mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Probably the best way to know that all getOperand() calls have been handled is to replace that API instead of updating. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101579 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			510 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			510 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file transforms calls of the current function (self recursion) followed
 | 
						|
// by a return instruction with a branch to the entry of the function, creating
 | 
						|
// a loop.  This pass also implements the following extensions to the basic
 | 
						|
// algorithm:
 | 
						|
//
 | 
						|
//  1. Trivial instructions between the call and return do not prevent the
 | 
						|
//     transformation from taking place, though currently the analysis cannot
 | 
						|
//     support moving any really useful instructions (only dead ones).
 | 
						|
//  2. This pass transforms functions that are prevented from being tail
 | 
						|
//     recursive by an associative expression to use an accumulator variable,
 | 
						|
//     thus compiling the typical naive factorial or 'fib' implementation into
 | 
						|
//     efficient code.
 | 
						|
//  3. TRE is performed if the function returns void, if the return
 | 
						|
//     returns the result returned by the call, or if the function returns a
 | 
						|
//     run-time constant on all exits from the function.  It is possible, though
 | 
						|
//     unlikely, that the return returns something else (like constant 0), and
 | 
						|
//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
 | 
						|
//     the function return the exact same value.
 | 
						|
//  4. If it can prove that callees do not access their caller stack frame,
 | 
						|
//     they are marked as eligible for tail call elimination (by the code
 | 
						|
//     generator).
 | 
						|
//
 | 
						|
// There are several improvements that could be made:
 | 
						|
//
 | 
						|
//  1. If the function has any alloca instructions, these instructions will be
 | 
						|
//     moved out of the entry block of the function, causing them to be
 | 
						|
//     evaluated each time through the tail recursion.  Safely keeping allocas
 | 
						|
//     in the entry block requires analysis to proves that the tail-called
 | 
						|
//     function does not read or write the stack object.
 | 
						|
//  2. Tail recursion is only performed if the call immediately preceeds the
 | 
						|
//     return instruction.  It's possible that there could be a jump between
 | 
						|
//     the call and the return.
 | 
						|
//  3. There can be intervening operations between the call and the return that
 | 
						|
//     prevent the TRE from occurring.  For example, there could be GEP's and
 | 
						|
//     stores to memory that will not be read or written by the call.  This
 | 
						|
//     requires some substantial analysis (such as with DSA) to prove safe to
 | 
						|
//     move ahead of the call, but doing so could allow many more TREs to be
 | 
						|
//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
 | 
						|
//  4. The algorithm we use to detect if callees access their caller stack
 | 
						|
//     frames is very primitive.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "tailcallelim"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumEliminated, "Number of tail calls removed");
 | 
						|
STATISTIC(NumAccumAdded, "Number of accumulators introduced");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct TailCallElim : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    TailCallElim() : FunctionPass(&ID) {}
 | 
						|
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
 | 
						|
  private:
 | 
						|
    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
 | 
						|
                               bool &TailCallsAreMarkedTail,
 | 
						|
                               SmallVector<PHINode*, 8> &ArgumentPHIs,
 | 
						|
                               bool CannotTailCallElimCallsMarkedTail);
 | 
						|
    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
 | 
						|
    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char TailCallElim::ID = 0;
 | 
						|
static RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
 | 
						|
 | 
						|
// Public interface to the TailCallElimination pass
 | 
						|
FunctionPass *llvm::createTailCallEliminationPass() {
 | 
						|
  return new TailCallElim();
 | 
						|
}
 | 
						|
 | 
						|
/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
 | 
						|
/// callees of this function.  We only do very simple analysis right now, this
 | 
						|
/// could be expanded in the future to use mod/ref information for particular
 | 
						|
/// call sites if desired.
 | 
						|
static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
 | 
						|
  // FIXME: do simple 'address taken' analysis.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckForEscapingAllocas - Scan the specified basic block for alloca
 | 
						|
/// instructions.  If it contains any that might be accessed by calls, return
 | 
						|
/// true.
 | 
						|
static bool CheckForEscapingAllocas(BasicBlock *BB,
 | 
						|
                                    bool &CannotTCETailMarkedCall) {
 | 
						|
  bool RetVal = false;
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
 | 
						|
      RetVal |= AllocaMightEscapeToCalls(AI);
 | 
						|
 | 
						|
      // If this alloca is in the body of the function, or if it is a variable
 | 
						|
      // sized allocation, we cannot tail call eliminate calls marked 'tail'
 | 
						|
      // with this mechanism.
 | 
						|
      if (BB != &BB->getParent()->getEntryBlock() ||
 | 
						|
          !isa<ConstantInt>(AI->getArraySize()))
 | 
						|
        CannotTCETailMarkedCall = true;
 | 
						|
    }
 | 
						|
  return RetVal;
 | 
						|
}
 | 
						|
 | 
						|
bool TailCallElim::runOnFunction(Function &F) {
 | 
						|
  // If this function is a varargs function, we won't be able to PHI the args
 | 
						|
  // right, so don't even try to convert it...
 | 
						|
  if (F.getFunctionType()->isVarArg()) return false;
 | 
						|
 | 
						|
  BasicBlock *OldEntry = 0;
 | 
						|
  bool TailCallsAreMarkedTail = false;
 | 
						|
  SmallVector<PHINode*, 8> ArgumentPHIs;
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  bool FunctionContainsEscapingAllocas = false;
 | 
						|
 | 
						|
  // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
 | 
						|
  // marked with the 'tail' attribute, because doing so would cause the stack
 | 
						|
  // size to increase (real TCE would deallocate variable sized allocas, TCE
 | 
						|
  // doesn't).
 | 
						|
  bool CannotTCETailMarkedCall = false;
 | 
						|
 | 
						|
  // Loop over the function, looking for any returning blocks, and keeping track
 | 
						|
  // of whether this function has any non-trivially used allocas.
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
    if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
 | 
						|
      break;
 | 
						|
 | 
						|
    FunctionContainsEscapingAllocas |=
 | 
						|
      CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// FIXME: The code generator produces really bad code when an 'escaping
 | 
						|
  /// alloca' is changed from being a static alloca to being a dynamic alloca.
 | 
						|
  /// Until this is resolved, disable this transformation if that would ever
 | 
						|
  /// happen.  This bug is PR962.
 | 
						|
  if (FunctionContainsEscapingAllocas)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Second pass, change any tail calls to loops.
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
 | 
						|
      MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
 | 
						|
                                          ArgumentPHIs,CannotTCETailMarkedCall);
 | 
						|
 | 
						|
  // If we eliminated any tail recursions, it's possible that we inserted some
 | 
						|
  // silly PHI nodes which just merge an initial value (the incoming operand)
 | 
						|
  // with themselves.  Check to see if we did and clean up our mess if so.  This
 | 
						|
  // occurs when a function passes an argument straight through to its tail
 | 
						|
  // call.
 | 
						|
  if (!ArgumentPHIs.empty()) {
 | 
						|
    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
 | 
						|
      PHINode *PN = ArgumentPHIs[i];
 | 
						|
 | 
						|
      // If the PHI Node is a dynamic constant, replace it with the value it is.
 | 
						|
      if (Value *PNV = PN->hasConstantValue()) {
 | 
						|
        PN->replaceAllUsesWith(PNV);
 | 
						|
        PN->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, if this function contains no non-escaping allocas, mark all calls
 | 
						|
  // in the function as eligible for tail calls (there is no stack memory for
 | 
						|
  // them to access).
 | 
						|
  if (!FunctionContainsEscapingAllocas)
 | 
						|
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
        if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
          CI->setTailCall();
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CanMoveAboveCall - Return true if it is safe to move the specified
 | 
						|
/// instruction from after the call to before the call, assuming that all
 | 
						|
/// instructions between the call and this instruction are movable.
 | 
						|
///
 | 
						|
bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
 | 
						|
  // FIXME: We can move load/store/call/free instructions above the call if the
 | 
						|
  // call does not mod/ref the memory location being processed.
 | 
						|
  if (I->mayHaveSideEffects())  // This also handles volatile loads.
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | 
						|
    // Loads may always be moved above calls without side effects.
 | 
						|
    if (CI->mayHaveSideEffects()) {
 | 
						|
      // Non-volatile loads may be moved above a call with side effects if it
 | 
						|
      // does not write to memory and the load provably won't trap.
 | 
						|
      // FIXME: Writes to memory only matter if they may alias the pointer
 | 
						|
      // being loaded from.
 | 
						|
      if (CI->mayWriteToMemory() ||
 | 
						|
          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
 | 
						|
                                       L->getAlignment()))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this is a side-effect free instruction, check to make sure
 | 
						|
  // that it does not use the return value of the call.  If it doesn't use the
 | 
						|
  // return value of the call, it must only use things that are defined before
 | 
						|
  // the call, or movable instructions between the call and the instruction
 | 
						|
  // itself.
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
    if (I->getOperand(i) == CI)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// isDynamicConstant - Return true if the specified value is the same when the
 | 
						|
// return would exit as it was when the initial iteration of the recursive
 | 
						|
// function was executed.
 | 
						|
//
 | 
						|
// We currently handle static constants and arguments that are not modified as
 | 
						|
// part of the recursion.
 | 
						|
//
 | 
						|
static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
 | 
						|
  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
 | 
						|
 | 
						|
  // Check to see if this is an immutable argument, if so, the value
 | 
						|
  // will be available to initialize the accumulator.
 | 
						|
  if (Argument *Arg = dyn_cast<Argument>(V)) {
 | 
						|
    // Figure out which argument number this is...
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    Function *F = CI->getParent()->getParent();
 | 
						|
    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
 | 
						|
      ++ArgNo;
 | 
						|
 | 
						|
    // If we are passing this argument into call as the corresponding
 | 
						|
    // argument operand, then the argument is dynamically constant.
 | 
						|
    // Otherwise, we cannot transform this function safely.
 | 
						|
    if (CI->getOperand(ArgNo+1) == Arg)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Switch cases are always constant integers. If the value is being switched
 | 
						|
  // on and the return is only reachable from one of its cases, it's
 | 
						|
  // effectively constant.
 | 
						|
  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
 | 
						|
    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
 | 
						|
      if (SI->getCondition() == V)
 | 
						|
        return SI->getDefaultDest() != RI->getParent();
 | 
						|
 | 
						|
  // Not a constant or immutable argument, we can't safely transform.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// getCommonReturnValue - Check to see if the function containing the specified
 | 
						|
// return instruction and tail call consistently returns the same
 | 
						|
// runtime-constant value at all exit points.  If so, return the returned value.
 | 
						|
//
 | 
						|
static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
 | 
						|
  Function *F = TheRI->getParent()->getParent();
 | 
						|
  Value *ReturnedValue = 0;
 | 
						|
 | 
						|
  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
 | 
						|
      if (RI != TheRI) {
 | 
						|
        Value *RetOp = RI->getOperand(0);
 | 
						|
 | 
						|
        // We can only perform this transformation if the value returned is
 | 
						|
        // evaluatable at the start of the initial invocation of the function,
 | 
						|
        // instead of at the end of the evaluation.
 | 
						|
        //
 | 
						|
        if (!isDynamicConstant(RetOp, CI, RI))
 | 
						|
          return 0;
 | 
						|
 | 
						|
        if (ReturnedValue && RetOp != ReturnedValue)
 | 
						|
          return 0;     // Cannot transform if differing values are returned.
 | 
						|
        ReturnedValue = RetOp;
 | 
						|
      }
 | 
						|
  return ReturnedValue;
 | 
						|
}
 | 
						|
 | 
						|
/// CanTransformAccumulatorRecursion - If the specified instruction can be
 | 
						|
/// transformed using accumulator recursion elimination, return the constant
 | 
						|
/// which is the start of the accumulator value.  Otherwise return null.
 | 
						|
///
 | 
						|
Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
 | 
						|
                                                      CallInst *CI) {
 | 
						|
  if (!I->isAssociative()) return 0;
 | 
						|
  assert(I->getNumOperands() == 2 &&
 | 
						|
         "Associative operations should have 2 args!");
 | 
						|
 | 
						|
  // Exactly one operand should be the result of the call instruction...
 | 
						|
  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
 | 
						|
      (I->getOperand(0) != CI && I->getOperand(1) != CI))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // The only user of this instruction we allow is a single return instruction.
 | 
						|
  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Ok, now we have to check all of the other return instructions in this
 | 
						|
  // function.  If they return non-constants or differing values, then we cannot
 | 
						|
  // transform the function safely.
 | 
						|
  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
 | 
						|
}
 | 
						|
 | 
						|
bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
 | 
						|
                                         bool &TailCallsAreMarkedTail,
 | 
						|
                                         SmallVector<PHINode*, 8> &ArgumentPHIs,
 | 
						|
                                       bool CannotTailCallElimCallsMarkedTail) {
 | 
						|
  BasicBlock *BB = Ret->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
 | 
						|
  if (&BB->front() == Ret) // Make sure there is something before the ret...
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Scan backwards from the return, checking to see if there is a tail call in
 | 
						|
  // this block.  If so, set CI to it.
 | 
						|
  CallInst *CI;
 | 
						|
  BasicBlock::iterator BBI = Ret;
 | 
						|
  while (1) {
 | 
						|
    CI = dyn_cast<CallInst>(BBI);
 | 
						|
    if (CI && CI->getCalledFunction() == F)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (BBI == BB->begin())
 | 
						|
      return false;          // Didn't find a potential tail call.
 | 
						|
    --BBI;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this call is marked as a tail call, and if there are dynamic allocas in
 | 
						|
  // the function, we cannot perform this optimization.
 | 
						|
  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // As a special case, detect code like this:
 | 
						|
  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
 | 
						|
  // and disable this xform in this case, because the code generator will
 | 
						|
  // lower the call to fabs into inline code.
 | 
						|
  if (BB == &F->getEntryBlock() && 
 | 
						|
      &BB->front() == CI && &*++BB->begin() == Ret &&
 | 
						|
      callIsSmall(F)) {
 | 
						|
    // A single-block function with just a call and a return. Check that
 | 
						|
    // the arguments match.
 | 
						|
    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
 | 
						|
                           E = CallSite(CI).arg_end();
 | 
						|
    Function::arg_iterator FI = F->arg_begin(),
 | 
						|
                           FE = F->arg_end();
 | 
						|
    for (; I != E && FI != FE; ++I, ++FI)
 | 
						|
      if (*I != &*FI) break;
 | 
						|
    if (I == E && FI == FE)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are introducing accumulator recursion to eliminate associative
 | 
						|
  // operations after the call instruction, this variable contains the initial
 | 
						|
  // value for the accumulator.  If this value is set, we actually perform
 | 
						|
  // accumulator recursion elimination instead of simple tail recursion
 | 
						|
  // elimination.
 | 
						|
  Value *AccumulatorRecursionEliminationInitVal = 0;
 | 
						|
  Instruction *AccumulatorRecursionInstr = 0;
 | 
						|
 | 
						|
  // Ok, we found a potential tail call.  We can currently only transform the
 | 
						|
  // tail call if all of the instructions between the call and the return are
 | 
						|
  // movable to above the call itself, leaving the call next to the return.
 | 
						|
  // Check that this is the case now.
 | 
						|
  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
 | 
						|
    if (!CanMoveAboveCall(BBI, CI)) {
 | 
						|
      // If we can't move the instruction above the call, it might be because it
 | 
						|
      // is an associative operation that could be tranformed using accumulator
 | 
						|
      // recursion elimination.  Check to see if this is the case, and if so,
 | 
						|
      // remember the initial accumulator value for later.
 | 
						|
      if ((AccumulatorRecursionEliminationInitVal =
 | 
						|
                             CanTransformAccumulatorRecursion(BBI, CI))) {
 | 
						|
        // Yes, this is accumulator recursion.  Remember which instruction
 | 
						|
        // accumulates.
 | 
						|
        AccumulatorRecursionInstr = BBI;
 | 
						|
      } else {
 | 
						|
        return false;   // Otherwise, we cannot eliminate the tail recursion!
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // We can only transform call/return pairs that either ignore the return value
 | 
						|
  // of the call and return void, ignore the value of the call and return a
 | 
						|
  // constant, return the value returned by the tail call, or that are being
 | 
						|
  // accumulator recursion variable eliminated.
 | 
						|
  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
 | 
						|
      !isa<UndefValue>(Ret->getReturnValue()) &&
 | 
						|
      AccumulatorRecursionEliminationInitVal == 0 &&
 | 
						|
      !getCommonReturnValue(Ret, CI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // OK! We can transform this tail call.  If this is the first one found,
 | 
						|
  // create the new entry block, allowing us to branch back to the old entry.
 | 
						|
  if (OldEntry == 0) {
 | 
						|
    OldEntry = &F->getEntryBlock();
 | 
						|
    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
 | 
						|
    NewEntry->takeName(OldEntry);
 | 
						|
    OldEntry->setName("tailrecurse");
 | 
						|
    BranchInst::Create(OldEntry, NewEntry);
 | 
						|
 | 
						|
    // If this tail call is marked 'tail' and if there are any allocas in the
 | 
						|
    // entry block, move them up to the new entry block.
 | 
						|
    TailCallsAreMarkedTail = CI->isTailCall();
 | 
						|
    if (TailCallsAreMarkedTail)
 | 
						|
      // Move all fixed sized allocas from OldEntry to NewEntry.
 | 
						|
      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
 | 
						|
             NEBI = NewEntry->begin(); OEBI != E; )
 | 
						|
        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
 | 
						|
          if (isa<ConstantInt>(AI->getArraySize()))
 | 
						|
            AI->moveBefore(NEBI);
 | 
						|
 | 
						|
    // Now that we have created a new block, which jumps to the entry
 | 
						|
    // block, insert a PHI node for each argument of the function.
 | 
						|
    // For now, we initialize each PHI to only have the real arguments
 | 
						|
    // which are passed in.
 | 
						|
    Instruction *InsertPos = OldEntry->begin();
 | 
						|
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      PHINode *PN = PHINode::Create(I->getType(),
 | 
						|
                                    I->getName() + ".tr", InsertPos);
 | 
						|
      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
 | 
						|
      PN->addIncoming(I, NewEntry);
 | 
						|
      ArgumentPHIs.push_back(PN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this function has self recursive calls in the tail position where some
 | 
						|
  // are marked tail and some are not, only transform one flavor or another.  We
 | 
						|
  // have to choose whether we move allocas in the entry block to the new entry
 | 
						|
  // block or not, so we can't make a good choice for both.  NOTE: We could do
 | 
						|
  // slightly better here in the case that the function has no entry block
 | 
						|
  // allocas.
 | 
						|
  if (TailCallsAreMarkedTail && !CI->isTailCall())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ok, now that we know we have a pseudo-entry block WITH all of the
 | 
						|
  // required PHI nodes, add entries into the PHI node for the actual
 | 
						|
  // parameters passed into the tail-recursive call.
 | 
						|
  for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
 | 
						|
    ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
 | 
						|
 | 
						|
  // If we are introducing an accumulator variable to eliminate the recursion,
 | 
						|
  // do so now.  Note that we _know_ that no subsequent tail recursion
 | 
						|
  // eliminations will happen on this function because of the way the
 | 
						|
  // accumulator recursion predicate is set up.
 | 
						|
  //
 | 
						|
  if (AccumulatorRecursionEliminationInitVal) {
 | 
						|
    Instruction *AccRecInstr = AccumulatorRecursionInstr;
 | 
						|
    // Start by inserting a new PHI node for the accumulator.
 | 
						|
    PHINode *AccPN = PHINode::Create(AccRecInstr->getType(), "accumulator.tr",
 | 
						|
                                     OldEntry->begin());
 | 
						|
 | 
						|
    // Loop over all of the predecessors of the tail recursion block.  For the
 | 
						|
    // real entry into the function we seed the PHI with the initial value,
 | 
						|
    // computed earlier.  For any other existing branches to this block (due to
 | 
						|
    // other tail recursions eliminated) the accumulator is not modified.
 | 
						|
    // Because we haven't added the branch in the current block to OldEntry yet,
 | 
						|
    // it will not show up as a predecessor.
 | 
						|
    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
 | 
						|
         PI != PE; ++PI) {
 | 
						|
      if (*PI == &F->getEntryBlock())
 | 
						|
        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
 | 
						|
      else
 | 
						|
        AccPN->addIncoming(AccPN, *PI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add an incoming argument for the current block, which is computed by our
 | 
						|
    // associative accumulator instruction.
 | 
						|
    AccPN->addIncoming(AccRecInstr, BB);
 | 
						|
 | 
						|
    // Next, rewrite the accumulator recursion instruction so that it does not
 | 
						|
    // use the result of the call anymore, instead, use the PHI node we just
 | 
						|
    // inserted.
 | 
						|
    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
 | 
						|
 | 
						|
    // Finally, rewrite any return instructions in the program to return the PHI
 | 
						|
    // node instead of the "initval" that they do currently.  This loop will
 | 
						|
    // actually rewrite the return value we are destroying, but that's ok.
 | 
						|
    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
 | 
						|
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
 | 
						|
        RI->setOperand(0, AccPN);
 | 
						|
    ++NumAccumAdded;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all of the PHI nodes are in place, remove the call and
 | 
						|
  // ret instructions, replacing them with an unconditional branch.
 | 
						|
  BranchInst::Create(OldEntry, Ret);
 | 
						|
  BB->getInstList().erase(Ret);  // Remove return.
 | 
						|
  BB->getInstList().erase(CI);   // Remove call.
 | 
						|
  ++NumEliminated;
 | 
						|
  return true;
 | 
						|
}
 |