mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41075 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			828 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			828 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements simple dominator construction algorithms for finding
 | 
						|
// forward dominators.  Postdominators are available in libanalysis, but are not
 | 
						|
// included in libvmcore, because it's not needed.  Forward dominators are
 | 
						|
// needed to support the Verifier pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
static std::ostream &operator<<(std::ostream &o,
 | 
						|
                                const std::set<BasicBlock*> &BBs) {
 | 
						|
  for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (*I)
 | 
						|
      WriteAsOperand(o, *I, false);
 | 
						|
    else
 | 
						|
      o << " <<exit node>>";
 | 
						|
  return o;
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominatorTree Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// DominatorTree construction - This pass constructs immediate dominator
 | 
						|
// information for a flow-graph based on the algorithm described in this
 | 
						|
// document:
 | 
						|
//
 | 
						|
//   A Fast Algorithm for Finding Dominators in a Flowgraph
 | 
						|
//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | 
						|
//
 | 
						|
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
 | 
						|
// LINK, but it turns out that the theoretically slower O(n*log(n))
 | 
						|
// implementation is actually faster than the "efficient" algorithm (even for
 | 
						|
// large CFGs) because the constant overheads are substantially smaller.  The
 | 
						|
// lower-complexity version can be enabled with the following #define:
 | 
						|
//
 | 
						|
#define BALANCE_IDOM_TREE 0
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
char DominatorTree::ID = 0;
 | 
						|
static RegisterPass<DominatorTree>
 | 
						|
E("domtree", "Dominator Tree Construction", true);
 | 
						|
 | 
						|
// NewBB is split and now it has one successor. Update dominator tree to
 | 
						|
// reflect this change.
 | 
						|
void DominatorTree::splitBlock(BasicBlock *NewBB) {
 | 
						|
  assert(NewBB->getTerminator()->getNumSuccessors() == 1
 | 
						|
         && "NewBB should have a single successor!");
 | 
						|
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
 | 
						|
 | 
						|
  std::vector<BasicBlock*> PredBlocks;
 | 
						|
  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
 | 
						|
       PI != PE; ++PI)
 | 
						|
      PredBlocks.push_back(*PI);  
 | 
						|
 | 
						|
  assert(!PredBlocks.empty() && "No predblocks??");
 | 
						|
 | 
						|
  // The newly inserted basic block will dominate existing basic blocks iff the
 | 
						|
  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
 | 
						|
  // the non-pred blocks, then they all must be the same block!
 | 
						|
  //
 | 
						|
  bool NewBBDominatesNewBBSucc = true;
 | 
						|
  {
 | 
						|
    BasicBlock *OnePred = PredBlocks[0];
 | 
						|
    unsigned i = 1, e = PredBlocks.size();
 | 
						|
    for (i = 1; !isReachableFromEntry(OnePred); ++i) {
 | 
						|
      assert(i != e && "Didn't find reachable pred?");
 | 
						|
      OnePred = PredBlocks[i];
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (; i != e; ++i)
 | 
						|
      if (PredBlocks[i] != OnePred && isReachableFromEntry(OnePred)) {
 | 
						|
        NewBBDominatesNewBBSucc = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    if (NewBBDominatesNewBBSucc)
 | 
						|
      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
 | 
						|
           PI != E; ++PI)
 | 
						|
        if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
 | 
						|
          NewBBDominatesNewBBSucc = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // The other scenario where the new block can dominate its successors are when
 | 
						|
  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
 | 
						|
  // already.
 | 
						|
  if (!NewBBDominatesNewBBSucc) {
 | 
						|
    NewBBDominatesNewBBSucc = true;
 | 
						|
    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
 | 
						|
         PI != E; ++PI)
 | 
						|
      if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
 | 
						|
        NewBBDominatesNewBBSucc = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find NewBB's immediate dominator and create new dominator tree node for
 | 
						|
  // NewBB.
 | 
						|
  BasicBlock *NewBBIDom = 0;
 | 
						|
  unsigned i = 0;
 | 
						|
  for (i = 0; i < PredBlocks.size(); ++i)
 | 
						|
    if (isReachableFromEntry(PredBlocks[i])) {
 | 
						|
      NewBBIDom = PredBlocks[i];
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  assert(i != PredBlocks.size() && "No reachable preds?");
 | 
						|
  for (i = i + 1; i < PredBlocks.size(); ++i) {
 | 
						|
    if (isReachableFromEntry(PredBlocks[i]))
 | 
						|
      NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
 | 
						|
  }
 | 
						|
  assert(NewBBIDom && "No immediate dominator found??");
 | 
						|
  
 | 
						|
  // Create the new dominator tree node... and set the idom of NewBB.
 | 
						|
  DomTreeNode *NewBBNode = addNewBlock(NewBB, NewBBIDom);
 | 
						|
  
 | 
						|
  // If NewBB strictly dominates other blocks, then it is now the immediate
 | 
						|
  // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | 
						|
  if (NewBBDominatesNewBBSucc) {
 | 
						|
    DomTreeNode *NewBBSuccNode = getNode(NewBBSucc);
 | 
						|
    changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned DominatorTree::DFSPass(BasicBlock *V, unsigned N) {
 | 
						|
  // This is more understandable as a recursive algorithm, but we can't use the
 | 
						|
  // recursive algorithm due to stack depth issues.  Keep it here for
 | 
						|
  // documentation purposes.
 | 
						|
#if 0
 | 
						|
  InfoRec &VInfo = Info[Roots[i]];
 | 
						|
  VInfo.Semi = ++N;
 | 
						|
  VInfo.Label = V;
 | 
						|
 | 
						|
  Vertex.push_back(V);        // Vertex[n] = V;
 | 
						|
  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
 | 
						|
  //Info[V].Child = 0;        // Child[v] = 0
 | 
						|
  VInfo.Size = 1;             // Size[v] = 1
 | 
						|
 | 
						|
  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | 
						|
    InfoRec &SuccVInfo = Info[*SI];
 | 
						|
    if (SuccVInfo.Semi == 0) {
 | 
						|
      SuccVInfo.Parent = V;
 | 
						|
      N = DFSPass(*SI, N);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#else
 | 
						|
  std::vector<std::pair<BasicBlock*, unsigned> > Worklist;
 | 
						|
  Worklist.push_back(std::make_pair(V, 0U));
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    BasicBlock *BB = Worklist.back().first;
 | 
						|
    unsigned NextSucc = Worklist.back().second;
 | 
						|
    
 | 
						|
    // First time we visited this BB?
 | 
						|
    if (NextSucc == 0) {
 | 
						|
      InfoRec &BBInfo = Info[BB];
 | 
						|
      BBInfo.Semi = ++N;
 | 
						|
      BBInfo.Label = BB;
 | 
						|
      
 | 
						|
      Vertex.push_back(BB);       // Vertex[n] = V;
 | 
						|
      //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
 | 
						|
      //BBInfo[V].Child = 0;      // Child[v] = 0
 | 
						|
      BBInfo.Size = 1;            // Size[v] = 1
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we are done with this block, remove it from the worklist.
 | 
						|
    if (NextSucc == BB->getTerminator()->getNumSuccessors()) {
 | 
						|
      Worklist.pop_back();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, increment the successor number for the next time we get to it.
 | 
						|
    ++Worklist.back().second;
 | 
						|
    
 | 
						|
    // Visit the successor next, if it isn't already visited.
 | 
						|
    BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc);
 | 
						|
    
 | 
						|
    InfoRec &SuccVInfo = Info[Succ];
 | 
						|
    if (SuccVInfo.Semi == 0) {
 | 
						|
      SuccVInfo.Parent = BB;
 | 
						|
      Worklist.push_back(std::make_pair(Succ, 0U));
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::Compress(BasicBlock *VIn) {
 | 
						|
 | 
						|
  std::vector<BasicBlock *> Work;
 | 
						|
  SmallPtrSet<BasicBlock *, 32> Visited;
 | 
						|
  BasicBlock *VInAncestor = Info[VIn].Ancestor;
 | 
						|
  InfoRec &VInVAInfo = Info[VInAncestor];
 | 
						|
 | 
						|
  if (VInVAInfo.Ancestor != 0)
 | 
						|
    Work.push_back(VIn);
 | 
						|
  
 | 
						|
  while (!Work.empty()) {
 | 
						|
    BasicBlock *V = Work.back();
 | 
						|
    InfoRec &VInfo = Info[V];
 | 
						|
    BasicBlock *VAncestor = VInfo.Ancestor;
 | 
						|
    InfoRec &VAInfo = Info[VAncestor];
 | 
						|
 | 
						|
    // Process Ancestor first
 | 
						|
    if (Visited.insert(VAncestor) &&
 | 
						|
        VAInfo.Ancestor != 0) {
 | 
						|
      Work.push_back(VAncestor);
 | 
						|
      continue;
 | 
						|
    } 
 | 
						|
    Work.pop_back(); 
 | 
						|
 | 
						|
    // Update VInfo based on Ancestor info
 | 
						|
    if (VAInfo.Ancestor == 0)
 | 
						|
      continue;
 | 
						|
    BasicBlock *VAncestorLabel = VAInfo.Label;
 | 
						|
    BasicBlock *VLabel = VInfo.Label;
 | 
						|
    if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
 | 
						|
      VInfo.Label = VAncestorLabel;
 | 
						|
    VInfo.Ancestor = VAInfo.Ancestor;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *DominatorTree::Eval(BasicBlock *V) {
 | 
						|
  InfoRec &VInfo = Info[V];
 | 
						|
#if !BALANCE_IDOM_TREE
 | 
						|
  // Higher-complexity but faster implementation
 | 
						|
  if (VInfo.Ancestor == 0)
 | 
						|
    return V;
 | 
						|
  Compress(V);
 | 
						|
  return VInfo.Label;
 | 
						|
#else
 | 
						|
  // Lower-complexity but slower implementation
 | 
						|
  if (VInfo.Ancestor == 0)
 | 
						|
    return VInfo.Label;
 | 
						|
  Compress(V);
 | 
						|
  BasicBlock *VLabel = VInfo.Label;
 | 
						|
 | 
						|
  BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
 | 
						|
  if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
 | 
						|
    return VLabel;
 | 
						|
  else
 | 
						|
    return VAncestorLabel;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
 | 
						|
#if !BALANCE_IDOM_TREE
 | 
						|
  // Higher-complexity but faster implementation
 | 
						|
  WInfo.Ancestor = V;
 | 
						|
#else
 | 
						|
  // Lower-complexity but slower implementation
 | 
						|
  BasicBlock *WLabel = WInfo.Label;
 | 
						|
  unsigned WLabelSemi = Info[WLabel].Semi;
 | 
						|
  BasicBlock *S = W;
 | 
						|
  InfoRec *SInfo = &Info[S];
 | 
						|
 | 
						|
  BasicBlock *SChild = SInfo->Child;
 | 
						|
  InfoRec *SChildInfo = &Info[SChild];
 | 
						|
 | 
						|
  while (WLabelSemi < Info[SChildInfo->Label].Semi) {
 | 
						|
    BasicBlock *SChildChild = SChildInfo->Child;
 | 
						|
    if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
 | 
						|
      SChildInfo->Ancestor = S;
 | 
						|
      SInfo->Child = SChild = SChildChild;
 | 
						|
      SChildInfo = &Info[SChild];
 | 
						|
    } else {
 | 
						|
      SChildInfo->Size = SInfo->Size;
 | 
						|
      S = SInfo->Ancestor = SChild;
 | 
						|
      SInfo = SChildInfo;
 | 
						|
      SChild = SChildChild;
 | 
						|
      SChildInfo = &Info[SChild];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  InfoRec &VInfo = Info[V];
 | 
						|
  SInfo->Label = WLabel;
 | 
						|
 | 
						|
  assert(V != W && "The optimization here will not work in this case!");
 | 
						|
  unsigned WSize = WInfo.Size;
 | 
						|
  unsigned VSize = (VInfo.Size += WSize);
 | 
						|
 | 
						|
  if (VSize < 2*WSize)
 | 
						|
    std::swap(S, VInfo.Child);
 | 
						|
 | 
						|
  while (S) {
 | 
						|
    SInfo = &Info[S];
 | 
						|
    SInfo->Ancestor = V;
 | 
						|
    S = SInfo->Child;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::calculate(Function &F) {
 | 
						|
  BasicBlock* Root = Roots[0];
 | 
						|
 | 
						|
  // Add a node for the root...
 | 
						|
  DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
 | 
						|
 | 
						|
  Vertex.push_back(0);
 | 
						|
 | 
						|
  // Step #1: Number blocks in depth-first order and initialize variables used
 | 
						|
  // in later stages of the algorithm.
 | 
						|
  unsigned N = DFSPass(Root, 0);
 | 
						|
 | 
						|
  for (unsigned i = N; i >= 2; --i) {
 | 
						|
    BasicBlock *W = Vertex[i];
 | 
						|
    InfoRec &WInfo = Info[W];
 | 
						|
 | 
						|
    // Step #2: Calculate the semidominators of all vertices
 | 
						|
    for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
 | 
						|
      if (Info.count(*PI)) {  // Only if this predecessor is reachable!
 | 
						|
        unsigned SemiU = Info[Eval(*PI)].Semi;
 | 
						|
        if (SemiU < WInfo.Semi)
 | 
						|
          WInfo.Semi = SemiU;
 | 
						|
      }
 | 
						|
 | 
						|
    Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
 | 
						|
 | 
						|
    BasicBlock *WParent = WInfo.Parent;
 | 
						|
    Link(WParent, W, WInfo);
 | 
						|
 | 
						|
    // Step #3: Implicitly define the immediate dominator of vertices
 | 
						|
    std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
 | 
						|
    while (!WParentBucket.empty()) {
 | 
						|
      BasicBlock *V = WParentBucket.back();
 | 
						|
      WParentBucket.pop_back();
 | 
						|
      BasicBlock *U = Eval(V);
 | 
						|
      IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Step #4: Explicitly define the immediate dominator of each vertex
 | 
						|
  for (unsigned i = 2; i <= N; ++i) {
 | 
						|
    BasicBlock *W = Vertex[i];
 | 
						|
    BasicBlock *&WIDom = IDoms[W];
 | 
						|
    if (WIDom != Vertex[Info[W].Semi])
 | 
						|
      WIDom = IDoms[WIDom];
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the reachable blocks in the function...
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | 
						|
    if (BasicBlock *ImmDom = getIDom(I)) {  // Reachable block.
 | 
						|
      DomTreeNode *BBNode = DomTreeNodes[I];
 | 
						|
      if (BBNode) continue;  // Haven't calculated this node yet?
 | 
						|
 | 
						|
      // Get or calculate the node for the immediate dominator
 | 
						|
      DomTreeNode *IDomNode = getNodeForBlock(ImmDom);
 | 
						|
 | 
						|
      // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
      // IDomNode
 | 
						|
      DomTreeNode *C = new DomTreeNode(I, IDomNode);
 | 
						|
      DomTreeNodes[I] = IDomNode->addChild(C);
 | 
						|
    }
 | 
						|
 | 
						|
  // Free temporary memory used to construct idom's
 | 
						|
  Info.clear();
 | 
						|
  IDoms.clear();
 | 
						|
  std::vector<BasicBlock*>().swap(Vertex);
 | 
						|
 | 
						|
  updateDFSNumbers();
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTreeBase::updateDFSNumbers() {
 | 
						|
  unsigned DFSNum = 0;
 | 
						|
 | 
						|
  SmallVector<std::pair<DomTreeNode*, DomTreeNode::iterator>, 32> WorkStack;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Roots.size(); i != e; ++i) {
 | 
						|
    DomTreeNode *ThisRoot = getNode(Roots[i]);
 | 
						|
    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
 | 
						|
    ThisRoot->DFSNumIn = DFSNum++;
 | 
						|
    
 | 
						|
    while (!WorkStack.empty()) {
 | 
						|
      DomTreeNode *Node = WorkStack.back().first;
 | 
						|
      DomTreeNode::iterator ChildIt = WorkStack.back().second;
 | 
						|
 | 
						|
      // If we visited all of the children of this node, "recurse" back up the
 | 
						|
      // stack setting the DFOutNum.
 | 
						|
      if (ChildIt == Node->end()) {
 | 
						|
        Node->DFSNumOut = DFSNum++;
 | 
						|
        WorkStack.pop_back();
 | 
						|
      } else {
 | 
						|
        // Otherwise, recursively visit this child.
 | 
						|
        DomTreeNode *Child = *ChildIt;
 | 
						|
        ++WorkStack.back().second;
 | 
						|
        
 | 
						|
        WorkStack.push_back(std::make_pair(Child, Child->begin()));
 | 
						|
        Child->DFSNumIn = DFSNum++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  SlowQueries = 0;
 | 
						|
  DFSInfoValid = true;
 | 
						|
}
 | 
						|
 | 
						|
/// isReachableFromEntry - Return true if A is dominated by the entry
 | 
						|
/// block of the function containing it.
 | 
						|
const bool DominatorTreeBase::isReachableFromEntry(BasicBlock* A) {
 | 
						|
  assert (!isPostDominator() 
 | 
						|
          && "This is not implemented for post dominators");
 | 
						|
  return dominates(&A->getParent()->getEntryBlock(), A);
 | 
						|
}
 | 
						|
 | 
						|
// dominates - Return true if A dominates B. THis performs the
 | 
						|
// special checks necessary if A and B are in the same basic block.
 | 
						|
bool DominatorTreeBase::dominates(Instruction *A, Instruction *B) {
 | 
						|
  BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | 
						|
  if (BBA != BBB) return dominates(BBA, BBB);
 | 
						|
  
 | 
						|
  // It is not possible to determine dominance between two PHI nodes 
 | 
						|
  // based on their ordering.
 | 
						|
  if (isa<PHINode>(A) && isa<PHINode>(B)) 
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Loop through the basic block until we find A or B.
 | 
						|
  BasicBlock::iterator I = BBA->begin();
 | 
						|
  for (; &*I != A && &*I != B; ++I) /*empty*/;
 | 
						|
  
 | 
						|
  if(!IsPostDominators) {
 | 
						|
    // A dominates B if it is found first in the basic block.
 | 
						|
    return &*I == A;
 | 
						|
  } else {
 | 
						|
    // A post-dominates B if B is found first in the basic block.
 | 
						|
    return &*I == B;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// DominatorTreeBase::reset - Free all of the tree node memory.
 | 
						|
//
 | 
						|
void DominatorTreeBase::reset() {
 | 
						|
  for (DomTreeNodeMapType::iterator I = DomTreeNodes.begin(), 
 | 
						|
         E = DomTreeNodes.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
  DomTreeNodes.clear();
 | 
						|
  IDoms.clear();
 | 
						|
  Roots.clear();
 | 
						|
  Vertex.clear();
 | 
						|
  RootNode = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// findNearestCommonDominator - Find nearest common dominator basic block
 | 
						|
/// for basic block A and B. If there is no such block then return NULL.
 | 
						|
BasicBlock *DominatorTreeBase::findNearestCommonDominator(BasicBlock *A, 
 | 
						|
                                                          BasicBlock *B) {
 | 
						|
 | 
						|
  assert (!isPostDominator() 
 | 
						|
          && "This is not implemented for post dominators");
 | 
						|
  assert (A->getParent() == B->getParent() 
 | 
						|
          && "Two blocks are not in same function");
 | 
						|
 | 
						|
  // If either A or B is a entry block then it is nearest common dominator.
 | 
						|
  BasicBlock &Entry  = A->getParent()->getEntryBlock();
 | 
						|
  if (A == &Entry || B == &Entry)
 | 
						|
    return &Entry;
 | 
						|
 | 
						|
  // If B dominates A then B is nearest common dominator.
 | 
						|
  if (dominates(B, A))
 | 
						|
    return B;
 | 
						|
 | 
						|
  // If A dominates B then A is nearest common dominator.
 | 
						|
  if (dominates(A, B))
 | 
						|
    return A;
 | 
						|
 | 
						|
  DomTreeNode *NodeA = getNode(A);
 | 
						|
  DomTreeNode *NodeB = getNode(B);
 | 
						|
 | 
						|
  // Collect NodeA dominators set.
 | 
						|
  SmallPtrSet<DomTreeNode*, 16> NodeADoms;
 | 
						|
  NodeADoms.insert(NodeA);
 | 
						|
  DomTreeNode *IDomA = NodeA->getIDom();
 | 
						|
  while (IDomA) {
 | 
						|
    NodeADoms.insert(IDomA);
 | 
						|
    IDomA = IDomA->getIDom();
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk NodeB immediate dominators chain and find common dominator node.
 | 
						|
  DomTreeNode *IDomB = NodeB->getIDom();
 | 
						|
  while(IDomB) {
 | 
						|
    if (NodeADoms.count(IDomB) != 0)
 | 
						|
      return IDomB->getBlock();
 | 
						|
 | 
						|
    IDomB = IDomB->getIDom();
 | 
						|
  }
 | 
						|
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void DomTreeNode::setIDom(DomTreeNode *NewIDom) {
 | 
						|
  assert(IDom && "No immediate dominator?");
 | 
						|
  if (IDom != NewIDom) {
 | 
						|
    std::vector<DomTreeNode*>::iterator I =
 | 
						|
      std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | 
						|
    assert(I != IDom->Children.end() &&
 | 
						|
           "Not in immediate dominator children set!");
 | 
						|
    // I am no longer your child...
 | 
						|
    IDom->Children.erase(I);
 | 
						|
 | 
						|
    // Switch to new dominator
 | 
						|
    IDom = NewIDom;
 | 
						|
    IDom->Children.push_back(this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
DomTreeNode *DominatorTree::getNodeForBlock(BasicBlock *BB) {
 | 
						|
  if (DomTreeNode *BBNode = DomTreeNodes[BB])
 | 
						|
    return BBNode;
 | 
						|
 | 
						|
  // Haven't calculated this node yet?  Get or calculate the node for the
 | 
						|
  // immediate dominator.
 | 
						|
  BasicBlock *IDom = getIDom(BB);
 | 
						|
  DomTreeNode *IDomNode = getNodeForBlock(IDom);
 | 
						|
 | 
						|
  // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
  // IDomNode
 | 
						|
  DomTreeNode *C = new DomTreeNode(BB, IDomNode);
 | 
						|
  return DomTreeNodes[BB] = IDomNode->addChild(C);
 | 
						|
}
 | 
						|
 | 
						|
static std::ostream &operator<<(std::ostream &o, const DomTreeNode *Node) {
 | 
						|
  if (Node->getBlock())
 | 
						|
    WriteAsOperand(o, Node->getBlock(), false);
 | 
						|
  else
 | 
						|
    o << " <<exit node>>";
 | 
						|
  
 | 
						|
  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
 | 
						|
  
 | 
						|
  return o << "\n";
 | 
						|
}
 | 
						|
 | 
						|
static void PrintDomTree(const DomTreeNode *N, std::ostream &o,
 | 
						|
                         unsigned Lev) {
 | 
						|
  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
 | 
						|
  for (DomTreeNode::const_iterator I = N->begin(), E = N->end();
 | 
						|
       I != E; ++I)
 | 
						|
    PrintDomTree(*I, o, Lev+1);
 | 
						|
}
 | 
						|
 | 
						|
/// eraseNode - Removes a node from  the domiantor tree. Block must not
 | 
						|
/// domiante any other blocks. Removes node from its immediate dominator's
 | 
						|
/// children list. Deletes dominator node associated with basic block BB.
 | 
						|
void DominatorTreeBase::eraseNode(BasicBlock *BB) {
 | 
						|
  DomTreeNode *Node = getNode(BB);
 | 
						|
  assert (Node && "Removing node that isn't in dominator tree.");
 | 
						|
  assert (Node->getChildren().empty() && "Node is not a leaf node.");
 | 
						|
 | 
						|
    // Remove node from immediate dominator's children list.
 | 
						|
  DomTreeNode *IDom = Node->getIDom();
 | 
						|
  if (IDom) {
 | 
						|
    std::vector<DomTreeNode*>::iterator I =
 | 
						|
      std::find(IDom->Children.begin(), IDom->Children.end(), Node);
 | 
						|
    assert(I != IDom->Children.end() &&
 | 
						|
           "Not in immediate dominator children set!");
 | 
						|
    // I am no longer your child...
 | 
						|
    IDom->Children.erase(I);
 | 
						|
  }
 | 
						|
  
 | 
						|
  DomTreeNodes.erase(BB);
 | 
						|
  delete Node;
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
 | 
						|
  o << "=============================--------------------------------\n";
 | 
						|
  o << "Inorder Dominator Tree: ";
 | 
						|
  if (DFSInfoValid)
 | 
						|
    o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
 | 
						|
  o << "\n";
 | 
						|
  
 | 
						|
  PrintDomTree(getRootNode(), o, 1);
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTreeBase::dump() {
 | 
						|
  print(llvm::cerr);
 | 
						|
}
 | 
						|
 | 
						|
bool DominatorTree::runOnFunction(Function &F) {
 | 
						|
  reset();     // Reset from the last time we were run...
 | 
						|
  Roots.push_back(&F.getEntryBlock());
 | 
						|
  calculate(F);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominanceFrontier Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
char DominanceFrontier::ID = 0;
 | 
						|
static RegisterPass<DominanceFrontier>
 | 
						|
G("domfrontier", "Dominance Frontier Construction", true);
 | 
						|
 | 
						|
// NewBB is split and now it has one successor. Update dominace frontier to
 | 
						|
// reflect this change.
 | 
						|
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
 | 
						|
  assert(NewBB->getTerminator()->getNumSuccessors() == 1
 | 
						|
         && "NewBB should have a single successor!");
 | 
						|
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
 | 
						|
 | 
						|
  std::vector<BasicBlock*> PredBlocks;
 | 
						|
  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
 | 
						|
       PI != PE; ++PI)
 | 
						|
      PredBlocks.push_back(*PI);  
 | 
						|
 | 
						|
  if (PredBlocks.empty())
 | 
						|
    // If NewBB does not have any predecessors then it is a entry block.
 | 
						|
    // In this case, NewBB and its successor NewBBSucc dominates all
 | 
						|
    // other blocks.
 | 
						|
    return;
 | 
						|
 | 
						|
  // NewBBSucc inherits original NewBB frontier.
 | 
						|
  DominanceFrontier::iterator NewBBI = find(NewBB);
 | 
						|
  if (NewBBI != end()) {
 | 
						|
    DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
 | 
						|
    DominanceFrontier::DomSetType NewBBSuccSet;
 | 
						|
    NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
 | 
						|
    addBasicBlock(NewBBSucc, NewBBSuccSet);
 | 
						|
  }
 | 
						|
 | 
						|
  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
 | 
						|
  // DF(PredBlocks[0]) without the stuff that the new block does not dominate
 | 
						|
  // a predecessor of.
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTree>();
 | 
						|
  if (DT.dominates(NewBB, NewBBSucc)) {
 | 
						|
    DominanceFrontier::iterator DFI = find(PredBlocks[0]);
 | 
						|
    if (DFI != end()) {
 | 
						|
      DominanceFrontier::DomSetType Set = DFI->second;
 | 
						|
      // Filter out stuff in Set that we do not dominate a predecessor of.
 | 
						|
      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | 
						|
             E = Set.end(); SetI != E;) {
 | 
						|
        bool DominatesPred = false;
 | 
						|
        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
 | 
						|
             PI != E; ++PI)
 | 
						|
          if (DT.dominates(NewBB, *PI))
 | 
						|
            DominatesPred = true;
 | 
						|
        if (!DominatesPred)
 | 
						|
          Set.erase(SetI++);
 | 
						|
        else
 | 
						|
          ++SetI;
 | 
						|
      }
 | 
						|
 | 
						|
      if (NewBBI != end()) {
 | 
						|
        DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
 | 
						|
        NewBBSet.insert(Set.begin(), Set.end());
 | 
						|
      } else 
 | 
						|
        addBasicBlock(NewBB, Set);
 | 
						|
    }
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
 | 
						|
    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
 | 
						|
    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
 | 
						|
    DominanceFrontier::DomSetType NewDFSet;
 | 
						|
    NewDFSet.insert(NewBBSucc);
 | 
						|
    addBasicBlock(NewBB, NewDFSet);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now we must loop over all of the dominance frontiers in the function,
 | 
						|
  // replacing occurrences of NewBBSucc with NewBB in some cases.  All
 | 
						|
  // blocks that dominate a block in PredBlocks and contained NewBBSucc in
 | 
						|
  // their dominance frontier must be updated to contain NewBB instead.
 | 
						|
  //
 | 
						|
  for (Function::iterator FI = NewBB->getParent()->begin(),
 | 
						|
         FE = NewBB->getParent()->end(); FI != FE; ++FI) {
 | 
						|
    DominanceFrontier::iterator DFI = find(FI);
 | 
						|
    if (DFI == end()) continue;  // unreachable block.
 | 
						|
    
 | 
						|
    // Only consider nodes that have NewBBSucc in their dominator frontier.
 | 
						|
    if (!DFI->second.count(NewBBSucc)) continue;
 | 
						|
 | 
						|
    // Verify whether this block dominates a block in predblocks.  If not, do
 | 
						|
    // not update it.
 | 
						|
    bool BlockDominatesAny = false;
 | 
						|
    for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(), 
 | 
						|
           BE = PredBlocks.end(); BI != BE; ++BI) {
 | 
						|
      if (DT.dominates(FI, *BI)) {
 | 
						|
        BlockDominatesAny = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!BlockDominatesAny)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If NewBBSucc should not stay in our dominator frontier, remove it.
 | 
						|
    // We remove it unless there is a predecessor of NewBBSucc that we
 | 
						|
    // dominate, but we don't strictly dominate NewBBSucc.
 | 
						|
    bool ShouldRemove = true;
 | 
						|
    if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) {
 | 
						|
      // Okay, we know that PredDom does not strictly dominate NewBBSucc.
 | 
						|
      // Check to see if it dominates any predecessors of NewBBSucc.
 | 
						|
      for (pred_iterator PI = pred_begin(NewBBSucc),
 | 
						|
           E = pred_end(NewBBSucc); PI != E; ++PI)
 | 
						|
        if (DT.dominates(FI, *PI)) {
 | 
						|
          ShouldRemove = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ShouldRemove)
 | 
						|
      removeFromFrontier(DFI, NewBBSucc);
 | 
						|
    addToFrontier(DFI, NewBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class DFCalculateWorkObject {
 | 
						|
  public:
 | 
						|
    DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, 
 | 
						|
                          const DomTreeNode *N,
 | 
						|
                          const DomTreeNode *PN)
 | 
						|
    : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
 | 
						|
    BasicBlock *currentBB;
 | 
						|
    BasicBlock *parentBB;
 | 
						|
    const DomTreeNode *Node;
 | 
						|
    const DomTreeNode *parentNode;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
const DominanceFrontier::DomSetType &
 | 
						|
DominanceFrontier::calculate(const DominatorTree &DT,
 | 
						|
                             const DomTreeNode *Node) {
 | 
						|
  BasicBlock *BB = Node->getBlock();
 | 
						|
  DomSetType *Result = NULL;
 | 
						|
 | 
						|
  std::vector<DFCalculateWorkObject> workList;
 | 
						|
  SmallPtrSet<BasicBlock *, 32> visited;
 | 
						|
 | 
						|
  workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
 | 
						|
  do {
 | 
						|
    DFCalculateWorkObject *currentW = &workList.back();
 | 
						|
    assert (currentW && "Missing work object.");
 | 
						|
 | 
						|
    BasicBlock *currentBB = currentW->currentBB;
 | 
						|
    BasicBlock *parentBB = currentW->parentBB;
 | 
						|
    const DomTreeNode *currentNode = currentW->Node;
 | 
						|
    const DomTreeNode *parentNode = currentW->parentNode;
 | 
						|
    assert (currentBB && "Invalid work object. Missing current Basic Block");
 | 
						|
    assert (currentNode && "Invalid work object. Missing current Node");
 | 
						|
    DomSetType &S = Frontiers[currentBB];
 | 
						|
 | 
						|
    // Visit each block only once.
 | 
						|
    if (visited.count(currentBB) == 0) {
 | 
						|
      visited.insert(currentBB);
 | 
						|
 | 
						|
      // Loop over CFG successors to calculate DFlocal[currentNode]
 | 
						|
      for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
 | 
						|
           SI != SE; ++SI) {
 | 
						|
        // Does Node immediately dominate this successor?
 | 
						|
        if (DT[*SI]->getIDom() != currentNode)
 | 
						|
          S.insert(*SI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | 
						|
    // Loop through and visit the nodes that Node immediately dominates (Node's
 | 
						|
    // children in the IDomTree)
 | 
						|
    bool visitChild = false;
 | 
						|
    for (DomTreeNode::const_iterator NI = currentNode->begin(), 
 | 
						|
           NE = currentNode->end(); NI != NE; ++NI) {
 | 
						|
      DomTreeNode *IDominee = *NI;
 | 
						|
      BasicBlock *childBB = IDominee->getBlock();
 | 
						|
      if (visited.count(childBB) == 0) {
 | 
						|
        workList.push_back(DFCalculateWorkObject(childBB, currentBB,
 | 
						|
                                                 IDominee, currentNode));
 | 
						|
        visitChild = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If all children are visited or there is any child then pop this block
 | 
						|
    // from the workList.
 | 
						|
    if (!visitChild) {
 | 
						|
 | 
						|
      if (!parentBB) {
 | 
						|
        Result = &S;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
 | 
						|
      DomSetType &parentSet = Frontiers[parentBB];
 | 
						|
      for (; CDFI != CDFE; ++CDFI) {
 | 
						|
        if (!DT.properlyDominates(parentNode, DT[*CDFI]))
 | 
						|
          parentSet.insert(*CDFI);
 | 
						|
      }
 | 
						|
      workList.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
  } while (!workList.empty());
 | 
						|
 | 
						|
  return *Result;
 | 
						|
}
 | 
						|
 | 
						|
void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    o << "  DomFrontier for BB";
 | 
						|
    if (I->first)
 | 
						|
      WriteAsOperand(o, I->first, false);
 | 
						|
    else
 | 
						|
      o << " <<exit node>>";
 | 
						|
    o << " is:\t" << I->second << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DominanceFrontierBase::dump() {
 | 
						|
  print (llvm::cerr);
 | 
						|
}
 |