mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
f496e79f44
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86952 91177308-0d34-0410-b5e6-96231b3b80d8
403 lines
13 KiB
C++
403 lines
13 KiB
C++
//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interface for lazy computation of value constraint
|
|
// information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "lazy-value-info"
|
|
#include "llvm/Analysis/LazyValueInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
using namespace llvm;
|
|
|
|
char LazyValueInfo::ID = 0;
|
|
static RegisterPass<LazyValueInfo>
|
|
X("lazy-value-info", "Lazy Value Information Analysis", false, true);
|
|
|
|
namespace llvm {
|
|
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LVILatticeVal
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
|
|
/// value.
|
|
///
|
|
/// FIXME: This is basically just for bringup, this can be made a lot more rich
|
|
/// in the future.
|
|
///
|
|
namespace {
|
|
class LVILatticeVal {
|
|
enum LatticeValueTy {
|
|
/// undefined - This LLVM Value has no known value yet.
|
|
undefined,
|
|
/// constant - This LLVM Value has a specific constant value.
|
|
constant,
|
|
|
|
/// notconstant - This LLVM value is known to not have the specified value.
|
|
notconstant,
|
|
|
|
/// overdefined - This instruction is not known to be constant, and we know
|
|
/// it has a value.
|
|
overdefined
|
|
};
|
|
|
|
/// Val: This stores the current lattice value along with the Constant* for
|
|
/// the constant if this is a 'constant' or 'notconstant' value.
|
|
PointerIntPair<Constant *, 2, LatticeValueTy> Val;
|
|
|
|
public:
|
|
LVILatticeVal() : Val(0, undefined) {}
|
|
|
|
static LVILatticeVal get(Constant *C) {
|
|
LVILatticeVal Res;
|
|
Res.markConstant(C);
|
|
return Res;
|
|
}
|
|
static LVILatticeVal getNot(Constant *C) {
|
|
LVILatticeVal Res;
|
|
Res.markNotConstant(C);
|
|
return Res;
|
|
}
|
|
|
|
bool isUndefined() const { return Val.getInt() == undefined; }
|
|
bool isConstant() const { return Val.getInt() == constant; }
|
|
bool isNotConstant() const { return Val.getInt() == notconstant; }
|
|
bool isOverdefined() const { return Val.getInt() == overdefined; }
|
|
|
|
Constant *getConstant() const {
|
|
assert(isConstant() && "Cannot get the constant of a non-constant!");
|
|
return Val.getPointer();
|
|
}
|
|
|
|
Constant *getNotConstant() const {
|
|
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
|
|
return Val.getPointer();
|
|
}
|
|
|
|
/// markOverdefined - Return true if this is a change in status.
|
|
bool markOverdefined() {
|
|
if (isOverdefined())
|
|
return false;
|
|
Val.setInt(overdefined);
|
|
return true;
|
|
}
|
|
|
|
/// markConstant - Return true if this is a change in status.
|
|
bool markConstant(Constant *V) {
|
|
if (isConstant()) {
|
|
assert(getConstant() == V && "Marking constant with different value");
|
|
return false;
|
|
}
|
|
|
|
assert(isUndefined());
|
|
Val.setInt(constant);
|
|
assert(V && "Marking constant with NULL");
|
|
Val.setPointer(V);
|
|
return true;
|
|
}
|
|
|
|
/// markNotConstant - Return true if this is a change in status.
|
|
bool markNotConstant(Constant *V) {
|
|
if (isNotConstant()) {
|
|
assert(getNotConstant() == V && "Marking !constant with different value");
|
|
return false;
|
|
}
|
|
|
|
if (isConstant())
|
|
assert(getConstant() != V && "Marking not constant with different value");
|
|
else
|
|
assert(isUndefined());
|
|
|
|
Val.setInt(notconstant);
|
|
assert(V && "Marking constant with NULL");
|
|
Val.setPointer(V);
|
|
return true;
|
|
}
|
|
|
|
/// mergeIn - Merge the specified lattice value into this one, updating this
|
|
/// one and returning true if anything changed.
|
|
bool mergeIn(const LVILatticeVal &RHS) {
|
|
if (RHS.isUndefined() || isOverdefined()) return false;
|
|
if (RHS.isOverdefined()) return markOverdefined();
|
|
|
|
if (RHS.isNotConstant()) {
|
|
if (isNotConstant()) {
|
|
if (getNotConstant() != RHS.getNotConstant() ||
|
|
isa<ConstantExpr>(getNotConstant()) ||
|
|
isa<ConstantExpr>(RHS.getNotConstant()))
|
|
return markOverdefined();
|
|
return false;
|
|
}
|
|
if (isConstant()) {
|
|
if (getConstant() == RHS.getNotConstant() ||
|
|
isa<ConstantExpr>(RHS.getNotConstant()) ||
|
|
isa<ConstantExpr>(getConstant()))
|
|
return markOverdefined();
|
|
return markNotConstant(RHS.getNotConstant());
|
|
}
|
|
|
|
assert(isUndefined() && "Unexpected lattice");
|
|
return markNotConstant(RHS.getNotConstant());
|
|
}
|
|
|
|
// RHS must be a constant, we must be undef, constant, or notconstant.
|
|
if (isUndefined())
|
|
return markConstant(RHS.getConstant());
|
|
|
|
if (isConstant()) {
|
|
if (getConstant() != RHS.getConstant())
|
|
return markOverdefined();
|
|
return false;
|
|
}
|
|
|
|
// If we are known "!=4" and RHS is "==5", stay at "!=4".
|
|
if (getNotConstant() == RHS.getConstant() ||
|
|
isa<ConstantExpr>(getNotConstant()) ||
|
|
isa<ConstantExpr>(RHS.getConstant()))
|
|
return markOverdefined();
|
|
return false;
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
namespace llvm {
|
|
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
|
|
if (Val.isUndefined())
|
|
return OS << "undefined";
|
|
if (Val.isOverdefined())
|
|
return OS << "overdefined";
|
|
|
|
if (Val.isNotConstant())
|
|
return OS << "notconstant<" << *Val.getNotConstant() << '>';
|
|
return OS << "constant<" << *Val.getConstant() << '>';
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LazyValueInfo Impl
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool LazyValueInfo::runOnFunction(Function &F) {
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
// Fully lazy.
|
|
return false;
|
|
}
|
|
|
|
void LazyValueInfo::releaseMemory() {
|
|
// No caching yet.
|
|
}
|
|
|
|
static LVILatticeVal GetValueInBlock(Value *V, BasicBlock *BB,
|
|
DenseMap<BasicBlock*, LVILatticeVal> &);
|
|
|
|
static LVILatticeVal GetValueOnEdge(Value *V, BasicBlock *BBFrom,
|
|
BasicBlock *BBTo,
|
|
DenseMap<BasicBlock*, LVILatticeVal> &BlockVals) {
|
|
// FIXME: Pull edge logic out of jump threading.
|
|
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
|
|
// If this is a conditional branch and only one successor goes to BBTo, then
|
|
// we maybe able to infer something from the condition.
|
|
if (BI->isConditional() &&
|
|
BI->getSuccessor(0) != BI->getSuccessor(1)) {
|
|
bool isTrueDest = BI->getSuccessor(0) == BBTo;
|
|
assert(BI->getSuccessor(!isTrueDest) == BBTo &&
|
|
"BBTo isn't a successor of BBFrom");
|
|
|
|
// If V is the condition of the branch itself, then we know exactly what
|
|
// it is.
|
|
if (BI->getCondition() == V)
|
|
return LVILatticeVal::get(ConstantInt::get(
|
|
Type::getInt1Ty(V->getContext()), isTrueDest));
|
|
|
|
// If the condition of the branch is an equality comparison, we may be
|
|
// able to infer the value.
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
|
|
if (ICI->isEquality() && ICI->getOperand(0) == V &&
|
|
isa<Constant>(ICI->getOperand(1))) {
|
|
// We know that V has the RHS constant if this is a true SETEQ or
|
|
// false SETNE.
|
|
if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
|
|
return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
|
|
return LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: Info from switch.
|
|
|
|
|
|
// Otherwise see if the value is known in the block.
|
|
return GetValueInBlock(V, BBFrom, BlockVals);
|
|
}
|
|
|
|
static LVILatticeVal GetValueInBlock(Value *V, BasicBlock *BB,
|
|
DenseMap<BasicBlock*, LVILatticeVal> &BlockVals) {
|
|
// See if we already have a value for this block.
|
|
LVILatticeVal &BBLV = BlockVals[BB];
|
|
|
|
// If we've already computed this block's value, return it.
|
|
if (!BBLV.isUndefined())
|
|
return BBLV;
|
|
|
|
// Otherwise, this is the first time we're seeing this block. Reset the
|
|
// lattice value to overdefined, so that cycles will terminate and be
|
|
// conservatively correct.
|
|
BBLV.markOverdefined();
|
|
|
|
LVILatticeVal Result; // Start Undefined.
|
|
|
|
// If V is live in to BB, see if our predecessors know anything about it.
|
|
Instruction *BBI = dyn_cast<Instruction>(V);
|
|
if (BBI == 0 || BBI->getParent() != BB) {
|
|
unsigned NumPreds = 0;
|
|
|
|
// Loop over all of our predecessors, merging what we know from them into
|
|
// result.
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
Result.mergeIn(GetValueOnEdge(V, *PI, BB, BlockVals));
|
|
|
|
// If we hit overdefined, exit early. The BlockVals entry is already set
|
|
// to overdefined.
|
|
if (Result.isOverdefined())
|
|
return Result;
|
|
++NumPreds;
|
|
}
|
|
|
|
// If this is the entry block, we must be asking about an argument. The
|
|
// value is overdefined.
|
|
if (NumPreds == 0 && BB == &BB->getParent()->front()) {
|
|
assert(isa<Argument>(V) && "Unknown live-in to the entry block");
|
|
Result.markOverdefined();
|
|
return Result;
|
|
}
|
|
|
|
// Return the merged value, which is more precise than 'overdefined'.
|
|
assert(!Result.isOverdefined());
|
|
return BlockVals[BB] = Result;
|
|
}
|
|
|
|
// If this value is defined by an instruction in this block, we have to
|
|
// process it here somehow or return overdefined.
|
|
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
|
|
(void)PN;
|
|
// TODO: PHI Translation in preds.
|
|
} else {
|
|
|
|
}
|
|
|
|
Result.markOverdefined();
|
|
return BlockVals[BB] = Result;
|
|
}
|
|
|
|
|
|
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
|
|
// If already a constant, return it.
|
|
if (Constant *VC = dyn_cast<Constant>(V))
|
|
return VC;
|
|
|
|
DenseMap<BasicBlock*, LVILatticeVal> BlockValues;
|
|
|
|
DEBUG(errs() << "Getting value " << *V << " at end of block '"
|
|
<< BB->getName() << "'\n");
|
|
LVILatticeVal Result = GetValueInBlock(V, BB, BlockValues);
|
|
|
|
DEBUG(errs() << " Result = " << Result << "\n");
|
|
|
|
if (Result.isConstant())
|
|
return Result.getConstant();
|
|
return 0;
|
|
}
|
|
|
|
/// getConstantOnEdge - Determine whether the specified value is known to be a
|
|
/// constant on the specified edge. Return null if not.
|
|
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
|
|
BasicBlock *ToBB) {
|
|
// If already a constant, return it.
|
|
if (Constant *VC = dyn_cast<Constant>(V))
|
|
return VC;
|
|
|
|
DenseMap<BasicBlock*, LVILatticeVal> BlockValues;
|
|
|
|
DEBUG(errs() << "Getting value " << *V << " on edge from '"
|
|
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
|
|
LVILatticeVal Result = GetValueOnEdge(V, FromBB, ToBB, BlockValues);
|
|
|
|
DEBUG(errs() << " Result = " << Result << "\n");
|
|
|
|
if (Result.isConstant())
|
|
return Result.getConstant();
|
|
return 0;
|
|
}
|
|
|
|
/// getPredicateOnEdge - Determine whether the specified value comparison
|
|
/// with a constant is known to be true or false on the specified CFG edge.
|
|
/// Pred is a CmpInst predicate.
|
|
LazyValueInfo::Tristate
|
|
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
|
|
BasicBlock *FromBB, BasicBlock *ToBB) {
|
|
LVILatticeVal Result;
|
|
|
|
// If already a constant, we can use constant folding.
|
|
if (Constant *VC = dyn_cast<Constant>(V)) {
|
|
Result = LVILatticeVal::get(VC);
|
|
} else {
|
|
DenseMap<BasicBlock*, LVILatticeVal> BlockValues;
|
|
|
|
DEBUG(errs() << "Getting value " << *V << " on edge from '"
|
|
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
|
|
Result = GetValueOnEdge(V, FromBB, ToBB, BlockValues);
|
|
DEBUG(errs() << " Result = " << Result << "\n");
|
|
}
|
|
|
|
// If we know the value is a constant, evaluate the conditional.
|
|
Constant *Res = 0;
|
|
if (Result.isConstant()) {
|
|
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
|
|
if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res))
|
|
return ResCI->isZero() ? False : True;
|
|
} else if (Result.isNotConstant()) {
|
|
// If this is an equality comparison, we can try to fold it knowing that
|
|
// "V != C1".
|
|
if (Pred == ICmpInst::ICMP_EQ) {
|
|
// !C1 == C -> false iff C1 == C.
|
|
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
|
|
Result.getNotConstant(), C, TD);
|
|
if (Res->isNullValue())
|
|
return False;
|
|
} else if (Pred == ICmpInst::ICMP_NE) {
|
|
// !C1 != C -> true iff C1 == C.
|
|
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ,
|
|
Result.getNotConstant(), C, TD);
|
|
if (Res->isNullValue())
|
|
return True;
|
|
}
|
|
}
|
|
|
|
return Unknown;
|
|
}
|
|
|
|
|