mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	libraries. It is now always 1 in LLVM builds. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202580 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			189 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Optional.h - Simple variant for passing optional values ---*- C++ -*-=//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file provides Optional, a template class modeled in the spirit of
 | |
| //  OCaml's 'opt' variant.  The idea is to strongly type whether or not
 | |
| //  a value can be optional.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_OPTIONAL_H
 | |
| #define LLVM_ADT_OPTIONAL_H
 | |
| 
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/Support/AlignOf.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <cassert>
 | |
| #include <utility>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template<typename T>
 | |
| class Optional {
 | |
|   AlignedCharArrayUnion<T> storage;
 | |
|   bool hasVal;
 | |
| public:
 | |
|   Optional(NoneType) : hasVal(false) {}
 | |
|   explicit Optional() : hasVal(false) {}
 | |
|   Optional(const T &y) : hasVal(true) {
 | |
|     new (storage.buffer) T(y);
 | |
|   }
 | |
|   Optional(const Optional &O) : hasVal(O.hasVal) {
 | |
|     if (hasVal)
 | |
|       new (storage.buffer) T(*O);
 | |
|   }
 | |
| 
 | |
|   Optional(T &&y) : hasVal(true) {
 | |
|     new (storage.buffer) T(std::forward<T>(y));
 | |
|   }
 | |
|   Optional(Optional<T> &&O) : hasVal(O) {
 | |
|     if (O) {
 | |
|       new (storage.buffer) T(std::move(*O));
 | |
|       O.reset();
 | |
|     }
 | |
|   }
 | |
|   Optional &operator=(T &&y) {
 | |
|     if (hasVal)
 | |
|       **this = std::move(y);
 | |
|     else {
 | |
|       new (storage.buffer) T(std::move(y));
 | |
|       hasVal = true;
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
|   Optional &operator=(Optional &&O) {
 | |
|     if (!O)
 | |
|       reset();
 | |
|     else {
 | |
|       *this = std::move(*O);
 | |
|       O.reset();
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   static inline Optional create(const T* y) {
 | |
|     return y ? Optional(*y) : Optional();
 | |
|   }
 | |
| 
 | |
|   // FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
 | |
|   // could be made more efficient by passing by value, possibly unifying them
 | |
|   // with the rvalue versions above - but this could place a different set of
 | |
|   // requirements (notably: the existence of a default ctor) when implemented
 | |
|   // in that way. Careful SFINAE to avoid such pitfalls would be required.
 | |
|   Optional &operator=(const T &y) {
 | |
|     if (hasVal)
 | |
|       **this = y;
 | |
|     else {
 | |
|       new (storage.buffer) T(y);
 | |
|       hasVal = true;
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   Optional &operator=(const Optional &O) {
 | |
|     if (!O)
 | |
|       reset();
 | |
|     else
 | |
|       *this = *O;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   void reset() {
 | |
|     if (hasVal) {
 | |
|       (**this).~T();
 | |
|       hasVal = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ~Optional() {
 | |
|     reset();
 | |
|   }
 | |
| 
 | |
|   const T* getPointer() const { assert(hasVal); return reinterpret_cast<const T*>(storage.buffer); }
 | |
|   T* getPointer() { assert(hasVal); return reinterpret_cast<T*>(storage.buffer); }
 | |
|   const T& getValue() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
 | |
|   T& getValue() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
 | |
| 
 | |
|   LLVM_EXPLICIT operator bool() const { return hasVal; }
 | |
|   bool hasValue() const { return hasVal; }
 | |
|   const T* operator->() const { return getPointer(); }
 | |
|   T* operator->() { return getPointer(); }
 | |
|   const T& operator*() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
 | |
|   T& operator*() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
 | |
| 
 | |
| #if LLVM_HAS_RVALUE_REFERENCE_THIS
 | |
|   T&& getValue() && { assert(hasVal); return std::move(*getPointer()); }
 | |
|   T&& operator*() && { assert(hasVal); return std::move(*getPointer()); }
 | |
| #endif
 | |
| };
 | |
| 
 | |
| template <typename T> struct isPodLike;
 | |
| template <typename T> struct isPodLike<Optional<T> > {
 | |
|   // An Optional<T> is pod-like if T is.
 | |
|   static const bool value = isPodLike<T>::value;
 | |
| };
 | |
| 
 | |
| /// \brief Poison comparison between two \c Optional objects. Clients needs to
 | |
| /// explicitly compare the underlying values and account for empty \c Optional
 | |
| /// objects.
 | |
| ///
 | |
| /// This routine will never be defined. It returns \c void to help diagnose
 | |
| /// errors at compile time.
 | |
| template<typename T, typename U>
 | |
| void operator==(const Optional<T> &X, const Optional<U> &Y);
 | |
| 
 | |
| /// \brief Poison comparison between two \c Optional objects. Clients needs to
 | |
| /// explicitly compare the underlying values and account for empty \c Optional
 | |
| /// objects.
 | |
| ///
 | |
| /// This routine will never be defined. It returns \c void to help diagnose
 | |
| /// errors at compile time.
 | |
| template<typename T, typename U>
 | |
| void operator!=(const Optional<T> &X, const Optional<U> &Y);
 | |
| 
 | |
| /// \brief Poison comparison between two \c Optional objects. Clients needs to
 | |
| /// explicitly compare the underlying values and account for empty \c Optional
 | |
| /// objects.
 | |
| ///
 | |
| /// This routine will never be defined. It returns \c void to help diagnose
 | |
| /// errors at compile time.
 | |
| template<typename T, typename U>
 | |
| void operator<(const Optional<T> &X, const Optional<U> &Y);
 | |
| 
 | |
| /// \brief Poison comparison between two \c Optional objects. Clients needs to
 | |
| /// explicitly compare the underlying values and account for empty \c Optional
 | |
| /// objects.
 | |
| ///
 | |
| /// This routine will never be defined. It returns \c void to help diagnose
 | |
| /// errors at compile time.
 | |
| template<typename T, typename U>
 | |
| void operator<=(const Optional<T> &X, const Optional<U> &Y);
 | |
| 
 | |
| /// \brief Poison comparison between two \c Optional objects. Clients needs to
 | |
| /// explicitly compare the underlying values and account for empty \c Optional
 | |
| /// objects.
 | |
| ///
 | |
| /// This routine will never be defined. It returns \c void to help diagnose
 | |
| /// errors at compile time.
 | |
| template<typename T, typename U>
 | |
| void operator>=(const Optional<T> &X, const Optional<U> &Y);
 | |
| 
 | |
| /// \brief Poison comparison between two \c Optional objects. Clients needs to
 | |
| /// explicitly compare the underlying values and account for empty \c Optional
 | |
| /// objects.
 | |
| ///
 | |
| /// This routine will never be defined. It returns \c void to help diagnose
 | |
| /// errors at compile time.
 | |
| template<typename T, typename U>
 | |
| void operator>(const Optional<T> &X, const Optional<U> &Y);
 | |
| 
 | |
| } // end llvm namespace
 | |
| 
 | |
| #endif
 |