mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it. Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237169 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1180 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1180 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for load, store and alloca.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
 | |
| STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
 | |
| 
 | |
| /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
 | |
| /// some part of a constant global variable.  This intentionally only accepts
 | |
| /// constant expressions because we can't rewrite arbitrary instructions.
 | |
| static bool pointsToConstantGlobal(Value *V) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return GV->isConstant();
 | |
| 
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->getOpcode() == Instruction::BitCast ||
 | |
|         CE->getOpcode() == Instruction::AddrSpaceCast ||
 | |
|         CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return pointsToConstantGlobal(CE->getOperand(0));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | |
| /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | |
| /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | |
| /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
 | |
| /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | |
| /// the alloca, and if the source pointer is a pointer to a constant global, we
 | |
| /// can optimize this.
 | |
| static bool
 | |
| isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
 | |
|                                SmallVectorImpl<Instruction *> &ToDelete) {
 | |
|   // We track lifetime intrinsics as we encounter them.  If we decide to go
 | |
|   // ahead and replace the value with the global, this lets the caller quickly
 | |
|   // eliminate the markers.
 | |
| 
 | |
|   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
 | |
|   ValuesToInspect.push_back(std::make_pair(V, false));
 | |
|   while (!ValuesToInspect.empty()) {
 | |
|     auto ValuePair = ValuesToInspect.pop_back_val();
 | |
|     const bool IsOffset = ValuePair.second;
 | |
|     for (auto &U : ValuePair.first->uses()) {
 | |
|       Instruction *I = cast<Instruction>(U.getUser());
 | |
| 
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|         // Ignore non-volatile loads, they are always ok.
 | |
|         if (!LI->isSimple()) return false;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
 | |
|         // If uses of the bitcast are ok, we are ok.
 | |
|         ValuesToInspect.push_back(std::make_pair(I, IsOffset));
 | |
|         continue;
 | |
|       }
 | |
|       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|         // If the GEP has all zero indices, it doesn't offset the pointer. If it
 | |
|         // doesn't, it does.
 | |
|         ValuesToInspect.push_back(
 | |
|             std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (auto CS = CallSite(I)) {
 | |
|         // If this is the function being called then we treat it like a load and
 | |
|         // ignore it.
 | |
|         if (CS.isCallee(&U))
 | |
|           continue;
 | |
| 
 | |
|         // Inalloca arguments are clobbered by the call.
 | |
|         unsigned ArgNo = CS.getArgumentNo(&U);
 | |
|         if (CS.isInAllocaArgument(ArgNo))
 | |
|           return false;
 | |
| 
 | |
|         // If this is a readonly/readnone call site, then we know it is just a
 | |
|         // load (but one that potentially returns the value itself), so we can
 | |
|         // ignore it if we know that the value isn't captured.
 | |
|         if (CS.onlyReadsMemory() &&
 | |
|             (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
 | |
|           continue;
 | |
| 
 | |
|         // If this is being passed as a byval argument, the caller is making a
 | |
|         // copy, so it is only a read of the alloca.
 | |
|         if (CS.isByValArgument(ArgNo))
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       // Lifetime intrinsics can be handled by the caller.
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|             II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|           assert(II->use_empty() && "Lifetime markers have no result to use!");
 | |
|           ToDelete.push_back(II);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this is isn't our memcpy/memmove, reject it as something we can't
 | |
|       // handle.
 | |
|       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
 | |
|       if (!MI)
 | |
|         return false;
 | |
| 
 | |
|       // If the transfer is using the alloca as a source of the transfer, then
 | |
|       // ignore it since it is a load (unless the transfer is volatile).
 | |
|       if (U.getOperandNo() == 1) {
 | |
|         if (MI->isVolatile()) return false;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we already have seen a copy, reject the second one.
 | |
|       if (TheCopy) return false;
 | |
| 
 | |
|       // If the pointer has been offset from the start of the alloca, we can't
 | |
|       // safely handle this.
 | |
|       if (IsOffset) return false;
 | |
| 
 | |
|       // If the memintrinsic isn't using the alloca as the dest, reject it.
 | |
|       if (U.getOperandNo() != 0) return false;
 | |
| 
 | |
|       // If the source of the memcpy/move is not a constant global, reject it.
 | |
|       if (!pointsToConstantGlobal(MI->getSource()))
 | |
|         return false;
 | |
| 
 | |
|       // Otherwise, the transform is safe.  Remember the copy instruction.
 | |
|       TheCopy = MI;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | |
| /// modified by a copy from a constant global.  If we can prove this, we can
 | |
| /// replace any uses of the alloca with uses of the global directly.
 | |
| static MemTransferInst *
 | |
| isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
 | |
|                                SmallVectorImpl<Instruction *> &ToDelete) {
 | |
|   MemTransferInst *TheCopy = nullptr;
 | |
|   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
 | |
|     return TheCopy;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
 | |
|   // Check for array size of 1 (scalar allocation).
 | |
|   if (!AI.isArrayAllocation()) {
 | |
|     // i32 1 is the canonical array size for scalar allocations.
 | |
|     if (AI.getArraySize()->getType()->isIntegerTy(32))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Canonicalize it.
 | |
|     Value *V = IC.Builder->getInt32(1);
 | |
|     AI.setOperand(0, V);
 | |
|     return &AI;
 | |
|   }
 | |
| 
 | |
|   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
 | |
|   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
 | |
|     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
 | |
|     AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
 | |
|     New->setAlignment(AI.getAlignment());
 | |
| 
 | |
|     // Scan to the end of the allocation instructions, to skip over a block of
 | |
|     // allocas if possible...also skip interleaved debug info
 | |
|     //
 | |
|     BasicBlock::iterator It = New;
 | |
|     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
 | |
|       ++It;
 | |
| 
 | |
|     // Now that I is pointing to the first non-allocation-inst in the block,
 | |
|     // insert our getelementptr instruction...
 | |
|     //
 | |
|     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
 | |
|     Value *NullIdx = Constant::getNullValue(IdxTy);
 | |
|     Value *Idx[2] = {NullIdx, NullIdx};
 | |
|     Instruction *GEP =
 | |
|         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
 | |
|     IC.InsertNewInstBefore(GEP, *It);
 | |
| 
 | |
|     // Now make everything use the getelementptr instead of the original
 | |
|     // allocation.
 | |
|     return IC.ReplaceInstUsesWith(AI, GEP);
 | |
|   }
 | |
| 
 | |
|   if (isa<UndefValue>(AI.getArraySize()))
 | |
|     return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
| 
 | |
|   // Ensure that the alloca array size argument has type intptr_t, so that
 | |
|   // any casting is exposed early.
 | |
|   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
 | |
|   if (AI.getArraySize()->getType() != IntPtrTy) {
 | |
|     Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
 | |
|     AI.setOperand(0, V);
 | |
|     return &AI;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
 | |
|   if (auto *I = simplifyAllocaArraySize(*this, AI))
 | |
|     return I;
 | |
| 
 | |
|   if (AI.getAllocatedType()->isSized()) {
 | |
|     // If the alignment is 0 (unspecified), assign it the preferred alignment.
 | |
|     if (AI.getAlignment() == 0)
 | |
|       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
 | |
| 
 | |
|     // Move all alloca's of zero byte objects to the entry block and merge them
 | |
|     // together.  Note that we only do this for alloca's, because malloc should
 | |
|     // allocate and return a unique pointer, even for a zero byte allocation.
 | |
|     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
 | |
|       // For a zero sized alloca there is no point in doing an array allocation.
 | |
|       // This is helpful if the array size is a complicated expression not used
 | |
|       // elsewhere.
 | |
|       if (AI.isArrayAllocation()) {
 | |
|         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
 | |
|         return &AI;
 | |
|       }
 | |
| 
 | |
|       // Get the first instruction in the entry block.
 | |
|       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
 | |
|       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
 | |
|       if (FirstInst != &AI) {
 | |
|         // If the entry block doesn't start with a zero-size alloca then move
 | |
|         // this one to the start of the entry block.  There is no problem with
 | |
|         // dominance as the array size was forced to a constant earlier already.
 | |
|         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
 | |
|         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
 | |
|             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
 | |
|           AI.moveBefore(FirstInst);
 | |
|           return &AI;
 | |
|         }
 | |
| 
 | |
|         // If the alignment of the entry block alloca is 0 (unspecified),
 | |
|         // assign it the preferred alignment.
 | |
|         if (EntryAI->getAlignment() == 0)
 | |
|           EntryAI->setAlignment(
 | |
|               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
 | |
|         // Replace this zero-sized alloca with the one at the start of the entry
 | |
|         // block after ensuring that the address will be aligned enough for both
 | |
|         // types.
 | |
|         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
 | |
|                                      AI.getAlignment());
 | |
|         EntryAI->setAlignment(MaxAlign);
 | |
|         if (AI.getType() != EntryAI->getType())
 | |
|           return new BitCastInst(EntryAI, AI.getType());
 | |
|         return ReplaceInstUsesWith(AI, EntryAI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (AI.getAlignment()) {
 | |
|     // Check to see if this allocation is only modified by a memcpy/memmove from
 | |
|     // a constant global whose alignment is equal to or exceeds that of the
 | |
|     // allocation.  If this is the case, we can change all users to use
 | |
|     // the constant global instead.  This is commonly produced by the CFE by
 | |
|     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
 | |
|     // is only subsequently read.
 | |
|     SmallVector<Instruction *, 4> ToDelete;
 | |
|     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
 | |
|       unsigned SourceAlign = getOrEnforceKnownAlignment(
 | |
|           Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
 | |
|       if (AI.getAlignment() <= SourceAlign) {
 | |
|         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
 | |
|         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
 | |
|         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
 | |
|           EraseInstFromFunction(*ToDelete[i]);
 | |
|         Constant *TheSrc = cast<Constant>(Copy->getSource());
 | |
|         Constant *Cast
 | |
|           = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
 | |
|         Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
 | |
|         EraseInstFromFunction(*Copy);
 | |
|         ++NumGlobalCopies;
 | |
|         return NewI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At last, use the generic allocation site handler to aggressively remove
 | |
|   // unused allocas.
 | |
|   return visitAllocSite(AI);
 | |
| }
 | |
| 
 | |
| /// \brief Helper to combine a load to a new type.
 | |
| ///
 | |
| /// This just does the work of combining a load to a new type. It handles
 | |
| /// metadata, etc., and returns the new instruction. The \c NewTy should be the
 | |
| /// loaded *value* type. This will convert it to a pointer, cast the operand to
 | |
| /// that pointer type, load it, etc.
 | |
| ///
 | |
| /// Note that this will create all of the instructions with whatever insert
 | |
| /// point the \c InstCombiner currently is using.
 | |
| static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
 | |
|                                       const Twine &Suffix = "") {
 | |
|   Value *Ptr = LI.getPointerOperand();
 | |
|   unsigned AS = LI.getPointerAddressSpace();
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
 | |
|   LI.getAllMetadata(MD);
 | |
| 
 | |
|   LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
 | |
|       IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
 | |
|       LI.getAlignment(), LI.getName() + Suffix);
 | |
|   MDBuilder MDB(NewLoad->getContext());
 | |
|   for (const auto &MDPair : MD) {
 | |
|     unsigned ID = MDPair.first;
 | |
|     MDNode *N = MDPair.second;
 | |
|     // Note, essentially every kind of metadata should be preserved here! This
 | |
|     // routine is supposed to clone a load instruction changing *only its type*.
 | |
|     // The only metadata it makes sense to drop is metadata which is invalidated
 | |
|     // when the pointer type changes. This should essentially never be the case
 | |
|     // in LLVM, but we explicitly switch over only known metadata to be
 | |
|     // conservatively correct. If you are adding metadata to LLVM which pertains
 | |
|     // to loads, you almost certainly want to add it here.
 | |
|     switch (ID) {
 | |
|     case LLVMContext::MD_dbg:
 | |
|     case LLVMContext::MD_tbaa:
 | |
|     case LLVMContext::MD_prof:
 | |
|     case LLVMContext::MD_fpmath:
 | |
|     case LLVMContext::MD_tbaa_struct:
 | |
|     case LLVMContext::MD_invariant_load:
 | |
|     case LLVMContext::MD_alias_scope:
 | |
|     case LLVMContext::MD_noalias:
 | |
|     case LLVMContext::MD_nontemporal:
 | |
|     case LLVMContext::MD_mem_parallel_loop_access:
 | |
|       // All of these directly apply.
 | |
|       NewLoad->setMetadata(ID, N);
 | |
|       break;
 | |
| 
 | |
|     case LLVMContext::MD_nonnull:
 | |
|       // This only directly applies if the new type is also a pointer.
 | |
|       if (NewTy->isPointerTy()) {
 | |
|         NewLoad->setMetadata(ID, N);
 | |
|         break;
 | |
|       }
 | |
|       // If it's integral now, translate it to !range metadata.
 | |
|       if (NewTy->isIntegerTy()) {
 | |
|         auto *ITy = cast<IntegerType>(NewTy);
 | |
|         auto *NullInt = ConstantExpr::getPtrToInt(
 | |
|             ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
 | |
|         auto *NonNullInt =
 | |
|             ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
 | |
|         NewLoad->setMetadata(LLVMContext::MD_range,
 | |
|                              MDB.createRange(NonNullInt, NullInt));
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case LLVMContext::MD_range:
 | |
|       // FIXME: It would be nice to propagate this in some way, but the type
 | |
|       // conversions make it hard. If the new type is a pointer, we could
 | |
|       // translate it to !nonnull metadata.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return NewLoad;
 | |
| }
 | |
| 
 | |
| /// \brief Combine a store to a new type.
 | |
| ///
 | |
| /// Returns the newly created store instruction.
 | |
| static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
 | |
|   Value *Ptr = SI.getPointerOperand();
 | |
|   unsigned AS = SI.getPointerAddressSpace();
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
 | |
|   SI.getAllMetadata(MD);
 | |
| 
 | |
|   StoreInst *NewStore = IC.Builder->CreateAlignedStore(
 | |
|       V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
 | |
|       SI.getAlignment());
 | |
|   for (const auto &MDPair : MD) {
 | |
|     unsigned ID = MDPair.first;
 | |
|     MDNode *N = MDPair.second;
 | |
|     // Note, essentially every kind of metadata should be preserved here! This
 | |
|     // routine is supposed to clone a store instruction changing *only its
 | |
|     // type*. The only metadata it makes sense to drop is metadata which is
 | |
|     // invalidated when the pointer type changes. This should essentially
 | |
|     // never be the case in LLVM, but we explicitly switch over only known
 | |
|     // metadata to be conservatively correct. If you are adding metadata to
 | |
|     // LLVM which pertains to stores, you almost certainly want to add it
 | |
|     // here.
 | |
|     switch (ID) {
 | |
|     case LLVMContext::MD_dbg:
 | |
|     case LLVMContext::MD_tbaa:
 | |
|     case LLVMContext::MD_prof:
 | |
|     case LLVMContext::MD_fpmath:
 | |
|     case LLVMContext::MD_tbaa_struct:
 | |
|     case LLVMContext::MD_alias_scope:
 | |
|     case LLVMContext::MD_noalias:
 | |
|     case LLVMContext::MD_nontemporal:
 | |
|     case LLVMContext::MD_mem_parallel_loop_access:
 | |
|       // All of these directly apply.
 | |
|       NewStore->setMetadata(ID, N);
 | |
|       break;
 | |
| 
 | |
|     case LLVMContext::MD_invariant_load:
 | |
|     case LLVMContext::MD_nonnull:
 | |
|     case LLVMContext::MD_range:
 | |
|       // These don't apply for stores.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewStore;
 | |
| }
 | |
| 
 | |
| /// \brief Combine loads to match the type of value their uses after looking
 | |
| /// through intervening bitcasts.
 | |
| ///
 | |
| /// The core idea here is that if the result of a load is used in an operation,
 | |
| /// we should load the type most conducive to that operation. For example, when
 | |
| /// loading an integer and converting that immediately to a pointer, we should
 | |
| /// instead directly load a pointer.
 | |
| ///
 | |
| /// However, this routine must never change the width of a load or the number of
 | |
| /// loads as that would introduce a semantic change. This combine is expected to
 | |
| /// be a semantic no-op which just allows loads to more closely model the types
 | |
| /// of their consuming operations.
 | |
| ///
 | |
| /// Currently, we also refuse to change the precise type used for an atomic load
 | |
| /// or a volatile load. This is debatable, and might be reasonable to change
 | |
| /// later. However, it is risky in case some backend or other part of LLVM is
 | |
| /// relying on the exact type loaded to select appropriate atomic operations.
 | |
| static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
 | |
|   // FIXME: We could probably with some care handle both volatile and atomic
 | |
|   // loads here but it isn't clear that this is important.
 | |
|   if (!LI.isSimple())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (LI.use_empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *Ty = LI.getType();
 | |
|   const DataLayout &DL = IC.getDataLayout();
 | |
| 
 | |
|   // Try to canonicalize loads which are only ever stored to operate over
 | |
|   // integers instead of any other type. We only do this when the loaded type
 | |
|   // is sized and has a size exactly the same as its store size and the store
 | |
|   // size is a legal integer type.
 | |
|   if (!Ty->isIntegerTy() && Ty->isSized() &&
 | |
|       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
 | |
|       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
 | |
|     if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
 | |
|           auto *SI = dyn_cast<StoreInst>(U);
 | |
|           return SI && SI->getPointerOperand() != &LI;
 | |
|         })) {
 | |
|       LoadInst *NewLoad = combineLoadToNewType(
 | |
|           IC, LI,
 | |
|           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
 | |
|       // Replace all the stores with stores of the newly loaded value.
 | |
|       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
 | |
|         auto *SI = cast<StoreInst>(*UI++);
 | |
|         IC.Builder->SetInsertPoint(SI);
 | |
|         combineStoreToNewValue(IC, *SI, NewLoad);
 | |
|         IC.EraseInstFromFunction(*SI);
 | |
|       }
 | |
|       assert(LI.use_empty() && "Failed to remove all users of the load!");
 | |
|       // Return the old load so the combiner can delete it safely.
 | |
|       return &LI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fold away bit casts of the loaded value by loading the desired type.
 | |
|   if (LI.hasOneUse())
 | |
|     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
 | |
|       LoadInst *NewLoad = combineLoadToNewType(IC, LI, BC->getDestTy());
 | |
|       BC->replaceAllUsesWith(NewLoad);
 | |
|       IC.EraseInstFromFunction(*BC);
 | |
|       return &LI;
 | |
|     }
 | |
| 
 | |
|   // FIXME: We should also canonicalize loads of vectors when their elements are
 | |
|   // cast to other types.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
 | |
|   // FIXME: We could probably with some care handle both volatile and atomic
 | |
|   // stores here but it isn't clear that this is important.
 | |
|   if (!LI.isSimple())
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *T = LI.getType();
 | |
|   if (!T->isAggregateType())
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(LI.getAlignment() && "Alignement must be set at this point");
 | |
| 
 | |
|   if (auto *ST = dyn_cast<StructType>(T)) {
 | |
|     // If the struct only have one element, we unpack.
 | |
|     if (ST->getNumElements() == 1) {
 | |
|       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
 | |
|                                                ".unpack");
 | |
|       return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
 | |
|         UndefValue::get(T), NewLoad, 0, LI.getName()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *AT = dyn_cast<ArrayType>(T)) {
 | |
|     // If the array only have one element, we unpack.
 | |
|     if (AT->getNumElements() == 1) {
 | |
|       LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(),
 | |
|                                                ".unpack");
 | |
|       return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
 | |
|         UndefValue::get(T), NewLoad, 0, LI.getName()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // If we can determine that all possible objects pointed to by the provided
 | |
| // pointer value are, not only dereferenceable, but also definitively less than
 | |
| // or equal to the provided maximum size, then return true. Otherwise, return
 | |
| // false (constant global values and allocas fall into this category).
 | |
| //
 | |
| // FIXME: This should probably live in ValueTracking (or similar).
 | |
| static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
 | |
|                                      const DataLayout &DL) {
 | |
|   SmallPtrSet<Value *, 4> Visited;
 | |
|   SmallVector<Value *, 4> Worklist(1, V);
 | |
| 
 | |
|   do {
 | |
|     Value *P = Worklist.pop_back_val();
 | |
|     P = P->stripPointerCasts();
 | |
| 
 | |
|     if (!Visited.insert(P).second)
 | |
|       continue;
 | |
| 
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
 | |
|       Worklist.push_back(SI->getTrueValue());
 | |
|       Worklist.push_back(SI->getFalseValue());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(P)) {
 | |
|       for (Value *IncValue : PN->incoming_values())
 | |
|         Worklist.push_back(IncValue);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
 | |
|       if (GA->mayBeOverridden())
 | |
|         return false;
 | |
|       Worklist.push_back(GA->getAliasee());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we know how big this object is, and it is less than MaxSize, continue
 | |
|     // searching. Otherwise, return false.
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
 | |
|       if (!AI->getAllocatedType()->isSized())
 | |
|         return false;
 | |
| 
 | |
|       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
 | |
|       if (!CS)
 | |
|         return false;
 | |
| 
 | |
|       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
 | |
|       // Make sure that, even if the multiplication below would wrap as an
 | |
|       // uint64_t, we still do the right thing.
 | |
|       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
 | |
|       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
 | |
|         return false;
 | |
| 
 | |
|       uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
 | |
|       if (InitSize > MaxSize)
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If we're indexing into an object of a known size, and the outer index is
 | |
| // not a constant, but having any value but zero would lead to undefined
 | |
| // behavior, replace it with zero.
 | |
| //
 | |
| // For example, if we have:
 | |
| // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
 | |
| // ...
 | |
| // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
 | |
| // ... = load i32* %arrayidx, align 4
 | |
| // Then we know that we can replace %x in the GEP with i64 0.
 | |
| //
 | |
| // FIXME: We could fold any GEP index to zero that would cause UB if it were
 | |
| // not zero. Currently, we only handle the first such index. Also, we could
 | |
| // also search through non-zero constant indices if we kept track of the
 | |
| // offsets those indices implied.
 | |
| static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
 | |
|                                      Instruction *MemI, unsigned &Idx) {
 | |
|   if (GEPI->getNumOperands() < 2)
 | |
|     return false;
 | |
| 
 | |
|   // Find the first non-zero index of a GEP. If all indices are zero, return
 | |
|   // one past the last index.
 | |
|   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
 | |
|     unsigned I = 1;
 | |
|     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
 | |
|       Value *V = GEPI->getOperand(I);
 | |
|       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|         if (CI->isZero())
 | |
|           continue;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return I;
 | |
|   };
 | |
| 
 | |
|   // Skip through initial 'zero' indices, and find the corresponding pointer
 | |
|   // type. See if the next index is not a constant.
 | |
|   Idx = FirstNZIdx(GEPI);
 | |
|   if (Idx == GEPI->getNumOperands())
 | |
|     return false;
 | |
|   if (isa<Constant>(GEPI->getOperand(Idx)))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
 | |
|   Type *AllocTy = GetElementPtrInst::getIndexedType(
 | |
|       cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType())
 | |
|           ->getElementType(),
 | |
|       Ops);
 | |
|   if (!AllocTy || !AllocTy->isSized())
 | |
|     return false;
 | |
|   const DataLayout &DL = IC.getDataLayout();
 | |
|   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
 | |
| 
 | |
|   // If there are more indices after the one we might replace with a zero, make
 | |
|   // sure they're all non-negative. If any of them are negative, the overall
 | |
|   // address being computed might be before the base address determined by the
 | |
|   // first non-zero index.
 | |
|   auto IsAllNonNegative = [&]() {
 | |
|     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
 | |
|       bool KnownNonNegative, KnownNegative;
 | |
|       IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
 | |
|                         KnownNegative, 0, MemI);
 | |
|       if (KnownNonNegative)
 | |
|         continue;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // FIXME: If the GEP is not inbounds, and there are extra indices after the
 | |
|   // one we'll replace, those could cause the address computation to wrap
 | |
|   // (rendering the IsAllNonNegative() check below insufficient). We can do
 | |
|   // better, ignoring zero indicies (and other indicies we can prove small
 | |
|   // enough not to wrap).
 | |
|   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
 | |
|     return false;
 | |
| 
 | |
|   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
 | |
|   // also known to be dereferenceable.
 | |
|   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
 | |
|          IsAllNonNegative();
 | |
| }
 | |
| 
 | |
| // If we're indexing into an object with a variable index for the memory
 | |
| // access, but the object has only one element, we can assume that the index
 | |
| // will always be zero. If we replace the GEP, return it.
 | |
| template <typename T>
 | |
| static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
 | |
|                                           T &MemI) {
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
 | |
|     unsigned Idx;
 | |
|     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
 | |
|       Instruction *NewGEPI = GEPI->clone();
 | |
|       NewGEPI->setOperand(Idx,
 | |
|         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
 | |
|       NewGEPI->insertBefore(GEPI);
 | |
|       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
 | |
|       return NewGEPI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | |
|   Value *Op = LI.getOperand(0);
 | |
| 
 | |
|   // Try to canonicalize the loaded type.
 | |
|   if (Instruction *Res = combineLoadToOperationType(*this, LI))
 | |
|     return Res;
 | |
| 
 | |
|   // Attempt to improve the alignment.
 | |
|   unsigned KnownAlign = getOrEnforceKnownAlignment(
 | |
|       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
 | |
|   unsigned LoadAlign = LI.getAlignment();
 | |
|   unsigned EffectiveLoadAlign =
 | |
|       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
 | |
| 
 | |
|   if (KnownAlign > EffectiveLoadAlign)
 | |
|     LI.setAlignment(KnownAlign);
 | |
|   else if (LoadAlign == 0)
 | |
|     LI.setAlignment(EffectiveLoadAlign);
 | |
| 
 | |
|   // Replace GEP indices if possible.
 | |
|   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
 | |
|       Worklist.Add(NewGEPI);
 | |
|       return &LI;
 | |
|   }
 | |
| 
 | |
|   // None of the following transforms are legal for volatile/atomic loads.
 | |
|   // FIXME: Some of it is okay for atomic loads; needs refactoring.
 | |
|   if (!LI.isSimple()) return nullptr;
 | |
| 
 | |
|   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
 | |
|     return Res;
 | |
| 
 | |
|   // Do really simple store-to-load forwarding and load CSE, to catch cases
 | |
|   // where there are several consecutive memory accesses to the same location,
 | |
|   // separated by a few arithmetic operations.
 | |
|   BasicBlock::iterator BBI = &LI;
 | |
|   if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
 | |
|     return ReplaceInstUsesWith(
 | |
|         LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
 | |
|                                             LI.getName() + ".cast"));
 | |
| 
 | |
|   // load(gep null, ...) -> unreachable
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
 | |
|     const Value *GEPI0 = GEPI->getOperand(0);
 | |
|     // TODO: Consider a target hook for valid address spaces for this xform.
 | |
|     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
 | |
|       // Insert a new store to null instruction before the load to indicate
 | |
|       // that this code is not reachable.  We do this instead of inserting
 | |
|       // an unreachable instruction directly because we cannot modify the
 | |
|       // CFG.
 | |
|       new StoreInst(UndefValue::get(LI.getType()),
 | |
|                     Constant::getNullValue(Op->getType()), &LI);
 | |
|       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // load null/undef -> unreachable
 | |
|   // TODO: Consider a target hook for valid address spaces for this xform.
 | |
|   if (isa<UndefValue>(Op) ||
 | |
|       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
 | |
|     // Insert a new store to null instruction before the load to indicate that
 | |
|     // this code is not reachable.  We do this instead of inserting an
 | |
|     // unreachable instruction directly because we cannot modify the CFG.
 | |
|     new StoreInst(UndefValue::get(LI.getType()),
 | |
|                   Constant::getNullValue(Op->getType()), &LI);
 | |
|     return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|   }
 | |
| 
 | |
|   if (Op->hasOneUse()) {
 | |
|     // Change select and PHI nodes to select values instead of addresses: this
 | |
|     // helps alias analysis out a lot, allows many others simplifications, and
 | |
|     // exposes redundancy in the code.
 | |
|     //
 | |
|     // Note that we cannot do the transformation unless we know that the
 | |
|     // introduced loads cannot trap!  Something like this is valid as long as
 | |
|     // the condition is always false: load (select bool %C, int* null, int* %G),
 | |
|     // but it would not be valid if we transformed it to load from null
 | |
|     // unconditionally.
 | |
|     //
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | |
|       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | |
|       unsigned Align = LI.getAlignment();
 | |
|       if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
 | |
|           isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
 | |
|         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
 | |
|                                            SI->getOperand(1)->getName()+".val");
 | |
|         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
 | |
|                                            SI->getOperand(2)->getName()+".val");
 | |
|         V1->setAlignment(Align);
 | |
|         V2->setAlignment(Align);
 | |
|         return SelectInst::Create(SI->getCondition(), V1, V2);
 | |
|       }
 | |
| 
 | |
|       // load (select (cond, null, P)) -> load P
 | |
|       if (isa<ConstantPointerNull>(SI->getOperand(1)) && 
 | |
|           LI.getPointerAddressSpace() == 0) {
 | |
|         LI.setOperand(0, SI->getOperand(2));
 | |
|         return &LI;
 | |
|       }
 | |
| 
 | |
|       // load (select (cond, P, null)) -> load P
 | |
|       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
 | |
|           LI.getPointerAddressSpace() == 0) {
 | |
|         LI.setOperand(0, SI->getOperand(1));
 | |
|         return &LI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Combine stores to match the type of value being stored.
 | |
| ///
 | |
| /// The core idea here is that the memory does not have any intrinsic type and
 | |
| /// where we can we should match the type of a store to the type of value being
 | |
| /// stored.
 | |
| ///
 | |
| /// However, this routine must never change the width of a store or the number of
 | |
| /// stores as that would introduce a semantic change. This combine is expected to
 | |
| /// be a semantic no-op which just allows stores to more closely model the types
 | |
| /// of their incoming values.
 | |
| ///
 | |
| /// Currently, we also refuse to change the precise type used for an atomic or
 | |
| /// volatile store. This is debatable, and might be reasonable to change later.
 | |
| /// However, it is risky in case some backend or other part of LLVM is relying
 | |
| /// on the exact type stored to select appropriate atomic operations.
 | |
| ///
 | |
| /// \returns true if the store was successfully combined away. This indicates
 | |
| /// the caller must erase the store instruction. We have to let the caller erase
 | |
| /// the store instruction sas otherwise there is no way to signal whether it was
 | |
| /// combined or not: IC.EraseInstFromFunction returns a null pointer.
 | |
| static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
 | |
|   // FIXME: We could probably with some care handle both volatile and atomic
 | |
|   // stores here but it isn't clear that this is important.
 | |
|   if (!SI.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   Value *V = SI.getValueOperand();
 | |
| 
 | |
|   // Fold away bit casts of the stored value by storing the original type.
 | |
|   if (auto *BC = dyn_cast<BitCastInst>(V)) {
 | |
|     V = BC->getOperand(0);
 | |
|     combineStoreToNewValue(IC, SI, V);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: We should also canonicalize loads of vectors when their elements are
 | |
|   // cast to other types.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
 | |
|   // FIXME: We could probably with some care handle both volatile and atomic
 | |
|   // stores here but it isn't clear that this is important.
 | |
|   if (!SI.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   Value *V = SI.getValueOperand();
 | |
|   Type *T = V->getType();
 | |
| 
 | |
|   if (!T->isAggregateType())
 | |
|     return false;
 | |
| 
 | |
|   if (auto *ST = dyn_cast<StructType>(T)) {
 | |
|     // If the struct only have one element, we unpack.
 | |
|     if (ST->getNumElements() == 1) {
 | |
|       V = IC.Builder->CreateExtractValue(V, 0);
 | |
|       combineStoreToNewValue(IC, SI, V);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *AT = dyn_cast<ArrayType>(T)) {
 | |
|     // If the array only have one element, we unpack.
 | |
|     if (AT->getNumElements() == 1) {
 | |
|       V = IC.Builder->CreateExtractValue(V, 0);
 | |
|       combineStoreToNewValue(IC, SI, V);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// equivalentAddressValues - Test if A and B will obviously have the same
 | |
| /// value. This includes recognizing that %t0 and %t1 will have the same
 | |
| /// value in code like this:
 | |
| ///   %t0 = getelementptr \@a, 0, 3
 | |
| ///   store i32 0, i32* %t0
 | |
| ///   %t1 = getelementptr \@a, 0, 3
 | |
| ///   %t2 = load i32* %t1
 | |
| ///
 | |
| static bool equivalentAddressValues(Value *A, Value *B) {
 | |
|   // Test if the values are trivially equivalent.
 | |
|   if (A == B) return true;
 | |
| 
 | |
|   // Test if the values come form identical arithmetic instructions.
 | |
|   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
 | |
|   // its only used to compare two uses within the same basic block, which
 | |
|   // means that they'll always either have the same value or one of them
 | |
|   // will have an undefined value.
 | |
|   if (isa<BinaryOperator>(A) ||
 | |
|       isa<CastInst>(A) ||
 | |
|       isa<PHINode>(A) ||
 | |
|       isa<GetElementPtrInst>(A))
 | |
|     if (Instruction *BI = dyn_cast<Instruction>(B))
 | |
|       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | |
|         return true;
 | |
| 
 | |
|   // Otherwise they may not be equivalent.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 | |
|   Value *Val = SI.getOperand(0);
 | |
|   Value *Ptr = SI.getOperand(1);
 | |
| 
 | |
|   // Try to canonicalize the stored type.
 | |
|   if (combineStoreToValueType(*this, SI))
 | |
|     return EraseInstFromFunction(SI);
 | |
| 
 | |
|   // Attempt to improve the alignment.
 | |
|   unsigned KnownAlign = getOrEnforceKnownAlignment(
 | |
|       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
 | |
|   unsigned StoreAlign = SI.getAlignment();
 | |
|   unsigned EffectiveStoreAlign =
 | |
|       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
 | |
| 
 | |
|   if (KnownAlign > EffectiveStoreAlign)
 | |
|     SI.setAlignment(KnownAlign);
 | |
|   else if (StoreAlign == 0)
 | |
|     SI.setAlignment(EffectiveStoreAlign);
 | |
| 
 | |
|   // Try to canonicalize the stored type.
 | |
|   if (unpackStoreToAggregate(*this, SI))
 | |
|     return EraseInstFromFunction(SI);
 | |
| 
 | |
|   // Replace GEP indices if possible.
 | |
|   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
 | |
|       Worklist.Add(NewGEPI);
 | |
|       return &SI;
 | |
|   }
 | |
| 
 | |
|   // Don't hack volatile/atomic stores.
 | |
|   // FIXME: Some bits are legal for atomic stores; needs refactoring.
 | |
|   if (!SI.isSimple()) return nullptr;
 | |
| 
 | |
|   // If the RHS is an alloca with a single use, zapify the store, making the
 | |
|   // alloca dead.
 | |
|   if (Ptr->hasOneUse()) {
 | |
|     if (isa<AllocaInst>(Ptr))
 | |
|       return EraseInstFromFunction(SI);
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
 | |
|       if (isa<AllocaInst>(GEP->getOperand(0))) {
 | |
|         if (GEP->getOperand(0)->hasOneUse())
 | |
|           return EraseInstFromFunction(SI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Do really simple DSE, to catch cases where there are several consecutive
 | |
|   // stores to the same location, separated by a few arithmetic operations. This
 | |
|   // situation often occurs with bitfield accesses.
 | |
|   BasicBlock::iterator BBI = &SI;
 | |
|   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
 | |
|        --ScanInsts) {
 | |
|     --BBI;
 | |
|     // Don't count debug info directives, lest they affect codegen,
 | |
|     // and we skip pointer-to-pointer bitcasts, which are NOPs.
 | |
|     if (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | |
|       ScanInsts++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
 | |
|       // Prev store isn't volatile, and stores to the same location?
 | |
|       if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
 | |
|                                                         SI.getOperand(1))) {
 | |
|         ++NumDeadStore;
 | |
|         ++BBI;
 | |
|         EraseInstFromFunction(*PrevSI);
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is a load, we have to stop.  However, if the loaded value is from
 | |
|     // the pointer we're loading and is producing the pointer we're storing,
 | |
|     // then *this* store is dead (X = load P; store X -> P).
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
 | |
|           LI->isSimple())
 | |
|         return EraseInstFromFunction(SI);
 | |
| 
 | |
|       // Otherwise, this is a load from some other location.  Stores before it
 | |
|       // may not be dead.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Don't skip over loads or things that can modify memory.
 | |
|     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | |
|   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
 | |
|     if (!isa<UndefValue>(Val)) {
 | |
|       SI.setOperand(0, UndefValue::get(Val->getType()));
 | |
|       if (Instruction *U = dyn_cast<Instruction>(Val))
 | |
|         Worklist.Add(U);  // Dropped a use.
 | |
|     }
 | |
|     return nullptr;  // Do not modify these!
 | |
|   }
 | |
| 
 | |
|   // store undef, Ptr -> noop
 | |
|   if (isa<UndefValue>(Val))
 | |
|     return EraseInstFromFunction(SI);
 | |
| 
 | |
|   // If this store is the last instruction in the basic block (possibly
 | |
|   // excepting debug info instructions), and if the block ends with an
 | |
|   // unconditional branch, try to move it to the successor block.
 | |
|   BBI = &SI;
 | |
|   do {
 | |
|     ++BBI;
 | |
|   } while (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
 | |
|     if (BI->isUnconditional())
 | |
|       if (SimplifyStoreAtEndOfBlock(SI))
 | |
|         return nullptr;  // xform done!
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// SimplifyStoreAtEndOfBlock - Turn things like:
 | |
| ///   if () { *P = v1; } else { *P = v2 }
 | |
| /// into a phi node with a store in the successor.
 | |
| ///
 | |
| /// Simplify things like:
 | |
| ///   *P = v1; if () { *P = v2; }
 | |
| /// into a phi node with a store in the successor.
 | |
| ///
 | |
| bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
 | |
|   BasicBlock *StoreBB = SI.getParent();
 | |
| 
 | |
|   // Check to see if the successor block has exactly two incoming edges.  If
 | |
|   // so, see if the other predecessor contains a store to the same location.
 | |
|   // if so, insert a PHI node (if needed) and move the stores down.
 | |
|   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
 | |
| 
 | |
|   // Determine whether Dest has exactly two predecessors and, if so, compute
 | |
|   // the other predecessor.
 | |
|   pred_iterator PI = pred_begin(DestBB);
 | |
|   BasicBlock *P = *PI;
 | |
|   BasicBlock *OtherBB = nullptr;
 | |
| 
 | |
|   if (P != StoreBB)
 | |
|     OtherBB = P;
 | |
| 
 | |
|   if (++PI == pred_end(DestBB))
 | |
|     return false;
 | |
| 
 | |
|   P = *PI;
 | |
|   if (P != StoreBB) {
 | |
|     if (OtherBB)
 | |
|       return false;
 | |
|     OtherBB = P;
 | |
|   }
 | |
|   if (++PI != pred_end(DestBB))
 | |
|     return false;
 | |
| 
 | |
|   // Bail out if all the relevant blocks aren't distinct (this can happen,
 | |
|   // for example, if SI is in an infinite loop)
 | |
|   if (StoreBB == DestBB || OtherBB == DestBB)
 | |
|     return false;
 | |
| 
 | |
|   // Verify that the other block ends in a branch and is not otherwise empty.
 | |
|   BasicBlock::iterator BBI = OtherBB->getTerminator();
 | |
|   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
 | |
|   if (!OtherBr || BBI == OtherBB->begin())
 | |
|     return false;
 | |
| 
 | |
|   // If the other block ends in an unconditional branch, check for the 'if then
 | |
|   // else' case.  there is an instruction before the branch.
 | |
|   StoreInst *OtherStore = nullptr;
 | |
|   if (OtherBr->isUnconditional()) {
 | |
|     --BBI;
 | |
|     // Skip over debugging info.
 | |
|     while (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | |
|       if (BBI==OtherBB->begin())
 | |
|         return false;
 | |
|       --BBI;
 | |
|     }
 | |
|     // If this isn't a store, isn't a store to the same location, or is not the
 | |
|     // right kind of store, bail out.
 | |
|     OtherStore = dyn_cast<StoreInst>(BBI);
 | |
|     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
 | |
|         !SI.isSameOperationAs(OtherStore))
 | |
|       return false;
 | |
|   } else {
 | |
|     // Otherwise, the other block ended with a conditional branch. If one of the
 | |
|     // destinations is StoreBB, then we have the if/then case.
 | |
|     if (OtherBr->getSuccessor(0) != StoreBB &&
 | |
|         OtherBr->getSuccessor(1) != StoreBB)
 | |
|       return false;
 | |
| 
 | |
|     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
 | |
|     // if/then triangle.  See if there is a store to the same ptr as SI that
 | |
|     // lives in OtherBB.
 | |
|     for (;; --BBI) {
 | |
|       // Check to see if we find the matching store.
 | |
|       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
 | |
|         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
 | |
|             !SI.isSameOperationAs(OtherStore))
 | |
|           return false;
 | |
|         break;
 | |
|       }
 | |
|       // If we find something that may be using or overwriting the stored
 | |
|       // value, or if we run out of instructions, we can't do the xform.
 | |
|       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
 | |
|           BBI == OtherBB->begin())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // In order to eliminate the store in OtherBr, we have to
 | |
|     // make sure nothing reads or overwrites the stored value in
 | |
|     // StoreBB.
 | |
|     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
 | |
|       // FIXME: This should really be AA driven.
 | |
|       if (I->mayReadFromMemory() || I->mayWriteToMemory())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Insert a PHI node now if we need it.
 | |
|   Value *MergedVal = OtherStore->getOperand(0);
 | |
|   if (MergedVal != SI.getOperand(0)) {
 | |
|     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
 | |
|     PN->addIncoming(SI.getOperand(0), SI.getParent());
 | |
|     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
 | |
|     MergedVal = InsertNewInstBefore(PN, DestBB->front());
 | |
|   }
 | |
| 
 | |
|   // Advance to a place where it is safe to insert the new store and
 | |
|   // insert it.
 | |
|   BBI = DestBB->getFirstInsertionPt();
 | |
|   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
 | |
|                                    SI.isVolatile(),
 | |
|                                    SI.getAlignment(),
 | |
|                                    SI.getOrdering(),
 | |
|                                    SI.getSynchScope());
 | |
|   InsertNewInstBefore(NewSI, *BBI);
 | |
|   NewSI->setDebugLoc(OtherStore->getDebugLoc());
 | |
| 
 | |
|   // If the two stores had AA tags, merge them.
 | |
|   AAMDNodes AATags;
 | |
|   SI.getAAMetadata(AATags);
 | |
|   if (AATags) {
 | |
|     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
 | |
|     NewSI->setAAMetadata(AATags);
 | |
|   }
 | |
| 
 | |
|   // Nuke the old stores.
 | |
|   EraseInstFromFunction(SI);
 | |
|   EraseInstFromFunction(*OtherStore);
 | |
|   return true;
 | |
| }
 |