mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines specializations of GraphTraits that allow Function and
 | 
						|
// BasicBlock graphs to be treated as proper graphs for generic algorithms.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_IR_CFG_H
 | 
						|
#define LLVM_IR_CFG_H
 | 
						|
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BasicBlock pred_iterator definition
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
template <class Ptr, class USE_iterator> // Predecessor Iterator
 | 
						|
class PredIterator : public std::iterator<std::forward_iterator_tag,
 | 
						|
                                          Ptr, ptrdiff_t, Ptr*, Ptr*> {
 | 
						|
  typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
 | 
						|
                                                                    Ptr*> super;
 | 
						|
  typedef PredIterator<Ptr, USE_iterator> Self;
 | 
						|
  USE_iterator It;
 | 
						|
 | 
						|
  inline void advancePastNonTerminators() {
 | 
						|
    // Loop to ignore non-terminator uses (for example BlockAddresses).
 | 
						|
    while (!It.atEnd() && !isa<TerminatorInst>(*It))
 | 
						|
      ++It;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  typedef typename super::pointer pointer;
 | 
						|
  typedef typename super::reference reference;
 | 
						|
 | 
						|
  PredIterator() {}
 | 
						|
  explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
 | 
						|
    advancePastNonTerminators();
 | 
						|
  }
 | 
						|
  inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
 | 
						|
 | 
						|
  inline bool operator==(const Self& x) const { return It == x.It; }
 | 
						|
  inline bool operator!=(const Self& x) const { return !operator==(x); }
 | 
						|
 | 
						|
  inline reference operator*() const {
 | 
						|
    assert(!It.atEnd() && "pred_iterator out of range!");
 | 
						|
    return cast<TerminatorInst>(*It)->getParent();
 | 
						|
  }
 | 
						|
  inline pointer *operator->() const { return &operator*(); }
 | 
						|
 | 
						|
  inline Self& operator++() {   // Preincrement
 | 
						|
    assert(!It.atEnd() && "pred_iterator out of range!");
 | 
						|
    ++It; advancePastNonTerminators();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  inline Self operator++(int) { // Postincrement
 | 
						|
    Self tmp = *this; ++*this; return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getOperandNo - Return the operand number in the predecessor's
 | 
						|
  /// terminator of the successor.
 | 
						|
  unsigned getOperandNo() const {
 | 
						|
    return It.getOperandNo();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getUse - Return the operand Use in the predecessor's terminator
 | 
						|
  /// of the successor.
 | 
						|
  Use &getUse() const {
 | 
						|
    return It.getUse();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
 | 
						|
typedef PredIterator<const BasicBlock,
 | 
						|
                     Value::const_user_iterator> const_pred_iterator;
 | 
						|
 | 
						|
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
 | 
						|
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
 | 
						|
  return const_pred_iterator(BB);
 | 
						|
}
 | 
						|
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
 | 
						|
inline const_pred_iterator pred_end(const BasicBlock *BB) {
 | 
						|
  return const_pred_iterator(BB, true);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BasicBlock succ_iterator definition
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
template <class Term_, class BB_>           // Successor Iterator
 | 
						|
class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB_,
 | 
						|
                                          int, BB_ *, BB_ *> {
 | 
						|
  typedef std::iterator<std::random_access_iterator_tag, BB_, int, BB_ *, BB_ *>
 | 
						|
  super;
 | 
						|
 | 
						|
public:
 | 
						|
  typedef typename super::pointer pointer;
 | 
						|
  typedef typename super::reference reference;
 | 
						|
 | 
						|
private:
 | 
						|
  const Term_ Term;
 | 
						|
  unsigned idx;
 | 
						|
  typedef SuccIterator<Term_, BB_> Self;
 | 
						|
 | 
						|
  inline bool index_is_valid(int idx) {
 | 
						|
    return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Proxy object to allow write access in operator[]
 | 
						|
  class SuccessorProxy {
 | 
						|
    Self it;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit SuccessorProxy(const Self &it) : it(it) {}
 | 
						|
 | 
						|
    SuccessorProxy &operator=(SuccessorProxy r) {
 | 
						|
      *this = reference(r);
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    SuccessorProxy &operator=(reference r) {
 | 
						|
      it.Term->setSuccessor(it.idx, r);
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    operator reference() const { return *it; }
 | 
						|
  };
 | 
						|
 | 
						|
public:
 | 
						|
  explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
 | 
						|
  }
 | 
						|
  inline SuccIterator(Term_ T, bool)                       // end iterator
 | 
						|
    : Term(T) {
 | 
						|
    if (Term)
 | 
						|
      idx = Term->getNumSuccessors();
 | 
						|
    else
 | 
						|
      // Term == NULL happens, if a basic block is not fully constructed and
 | 
						|
      // consequently getTerminator() returns NULL. In this case we construct a
 | 
						|
      // SuccIterator which describes a basic block that has zero successors.
 | 
						|
      // Defining SuccIterator for incomplete and malformed CFGs is especially
 | 
						|
      // useful for debugging.
 | 
						|
      idx = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  inline const Self &operator=(const Self &I) {
 | 
						|
    assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
 | 
						|
    idx = I.idx;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSuccessorIndex - This is used to interface between code that wants to
 | 
						|
  /// operate on terminator instructions directly.
 | 
						|
  unsigned getSuccessorIndex() const { return idx; }
 | 
						|
 | 
						|
  inline bool operator==(const Self& x) const { return idx == x.idx; }
 | 
						|
  inline bool operator!=(const Self& x) const { return !operator==(x); }
 | 
						|
 | 
						|
  inline reference operator*() const { return Term->getSuccessor(idx); }
 | 
						|
  inline pointer operator->() const { return operator*(); }
 | 
						|
 | 
						|
  inline Self& operator++() { ++idx; return *this; } // Preincrement
 | 
						|
 | 
						|
  inline Self operator++(int) { // Postincrement
 | 
						|
    Self tmp = *this; ++*this; return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  inline Self& operator--() { --idx; return *this; }  // Predecrement
 | 
						|
  inline Self operator--(int) { // Postdecrement
 | 
						|
    Self tmp = *this; --*this; return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool operator<(const Self& x) const {
 | 
						|
    assert(Term == x.Term && "Cannot compare iterators of different blocks!");
 | 
						|
    return idx < x.idx;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool operator<=(const Self& x) const {
 | 
						|
    assert(Term == x.Term && "Cannot compare iterators of different blocks!");
 | 
						|
    return idx <= x.idx;
 | 
						|
  }
 | 
						|
  inline bool operator>=(const Self& x) const {
 | 
						|
    assert(Term == x.Term && "Cannot compare iterators of different blocks!");
 | 
						|
    return idx >= x.idx;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool operator>(const Self& x) const {
 | 
						|
    assert(Term == x.Term && "Cannot compare iterators of different blocks!");
 | 
						|
    return idx > x.idx;
 | 
						|
  }
 | 
						|
 | 
						|
  inline Self& operator+=(int Right) {
 | 
						|
    unsigned new_idx = idx + Right;
 | 
						|
    assert(index_is_valid(new_idx) && "Iterator index out of bound");
 | 
						|
    idx = new_idx;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  inline Self operator+(int Right) const {
 | 
						|
    Self tmp = *this;
 | 
						|
    tmp += Right;
 | 
						|
    return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  inline Self& operator-=(int Right) {
 | 
						|
    return operator+=(-Right);
 | 
						|
  }
 | 
						|
 | 
						|
  inline Self operator-(int Right) const {
 | 
						|
    return operator+(-Right);
 | 
						|
  }
 | 
						|
 | 
						|
  inline int operator-(const Self& x) const {
 | 
						|
    assert(Term == x.Term && "Cannot work on iterators of different blocks!");
 | 
						|
    int distance = idx - x.idx;
 | 
						|
    return distance;
 | 
						|
  }
 | 
						|
 | 
						|
  inline SuccessorProxy operator[](int offset) {
 | 
						|
   Self tmp = *this;
 | 
						|
   tmp += offset;
 | 
						|
   return SuccessorProxy(tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get the source BB of this iterator.
 | 
						|
  inline BB_ *getSource() {
 | 
						|
    assert(Term && "Source not available, if basic block was malformed");
 | 
						|
    return Term->getParent();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
 | 
						|
typedef SuccIterator<const TerminatorInst*,
 | 
						|
                     const BasicBlock> succ_const_iterator;
 | 
						|
 | 
						|
inline succ_iterator succ_begin(BasicBlock *BB) {
 | 
						|
  return succ_iterator(BB->getTerminator());
 | 
						|
}
 | 
						|
inline succ_const_iterator succ_begin(const BasicBlock *BB) {
 | 
						|
  return succ_const_iterator(BB->getTerminator());
 | 
						|
}
 | 
						|
inline succ_iterator succ_end(BasicBlock *BB) {
 | 
						|
  return succ_iterator(BB->getTerminator(), true);
 | 
						|
}
 | 
						|
inline succ_const_iterator succ_end(const BasicBlock *BB) {
 | 
						|
  return succ_const_iterator(BB->getTerminator(), true);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
 | 
						|
  static const bool value = isPodLike<T>::value;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
// GraphTraits specializations for basic block graphs (CFGs)
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Provide specializations of GraphTraits to be able to treat a function as a
 | 
						|
// graph of basic blocks...
 | 
						|
 | 
						|
template <> struct GraphTraits<BasicBlock*> {
 | 
						|
  typedef BasicBlock NodeType;
 | 
						|
  typedef succ_iterator ChildIteratorType;
 | 
						|
 | 
						|
  static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return succ_begin(N);
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return succ_end(N);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<const BasicBlock*> {
 | 
						|
  typedef const BasicBlock NodeType;
 | 
						|
  typedef succ_const_iterator ChildIteratorType;
 | 
						|
 | 
						|
  static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
 | 
						|
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return succ_begin(N);
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return succ_end(N);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Provide specializations of GraphTraits to be able to treat a function as a
 | 
						|
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
 | 
						|
// a function is considered to be when traversing the predecessor edges of a BB
 | 
						|
// instead of the successor edges.
 | 
						|
//
 | 
						|
template <> struct GraphTraits<Inverse<BasicBlock*> > {
 | 
						|
  typedef BasicBlock NodeType;
 | 
						|
  typedef pred_iterator ChildIteratorType;
 | 
						|
  static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return pred_begin(N);
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return pred_end(N);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<Inverse<const BasicBlock*> > {
 | 
						|
  typedef const BasicBlock NodeType;
 | 
						|
  typedef const_pred_iterator ChildIteratorType;
 | 
						|
  static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
 | 
						|
    return G.Graph;
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType *N) {
 | 
						|
    return pred_begin(N);
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType *N) {
 | 
						|
    return pred_end(N);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
// GraphTraits specializations for function basic block graphs (CFGs)
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Provide specializations of GraphTraits to be able to treat a function as a
 | 
						|
// graph of basic blocks... these are the same as the basic block iterators,
 | 
						|
// except that the root node is implicitly the first node of the function.
 | 
						|
//
 | 
						|
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
 | 
						|
  static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
 | 
						|
 | 
						|
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
 | 
						|
  typedef Function::iterator nodes_iterator;
 | 
						|
  static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
 | 
						|
  static nodes_iterator nodes_end  (Function *F) { return F->end(); }
 | 
						|
  static size_t         size       (Function *F) { return F->size(); }
 | 
						|
};
 | 
						|
template <> struct GraphTraits<const Function*> :
 | 
						|
  public GraphTraits<const BasicBlock*> {
 | 
						|
  static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
 | 
						|
 | 
						|
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
 | 
						|
  typedef Function::const_iterator nodes_iterator;
 | 
						|
  static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
 | 
						|
  static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
 | 
						|
  static size_t         size       (const Function *F) { return F->size(); }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Provide specializations of GraphTraits to be able to treat a function as a
 | 
						|
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
 | 
						|
// a function is considered to be when traversing the predecessor edges of a BB
 | 
						|
// instead of the successor edges.
 | 
						|
//
 | 
						|
template <> struct GraphTraits<Inverse<Function*> > :
 | 
						|
  public GraphTraits<Inverse<BasicBlock*> > {
 | 
						|
  static NodeType *getEntryNode(Inverse<Function*> G) {
 | 
						|
    return &G.Graph->getEntryBlock();
 | 
						|
  }
 | 
						|
};
 | 
						|
template <> struct GraphTraits<Inverse<const Function*> > :
 | 
						|
  public GraphTraits<Inverse<const BasicBlock*> > {
 | 
						|
  static NodeType *getEntryNode(Inverse<const Function *> G) {
 | 
						|
    return &G.Graph->getEntryBlock();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |