
visitInstruction(PN);
}
void Verifier::VerifyCallSite(CallSite CS) {
Instruction *I = CS.getInstruction();
Assert1(CS.getCalledValue()->getType()->isPointerTy(),
"Called function must be a pointer!", I);
PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
Assert1(FPTy->getElementType()->isFunctionTy(),
"Called function is not pointer to function type!", I);
FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert1(CS.arg_size() >= FTy->getNumParams(),
"Called function requires more parameters than were provided!",I);
else
Assert1(CS.arg_size() == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", I);
// Verify that all arguments to the call match the function type.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
CS.getArgument(i), FTy->getParamType(i), I);
AttributeSet Attrs = CS.getAttributes();
Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
"Attribute after last parameter!", I);
// Verify call attributes.
VerifyFunctionAttrs(FTy, Attrs, I);
// Conservatively check the inalloca argument.
// We have a bug if we can find that there is an underlying alloca without
// inalloca.
if (CS.hasInAllocaArgument()) {
Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
Assert2(AI->isUsedWithInAlloca(),
"inalloca argument for call has mismatched alloca", AI, I);
}
if (FTy->isVarArg()) {
// FIXME? is 'nest' even legal here?
bool SawNest = false;
bool SawReturned = false;
for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
if (Attrs.hasAttribute(Idx, Attribute::Nest))
SawNest = true;
if (Attrs.hasAttribute(Idx, Attribute::Returned))
SawReturned = true;
}
// Check attributes on the varargs part.
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
Type *Ty = CS.getArgument(Idx-1)->getType();
VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
Assert1(!SawNest, "More than one parameter has attribute nest!", I);
SawNest = true;
}
if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
Assert1(!SawReturned, "More than one parameter has attribute returned!",
I);
Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
"Incompatible argument and return types for 'returned' "
"attribute", I);
SawReturned = true;
}
Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
"Attribute 'sret' cannot be used for vararg call arguments!", I);
if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!",
I);
}
}
// Verify that there's no metadata unless it's a direct call to an intrinsic.
if (CS.getCalledFunction() == nullptr ||
!CS.getCalledFunction()->getName().startswith("llvm.")) {
for (FunctionType::param_iterator PI = FTy->param_begin(),
PE = FTy->param_end(); PI != PE; ++PI)
Assert1(!(*PI)->isMetadataTy(),
"Function has metadata parameter but isn't an intrinsic", I);
}
visitInstruction(*I);
}
/// Two types are "congruent" if they are identical, or if they are both pointer
/// types with different pointee types and the same address space.
static bool isTypeCongruent(Type *L, Type *R) {
if (L == R)
return true;
PointerType *PL = dyn_cast<PointerType>(L);
PointerType *PR = dyn_cast<PointerType>(R);
if (!PL || !PR)
return false;
return PL->getAddressSpace() == PR->getAddressSpace();
}
static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
static const Attribute::AttrKind ABIAttrs[] = {
Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
Attribute::InReg, Attribute::Returned};
AttrBuilder Copy;
for (auto AK : ABIAttrs) {
if (Attrs.hasAttribute(I + 1, AK))
Copy.addAttribute(AK);
}
if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
return Copy;
}
void Verifier::verifyMustTailCall(CallInst &CI) {
Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
// - The caller and callee prototypes must match. Pointer types of
// parameters or return types may differ in pointee type, but not
// address space.
Function *F = CI.getParent()->getParent();
auto GetFnTy = [](Value *V) {
return cast<FunctionType>(
cast<PointerType>(V->getType())->getElementType());
};
FunctionType *CallerTy = GetFnTy(F);
FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(),
"cannot guarantee tail call due to mismatched parameter counts", &CI);
Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(),
"cannot guarantee tail call due to mismatched varargs", &CI);
Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
"cannot guarantee tail call due to mismatched return types", &CI);
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
Assert1(
isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
"cannot guarantee tail call due to mismatched parameter types", &CI);
}
// - The calling conventions of the caller and callee must match.
Assert1(F->getCallingConv() == CI.getCallingConv(),
"cannot guarantee tail call due to mismatched calling conv", &CI);
// - All ABI-impacting function attributes, such as sret, byval, inreg,
// returned, and inalloca, must match.
AttributeSet CallerAttrs = F->getAttributes();
AttributeSet CalleeAttrs = CI.getAttributes();
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
Assert2(CallerABIAttrs == CalleeABIAttrs,
"cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I));
}
// - The call must immediately precede a :ref:`ret <i_ret>` instruction,
// or a pointer bitcast followed by a ret instruction.
// - The ret instruction must return the (possibly bitcasted) value
// produced by the call or void.
Value *RetVal = &CI;
Instruction *Next = CI.getNextNode();
// Handle the optional bitcast.
if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
Assert1(BI->getOperand(0) == RetVal,
"bitcast following musttail call must use the call", BI);
RetVal = BI;
Next = BI->getNextNode();
}
// Check the return.
ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
Assert1(Ret, "musttail call must be precede a ret with an optional bitcast",
&CI);
Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
"musttail call result must be returned", Ret);
}
void Verifier::visitCallInst(CallInst &CI) {
VerifyCallSite(&CI);
if (CI.isMustTailCall())
verifyMustTailCall(CI);
if (Function *F = CI.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicFunctionCall(ID, CI);
}
void Verifier::visitInvokeInst(InvokeInst &II) {
VerifyCallSite(&II);
// Verify that there is a landingpad instruction as the first non-PHI
// instruction of the 'unwind' destination.
Assert1(II.getUnwindDest()->isLandingPad(),
"The unwind destination does not have a landingpad instruction!",&II);
visitTerminatorInst(II);
}
/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that integer arithmetic operators are only used with
// integral operands.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
Assert1(B.getType()->isIntOrIntVectorTy(),
"Integer arithmetic operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Integer arithmetic operators must have same type "
"for operands and result!", &B);
break;
// Check that floating-point arithmetic operators are only used with
// floating-point operands.
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
Assert1(B.getType()->isFPOrFPVectorTy(),
"Floating-point arithmetic operators only work with "
"floating-point types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Floating-point arithmetic operators must have same type "
"for operands and result!", &B);
break;
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Assert1(B.getType()->isIntOrIntVectorTy(),
"Logical operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Assert1(B.getType()->isIntOrIntVectorTy(),
"Shifts only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Shift return type must be same as operands!", &B);
break;
default:
llvm_unreachable("Unknown BinaryOperator opcode!");
}
visitInstruction(B);
}
void Verifier::visitICmpInst(ICmpInst &IC) {
// Check that the operands are the same type
Type *Op0Ty = IC.getOperand(0)->getType();
Type *Op1Ty = IC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
"Invalid operand types for ICmp instruction", &IC);
// Check that the predicate is valid.
Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
"Invalid predicate in ICmp instruction!", &IC);
visitInstruction(IC);
}
void Verifier::visitFCmpInst(FCmpInst &FC) {
// Check that the operands are the same type
Type *Op0Ty = FC.getOperand(0)->getType();
Type *Op1Ty = FC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
Assert1(Op0Ty->isFPOrFPVectorTy(),
"Invalid operand types for FCmp instruction", &FC);
// Check that the predicate is valid.
Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
"Invalid predicate in FCmp instruction!", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
EI.getOperand(1)),
"Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
IE.getOperand(1),
IE.getOperand(2)),
"Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
SV.getOperand(2)),
"Invalid shufflevector operands!", &SV);
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
Assert1(isa<PointerType>(TargetTy),
"GEP base pointer is not a vector or a vector of pointers", &GEP);
Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
"GEP into unsized type!", &GEP);
Assert1(GEP.getPointerOperandType()->isVectorTy() ==
GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
&GEP);
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
== ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
if (GEP.getPointerOperandType()->isVectorTy()) {
// Additional checks for vector GEPs.
unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
"Vector GEP result width doesn't match operand's", &GEP);
for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
Type *IndexTy = Idxs[i]->getType();
Assert1(IndexTy->isVectorTy(),
"Vector GEP must have vector indices!", &GEP);
unsigned IndexWidth = IndexTy->getVectorNumElements();
Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
}
}
visitInstruction(GEP);
}
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}
void Verifier::visitLoadInst(LoadInst &LI) {
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert1(PTy, "Load operand must be a pointer.", &LI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
Assert1(LI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &LI);
if (LI.isAtomic()) {
Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
"Load cannot have Release ordering", &LI);
Assert1(LI.getAlignment() != 0,
"Atomic load must specify explicit alignment", &LI);
if (!ElTy->isPointerTy()) {
Assert2(ElTy->isIntegerTy(),
"atomic load operand must have integer type!",
&LI, ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
Assert2(Size >= 8 && !(Size & (Size - 1)),
"atomic load operand must be power-of-two byte-sized integer",
&LI, ElTy);
}
} else {
Assert1(LI.getSynchScope() == CrossThread,
"Non-atomic load cannot have SynchronizationScope specified", &LI);
}
if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
unsigned NumOperands = Range->getNumOperands();
Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
unsigned NumRanges = NumOperands / 2;
Assert1(NumRanges >= 1, "It should have at least one range!", Range);
ConstantRange LastRange(1); // Dummy initial value
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
Assert1(Low, "The lower limit must be an integer!", Low);
ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
Assert1(High, "The upper limit must be an integer!", High);
Assert1(High->getType() == Low->getType() &&
High->getType() == ElTy, "Range types must match load type!",
&LI);
APInt HighV = High->getValue();
APInt LowV = Low->getValue();
ConstantRange CurRange(LowV, HighV);
Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
"Range must not be empty!", Range);
if (i != 0) {
Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
Range);
Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
Range);
}
LastRange = ConstantRange(LowV, HighV);
}
if (NumRanges > 2) {
APInt FirstLow =
dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
APInt FirstHigh =
dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
ConstantRange FirstRange(FirstLow, FirstHigh);
Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
Range);
}
}
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
Assert1(PTy, "Store operand must be a pointer.", &SI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!",
&SI, ElTy);
Assert1(SI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &SI);
if (SI.isAtomic()) {
Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
"Store cannot have Acquire ordering", &SI);
Assert1(SI.getAlignment() != 0,
"Atomic store must specify explicit alignment", &SI);
if (!ElTy->isPointerTy()) {
Assert2(ElTy->isIntegerTy(),
"atomic store operand must have integer type!",
&SI, ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
Assert2(Size >= 8 && !(Size & (Size - 1)),
"atomic store operand must be power-of-two byte-sized integer",
&SI, ElTy);
}
} else {
Assert1(SI.getSynchScope() == CrossThread,
"Non-atomic store cannot have SynchronizationScope specified", &SI);
}
visitInstruction(SI);
}
void Verifier::visitAllocaInst(AllocaInst &AI) {
SmallPtrSet<const Type*, 4> Visited;
PointerType *PTy = AI.getType();
Assert1(PTy->getAddressSpace() == 0,
"Allocation instruction pointer not in the generic address space!",
&AI);
Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
&AI);
Assert1(AI.getArraySize()->getType()->isIntegerTy(),
"Alloca array size must have integer type", &AI);
Assert1(AI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &AI);
visitInstruction(AI);
}
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
// FIXME: more conditions???
Assert1(CXI.getSuccessOrdering() != NotAtomic,
"cmpxchg instructions must be atomic.", &CXI);
Assert1(CXI.getFailureOrdering() != NotAtomic,
"cmpxchg instructions must be atomic.", &CXI);
Assert1(CXI.getSuccessOrdering() != Unordered,
"cmpxchg instructions cannot be unordered.", &CXI);
Assert1(CXI.getFailureOrdering() != Unordered,
"cmpxchg instructions cannot be unordered.", &CXI);
Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
"cmpxchg instructions be at least as constrained on success as fail",
&CXI);
Assert1(CXI.getFailureOrdering() != Release &&
CXI.getFailureOrdering() != AcquireRelease,
"cmpxchg failure ordering cannot include release semantics", &CXI);
PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy->isIntegerTy(),
"cmpxchg operand must have integer type!",
&CXI, ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
Assert2(Size >= 8 && !(Size & (Size - 1)),
"cmpxchg operand must be power-of-two byte-sized integer",
&CXI, ElTy);
Assert2(ElTy == CXI.getOperand(1)->getType(),
"Expected value type does not match pointer operand type!",
&CXI, ElTy);
Assert2(ElTy == CXI.getOperand(2)->getType(),
"Stored value type does not match pointer operand type!",
&CXI, ElTy);
visitInstruction(CXI);
}
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
Assert1(RMWI.getOrdering() != NotAtomic,
"atomicrmw instructions must be atomic.", &RMWI);
Assert1(RMWI.getOrdering() != Unordered,
"atomicrmw instructions cannot be unordered.", &RMWI);
PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy->isIntegerTy(),
"atomicrmw operand must have integer type!",
&RMWI, ElTy);
unsigned Size = ElTy->getPrimitiveSizeInBits();
Assert2(Size >= 8 && !(Size & (Size - 1)),
"atomicrmw operand must be power-of-two byte-sized integer",
&RMWI, ElTy);
Assert2(ElTy == RMWI.getOperand(1)->getType(),
"Argument value type does not match pointer operand type!",
&RMWI, ElTy);
Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
"Invalid binary operation!", &RMWI);
visitInstruction(RMWI);
}
void Verifier::visitFenceInst(FenceInst &FI) {
const AtomicOrdering Ordering = FI.getOrdering();
Assert1(Ordering == Acquire || Ordering == Release ||
Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
"fence instructions may only have "
"acquire, release, acq_rel, or seq_cst ordering.", &FI);
visitInstruction(FI);
}
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
EVI.getIndices()) ==
EVI.getType(),
"Invalid ExtractValueInst operands!", &EVI);
visitInstruction(EVI);
}
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
IVI.getIndices()) ==
IVI.getOperand(1)->getType(),
"Invalid InsertValueInst operands!", &IVI);
visitInstruction(IVI);
}
void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
BasicBlock *BB = LPI.getParent();
// The landingpad instruction is ill-formed if it doesn't have any clauses and
// isn't a cleanup.
Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
"LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
// The landingpad instruction defines its parent as a landing pad block. The
// landing pad block may be branched to only by the unwind edge of an invoke.
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
"Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", &LPI);
}
// The landingpad instruction must be the first non-PHI instruction in the
// block.
Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
"LandingPadInst not the first non-PHI instruction in the block.",
&LPI);
// The personality functions for all landingpad instructions within the same
// function should match.
if (PersonalityFn)
Assert1(LPI.getPersonalityFn() == PersonalityFn,
"Personality function doesn't match others in function", &LPI);
PersonalityFn = LPI.getPersonalityFn();
// All operands must be constants.
Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
&LPI);
for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
Constant *Clause = LPI.getClause(i);
if (LPI.isCatch(i)) {
Assert1(isa<PointerType>(Clause->getType()),
"Catch operand does not have pointer type!", &LPI);
} else {
Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
"Filter operand is not an array of constants!", &LPI);
}
}
visitInstruction(LPI);
}
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
Instruction *Op = cast<Instruction>(I.getOperand(i));
// If the we have an invalid invoke, don't try to compute the dominance.
// We already reject it in the invoke specific checks and the dominance
// computation doesn't handle multiple edges.
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
if (II->getNormalDest() == II->getUnwindDest())
return;
}
const Use &U = I.getOperandUse(i);
Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
"Instruction does not dominate all uses!", Op, &I);
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert1(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (User *U : I.users()) {
Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB),
"Only PHI nodes may reference their own value!", &I);
}
}
// Check that void typed values don't have names
Assert1(!I.getType()->isVoidTy() || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
Assert1(I.getType()->isVoidTy() ||
I.getType()->isFirstClassType(),
"Instruction returns a non-scalar type!", &I);
// Check that the instruction doesn't produce metadata. Calls are already
// checked against the callee type.
Assert1(!I.getType()->isMetadataTy() ||
isa<CallInst>(I) || isa<InvokeInst>(I),
"Invalid use of metadata!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (Use &U : I.uses()) {
if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
Assert2(Used->getParent() != nullptr, "Instruction referencing"
" instruction not embedded in a basic block!", &I, Used);
else {
CheckFailed("Use of instruction is not an instruction!", U);
return;
}
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
if (!I.getOperand(i)->getType()->isFirstClassType()) {
Assert1(0, "Instruction operands must be first-class values!", &I);
}
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
"Cannot take the address of an intrinsic!", &I);
Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
F->getIntrinsicID() == Intrinsic::donothing,
"Cannot invoke an intrinsinc other than donothing", &I);
Assert1(F->getParent() == M, "Referencing function in another module!",
&I);
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert1(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
Assert1(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
Assert1(GV->getParent() == M, "Referencing global in another module!",
&I);
} else if (isa<Instruction>(I.getOperand(i))) {
verifyDominatesUse(I, i);
} else if (isa<InlineAsm>(I.getOperand(i))) {
Assert1((i + 1 == e && isa<CallInst>(I)) ||
(i + 3 == e && isa<InvokeInst>(I)),
"Cannot take the address of an inline asm!", &I);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
if (CE->getType()->isPtrOrPtrVectorTy()) {
// If we have a ConstantExpr pointer, we need to see if it came from an
// illegal bitcast (inttoptr <constant int> )
SmallVector<const ConstantExpr *, 4> Stack;
SmallPtrSet<const ConstantExpr *, 4> Visited;
Stack.push_back(CE);
while (!Stack.empty()) {
const ConstantExpr *V = Stack.pop_back_val();
if (!Visited.insert(V))
continue;
VerifyConstantExprBitcastType(V);
for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
Stack.push_back(Op);
}
}
}
}
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
Assert1(I.getType()->isFPOrFPVectorTy(),
"fpmath requires a floating point result!", &I);
Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
Value *Op0 = MD->getOperand(0);
if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
APFloat Accuracy = CFP0->getValueAPF();
Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
"fpmath accuracy not a positive number!", &I);
} else {
Assert1(false, "invalid fpmath accuracy!", &I);
}
}
MDNode *MD = I.getMetadata(LLVMContext::MD_range);
Assert1(!MD || isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
"Ranges are only for loads, calls and invokes!", &I);
InstsInThisBlock.insert(&I);
}
/// VerifyIntrinsicType - Verify that the specified type (which comes from an
/// intrinsic argument or return value) matches the type constraints specified
/// by the .td file (e.g. an "any integer" argument really is an integer).
///
/// This return true on error but does not print a message.
bool Verifier::VerifyIntrinsicType(Type *Ty,
ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type*> &ArgTys) {
using namespace Intrinsic;
// If we ran out of descriptors, there are too many arguments.
if (Infos.empty()) return true;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return !Ty->isVoidTy();
case IITDescriptor::VarArg: return true;
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
case IITDescriptor::Half: return !Ty->isHalfTy();
case IITDescriptor::Float: return !Ty->isFloatTy();
case IITDescriptor::Double: return !Ty->isDoubleTy();
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
case IITDescriptor::Vector: {
VectorType *VT = dyn_cast<VectorType>(Ty);
return !VT || VT->getNumElements() != D.Vector_Width ||
VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
}
case IITDescriptor::Pointer: {
PointerType *PT = dyn_cast<PointerType>(Ty);
return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
}
case IITDescriptor::Struct: {
StructType *ST = dyn_cast<StructType>(Ty);
if (!ST || ST->getNumElements() != D.Struct_NumElements)
return true;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
return true;
return false;
}
case IITDescriptor::Argument:
// Two cases here - If this is the second occurrence of an argument, verify
// that the later instance matches the previous instance.
if (D.getArgumentNumber() < ArgTys.size())
return Ty != ArgTys[D.getArgumentNumber()];
// Otherwise, if this is the first instance of an argument, record it and
// verify the "Any" kind.
assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
ArgTys.push_back(Ty);
switch (D.getArgumentKind()) {
case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
}
llvm_unreachable("all argument kinds not covered");
case IITDescriptor::ExtendArgument: {
// This may only be used when referring to a previous vector argument.
if (D.getArgumentNumber() >= ArgTys.size())
return true;
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getExtendedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
else
return true;
return Ty != NewTy;
}
case IITDescriptor::TruncArgument: {
// This may only be used when referring to a previous vector argument.
if (D.getArgumentNumber() >= ArgTys.size())
return true;
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getTruncatedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
else
return true;
return Ty != NewTy;
}
case IITDescriptor::HalfVecArgument:
// This may only be used when referring to a previous vector argument.
return D.getArgumentNumber() >= ArgTys.size() ||
!isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getHalfElementsVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
}
llvm_unreachable("unhandled");
}
/// \brief Verify if the intrinsic has variable arguments.
/// This method is intended to be called after all the fixed arguments have been
/// verified first.
///
/// This method returns true on error and does not print an error message.
bool
Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
ArrayRef<Intrinsic::IITDescriptor> &Infos) {
using namespace Intrinsic;
// If there are no descriptors left, then it can't be a vararg.
if (Infos.empty())
return isVarArg ? true : false;
// There should be only one descriptor remaining at this point.
if (Infos.size() != 1)
return true;
// Check and verify the descriptor.
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
if (D.Kind == IITDescriptor::VarArg)
return isVarArg ? false : true;
return true;
}
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Function *IF = CI.getCalledFunction();
Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
IF);
// Verify that the intrinsic prototype lines up with what the .td files
// describe.
FunctionType *IFTy = IF->getFunctionType();
bool IsVarArg = IFTy->isVarArg();
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
SmallVector<Type *, 4> ArgTys;
Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
"Intrinsic has incorrect return type!", IF);
for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
"Intrinsic has incorrect argument type!", IF);
// Verify if the intrinsic call matches the vararg property.
if (IsVarArg)
Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
"Intrinsic was not defined with variable arguments!", IF);
else
Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
"Callsite was not defined with variable arguments!", IF);
// All descriptors should be absorbed by now.
Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
// Now that we have the intrinsic ID and the actual argument types (and we
// know they are legal for the intrinsic!) get the intrinsic name through the
// usual means. This allows us to verify the mangling of argument types into
// the name.
const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
Assert1(ExpectedName == IF->getName(),
"Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF);
// If the intrinsic takes MDNode arguments, verify that they are either global
// or are local to *this* function.
for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
visitMDNode(*MD, CI.getParent()->getParent());
switch (ID) {
default:
break;
case Intrinsic::ctlz: // llvm.ctlz
case Intrinsic::cttz: // llvm.cttz
Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
"is_zero_undef argument of bit counting intrinsics must be a "
"constant int", &CI);
break;
case Intrinsic::dbg_declare: { // llvm.dbg.declare
Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
"invalid llvm.dbg.declare intrinsic call 1", &CI);
MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
Assert1(MD->getNumOperands() == 1,
"invalid llvm.dbg.declare intrinsic call 2", &CI);
} break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
"alignment argument of memory intrinsics must be a constant int",
&CI);
Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
"isvolatile argument of memory intrinsics must be a constant int",
&CI);
break;
case Intrinsic::gcroot:
case Intrinsic::gcwrite:
case Intrinsic::gcread:
if (ID == Intrinsic::gcroot) {
AllocaInst *AI =
dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
Assert1(isa<Constant>(CI.getArgOperand(1)),
"llvm.gcroot parameter #2 must be a constant.", &CI);
if (!AI->getType()->getElementType()->isPointerTy()) {
Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
"llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", &CI);
}
}
Assert1(CI.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", &CI);
break;
case Intrinsic::init_trampoline:
Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
"llvm.init_trampoline parameter #2 must resolve to a function.",
&CI);
break;
case Intrinsic::prefetch:
Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
isa<ConstantInt>(CI.getArgOperand(2)) &&
cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
"invalid arguments to llvm.prefetch",
&CI);
break;
case Intrinsic::stackprotector:
Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
"llvm.stackprotector parameter #2 must resolve to an alloca.",
&CI);
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
"size argument of memory use markers must be a constant integer",
&CI);
break;
case Intrinsic::invariant_end:
Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
"llvm.invariant.end parameter #2 must be a constant integer", &CI);
break;
}
}
void DebugInfoVerifier::verifyDebugInfo() {
if (!VerifyDebugInfo)
return;
DebugInfoFinder Finder;
Finder.processModule(*M);
processInstructions(Finder);
// Verify Debug Info.
//
// NOTE: The loud braces are necessary for MSVC compatibility.
for (DICompileUnit CU : Finder.compile_units()) {
Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU);
}
for (DISubprogram S : Finder.subprograms()) {
Assert1(S.Verify(), "DISubprogram does not Verify!", S);
}
for (DIGlobalVariable GV : Finder.global_variables()) {
Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV);
}
for (DIType T : Finder.types()) {
Assert1(T.Verify(), "DIType does not Verify!", T);
}
for (DIScope S : Finder.scopes()) {
Assert1(S.Verify(), "DIScope does not Verify!", S);
}
}
void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) {
for (const Function &F : *M)
for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg))
Finder.processLocation(*M, DILocation(MD));
if (const CallInst *CI = dyn_cast<CallInst>(&*I))
processCallInst(Finder, *CI);
}
}
void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder,
const CallInst &CI) {
if (Function *F = CI.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
switch (ID) {
case Intrinsic::dbg_declare:
Finder.processDeclare(*M, cast<DbgDeclareInst>(&CI));
break;
case Intrinsic::dbg_value:
Finder.processValue(*M, cast<DbgValueInst>(&CI));
break;
default:
break;
}
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
Function &F = const_cast<Function &>(f);
assert(!F.isDeclaration() && "Cannot verify external functions");
raw_null_ostream NullStr;
Verifier V(OS ? *OS : NullStr);
// Note that this function's return value is inverted from what you would
// expect of a function called "verify".
return !V.verify(F);
}
bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
raw_null_ostream NullStr;
Verifier V(OS ? *OS : NullStr);
bool Broken = false;
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration())
Broken |= !V.verify(*I);
// Note that this function's return value is inverted from what you would
// expect of a function called "verify".
DebugInfoVerifier DIV(OS ? *OS : NullStr);
return !V.verify(M) || !DIV.verify(M) || Broken;
}
namespace {
struct VerifierLegacyPass : public FunctionPass {
static char ID;
Verifier V;
bool FatalErrors;
VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) {
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
explicit VerifierLegacyPass(bool FatalErrors)
: FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (!V.verify(F) && FatalErrors)
report_fatal_error("Broken function found, compilation aborted!");
return false;
}
bool doFinalization(Module &M) override {
if (!V.verify(M) && FatalErrors)
report_fatal_error("Broken module found, compilation aborted!");
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
struct DebugInfoVerifierLegacyPass : public ModulePass {
static char ID;
DebugInfoVerifier V;
bool FatalErrors;
DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) {
initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
explicit DebugInfoVerifierLegacyPass(bool FatalErrors)
: ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) {
initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (!V.verify(M) && FatalErrors)
report_fatal_error("Broken debug info found, compilation aborted!");
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
}
char VerifierLegacyPass::ID = 0;
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
char DebugInfoVerifierLegacyPass::ID = 0;
INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier",
false, false)
FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
return new VerifierLegacyPass(FatalErrors);
}
ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) {
return new DebugInfoVerifierLegacyPass(FatalErrors);
}
PreservedAnalyses VerifierPass::run(Module *M) {
if (verifyModule(*M, &dbgs()) && FatalErrors)
report_fatal_error("Broken module found, compilation aborted!");
return PreservedAnalyses::all();
}
PreservedAnalyses VerifierPass::run(Function *F) {
if (verifyFunction(*F, &dbgs()) && FatalErrors)
report_fatal_error("Broken function found, compilation aborted!");
return PreservedAnalyses::all();
}